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Abstract
Natural selection has been documented in contemporary humans, but little is known about the mechanisms behind it. We 
test for natural selection through the association between 33 polygenic scores and fertility, across two generations, using 
data from UK Biobank (N = 409,629 British subjects with European ancestry). Consistently over time, polygenic scores 
that predict higher earnings, education and health also predict lower fertility. Selection effects are concentrated among lower 
SES groups, younger parents, people with more lifetime sexual partners, and people not living with a partner. The direction 
of natural selection is reversed among older parents, or after controlling for age at first live birth. These patterns are in line 
with the economic theory of fertility, in which earnings-increasing human capital may either increase or decrease fertil-
ity via income and substitution effects in the labour market. Studying natural selection can help us understand the genetic 
architecture of health outcomes: we find evidence in modern day Great Britain for multiple natural selection pressures that 
vary between subgroups in the direction and strength of their effects, that are strongly related to the socio-economic system, 
and that may contribute to health inequalities across income groups.

Keywords  Natural selection · Polygenic scores · Economic theory of fertility

Introduction

Living organisms evolve through natural selection, in which 
allele frequencies change in the population through differen-
tial reproduction rates. Studying the mechanisms behind nat-
ural selection can help us better understand how individual 
differences in complex traits and disease risk arise (Benton 
et al. 2021). Recent work confirms that natural selection is 
taking place in modern human populations, using genome-
wide analysis (Barban et al. 2016; Beauchamp 2016; Conley 
et al. 2016; Kong et al. 2017; Sanjak et al. 2018; Fieder and 
Huber 2022). In particular, genetic variants associated with 

higher educational attainment are being selected against, 
although effect sizes appear small.

As yet we know little about the social mechanisms behind 
natural selection. The economic theory of fertility (Becker 
1960) offers a potential explanation. Higher potential earn-
ings have two opposite effects on fertility: a fertility-increas-
ing income effect (higher income makes children more 
affordable), and a fertility-lowering substitution effect (time 
spent on childrearing has a higher cost in foregone earnings). 
Thus, an individual’s human capital – skills and personality 
traits which are valuable in labour markets – can increase or 
decrease their fertility. Genetic variants which are linked to 
human capital will then be selected for or against. Also, the 
economic theory predicts that the relative strength of income 
and substitution effects will vary systematically across dif-
ferent social groups.

This study uses data from UK Biobank (Bycroft et al. 
2018) to learn more about contemporary natural selection. 
We test for natural selection on 33 different polygenic scores 
by estimating their correlation with fertility. We extend the 
analysis over two generations, using data on respondents’ 
number of siblings as well as their number of children. This 
is interesting because consistent natural selection over mul-
tiple generations could lead to substantive effects in the long 
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run. Next, we examine correlations with fertility in different 
subgroups. Across the board, selection effects are stronger 
in groups with lower income and less education, among 
younger parents, people not living with a partner, and peo-
ple with more lifetime sexual partners. Outside these groups, 
effects are weaker and often statistically insignificant. In 
some subgroups, the direction of selection is even reversed.

We then show that a simple model of human capital, 
education and fertility choices can give rise to these empiri-
cal results. At higher incomes, the income and substitution 
effects are balanced, while among lower-income people, or 
single parents who face a bigger time burden from child-
care, the substitution effect dominates. The theory predicts 
that polygenic scores’ correlation with fertility is associated 
with their correlation with education and earnings, and we 
confirm this. We then run a mediation analysis, which shows 
that part of the correlation with fertility is indeed mediated 
by educational attainment. Thus, contemporary natural 
selection on polygenic scores can be explained by scores’ 
correlation with earnings-increasing human capital.

Lastly, we discuss the effects of natural selection. While 
our estimated effects on measured polygenic scores are 
small, natural selection substantially increases the cor-
relation between polygenic scores and income, increasing 
genetic differences between different social groups, and thus 
making the “genetic lottery” (Harden 2021) more unfair.

Results

We created polygenic scores for 33 traits in 409,629 indi-
viduals of European descent, corrected for ancestry using 
100 genetic principal components (see Materials and Meth-
ods). Figure 1 plots mean polygenic scores in the sample 
by 5-year birth intervals. Several scores show consistent 
increases or declines over this 30-year period, of the order 
of 5% of a standard deviation. These changes could reflect 
natural selection within the UK population, but also emigra-
tion, or ascertainment bias in the sample (Fry et al. 2017).

To test for natural selection more directly, we regress 
respondents’ relative lifetime reproductive success (RLRS) 
on each polygenic score (PGS):

RLRS is defined as respondent i’s number of children, 
divided by the mean number of children of people born in 
the same year. The “selection effect”, � , reflects the strength 

(1)RLRSi = � + �PGSi + �i

of natural selection within the sample. In fact, since poly-
genic scores are normalized, � is the expected polygenic 
score among children of the sample (Beauchamp 2016).1 
Note that equation (1) does not control for many environ-
mental and genetic factors that could affect fertility, and as a 
result, � is not an estimate of the causal effect of a polygenic 
score on fertility. However, natural selection is a matter of 
correlation not causation: polygenic scores which correlate 
with high fertility are being selected for, whatever the under-
lying causal mechanism.

Figure 2 plots selection effects in the whole sample.2 To 
correct for ascertainment bias, we use participant weights 
from Alten et al. (2022), which match the UK Biobank 
eligible population on sex, birth year, location, education, 
employment, health, household size and tenure, number of 
cars and age at death. Weighting makes a large difference: 
effect sizes go up by a mean of 48%.3 23 out of 33 weighted 
selection effects are significant at p < 0.05/33.

We now show the empirical puzzles which motivate our 
economic model. Each concerns differences in the strength 
of natural selection across different subgroups in the sample. 
We re-estimate (1) splitting the sample by demographic and 
social variables, including income and education, and family 
structure variables including age at first live birth, presence 
of a partner, and lifetime number of sexual partners.

Figure 3 plots selection effects for each polygenic score, 
grouping respondents by age of completing full-time educa-
tion, and by household income. Effects are larger and more 
significant for the lowest education category, and for the 
lowest income category. The median percentage difference 
between the lowest and highest education categories, among 
scores which are significant for the lowest category and have 
the same sign across categories, is 249%. Between the low-
est and highest income categories, it is 595%. These results 
are robust to controlling for respondents’ age (Appendix 
sect. 8.4). Turning to family structure, we split respondents 
by lifetime number of sexual partners, at the median value 
of 3 (Fig. 4a). Now, selection effects are larger and more 
significant among those with more than 3 lifetime partners, 
with a median percentage difference of 191%. Next we split 

1  The selection effect � equals Cov(RLRS,  PGS)/Var(PGS). Since 
PGS are normalized to variance 1 and mean 0, this reduces to 

2  We also check for stabilizing and disruptive selection by estimat-
ing (1) with a quadratic term. Stabilizing selection selects for inter-
mediate values, while disruptive selection selects for extreme values. 
In particular, we find disruptive selection for educational attainment 
polygenic scores: at higher values of these scores, the negative effect 
on fertility is smaller (Appendix Figure 10).
3  We use these weights throughout. All our qualitative results are 
robust if we run unweighted regressions. Appendix Table  2 shows 
results from alternative weighting schemes.

Cov(RLRS,PGS) = E(RLRS × PGS) − E(RLRS)E(PGS) = E(RLRS × PGS)   . 
This is the polygenic score weighted by relative lifetime reproductive 
success, which is the average polygenic score in the next generation 
(Robertson 1966).

Footnote 1 (continued)
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respondents by whether they were living with a spouse or 
partner at the time of interview (Figure 4b). Effects are 
larger among those not living with a spouse or partner. The 
median percentage difference is 281%.4

Lastly, we split female respondents by age at first live 
birth (AFLB).5 There is evidence for genetic effects on 
AFLB (Barban et al. 2016), and there is a close link between 
this variable and number of children born. Figure 5 shows 
effect sizes estimated separately for each tercile of AFLB. 

Fig. 1   Mean polygenic scores (PGS) by birth year in UK Biobank. Symbols show means for 5-year intervals. Bars are 95% confidence intervals. 
Triangles denote a significant linear increase or decrease over time (p < 0.05/33)

4  The same pattern holds if we analyse men and women separately 
(Appendix Fig.   11). We also directly compared selection effects 
between men and women (Appendix Fig. 9). 5  AFLB is unavailable for men.
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Effects are strikingly different across terciles. Educational 
attainment, ADHD and MDD are selected for amongst the 
youngest third of mothers, but selected against among the 
oldest two-thirds. Similarly, several polygenic scores for 
body measurements are selected against only among older 
mothers. The correlation between effect sizes for the young-
est and oldest terciles is –0.83. To investigate this further, we 
estimate equation (1) among females, controlling for AFLB. 
In 18 out of 33 cases, effects change sign when controls are 
added. The correlation between effect sizes controlling for 
AFLB, and raw effect sizes, is –0.58. Thus, selection effects 
seem to come through two opposing channels: a correlation 
with AFLB, and an opposite-signed correlation with number 
of children after AFLB is controlled for.

We emphasize that these categories are not exogenous to 
polygenic scores. For example – both in the data (Appendix 
Fig. 17) and in our theoretical model – education and age at 
first live birth are choice variables, which are endogenous to 
a person’s human capital and to relevant polygenic scores. 
Nevertheless, differences in selection effects across sub-
groups constrain the set of possible explanations. A good 
theory of contemporary natural selection needs to show 
how these differences come about. As we describe below, 
a model based on the economic theory of fertility can do 
just that.

We also examine selection effects among respondents’ 
parents, using information on respondents’ number of sib-
lings to calculate parents’ RLRS. Effect sizes of polygenic 

scores are highly correlated across the two generations 
(Appendix Fig. 12). Median-splitting respondents by year of 
birth, we find little evidence of change in effect sizes among 
the parents’ generation. There is some evidence that selec-
tion effect sizes are increasing in the respondents’ genera-
tion, with 8 polygenic scores showing a significant increase. 
We also check whether selection effects vary by AFLB and 
socio-economic status in the parents’ generation, using the 
1971 Townsend deprivation score of respondents’ birthplace 
as a proxy for income (Townsend 1987). Results show the 
same pattern as for the respondents’ generation. Effect sizes 
are larger and more often significant in the most deprived 
areas (Appendix Fig. 13). Effects are larger among younger 
fathers and mothers, and change sign when controlling for 
AFLB (Appendix Figs 15, 16). Lastly, we check for a “quan-
tity-quality tradeoff” between parents’ number of children 
and number of grandchildren. We don’t find any: in fact, 
the correlation between respondents’ and parents’ RLRS is 
positive ( � = 0.1, p < 2 × 10−16).

Human Capital and Natural Selection

These results show that selection effects are weaker, absent, 
or even reversed among some subgroups of the population. 
A possible explanation for this comes from the economic 
theory of fertility (Becker 1960; Willis 1973; Becker and 

Fig. 2   Selection effects: weighted and unweighted regressions. Each point represents a single bivariate regression of RLRS on a polygenic score. 
P value threshold is 0.05, Bonferroni-corrected for multiple comparisons. Confidence intervals are uncorrected
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Tomes 1976). According to this theory, increases in a per-
son’s wage affect their fertility via two opposing channels. 
There is an income effect by which children become more 
affordable, like any other good. There is also a substitution 
effect: since childrearing has a cost in time, the opportunity 

cost of childrearing increases if one’s market wage is higher. 
The income effect leads higher earners to have more chil-
dren. The substitution effect leads them to have fewer.

Suppose that certain genetic variants correlate with 
human capital: skills or other characteristics that affect an 

Fig. 3   Selection effects by education and income
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Fig. 4   Selection effects by number of sexual partners and presence of a partner
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individual’s earnings in the labour market (Mincer 1958; 
Becker 1964). These variants may then be associated with 
opposing effects on fertility. The income effect will lead to 
natural selection in favour of earnings-increasing variants 
(or variants that are merely associated with higher earnings). 
The substitution effect will do the reverse.

To show this, consider a simple model of fertility choices. 
h is an individual’s level of human capital. For now, we 
simply identify this with his or her wage W. Raising a child 
takes time b. People maximize utility U from the number of 
children N and from income Y ≡ (1 − bN)W:

Here a captures the strength of preference for children. u(⋅) 
captures the taste for income, and is increasing and concave. 
We treat N as continuous, in line with the literature: this can 
be thought of as the expected number of children among 
people with a given a, b and W. The marginal benefit of an 
extra child is dU

dN
= −bWu�(Y) + a . The effect of an increase 

in human capital on this marginal benefit is

The substitution effect is negative and reflects that when 
wages increase, time devoted to childcare costs more in 
foregone income. The positive income effect depends on 
the curvature of the utility function, and reflects that when 

U = u(Y) + aN.

d2U

dNdW
= −bu�(Y)

⏟⏟⏟
Substitution effect

−bYu��(Y)
⏟⏞⏞⏟⏞⏞⏟
Income effect

.

income is higher, the marginal loss of income from children 
is less painful.

To examine education and fertility timing, we extend the 
model to two periods. For convenience we ignore time dis-
counting, and assume that credit markets are imperfect so 
that agents cannot borrow. Write

Instead of identifying human capital with wages, we now 
allow individuals to spend time s ∈ [0, 1] on education in 
period 1. Education is complementary to human capital 
h > 0 , and increases period 2 wages, which take the simple 
functional form w(s, h) = sh . We normalize period 1 wages 
to 1, and let u(⋅) take the constant relative risk aversion form 
u(y) =

y1−�−1

1−�
 . 𝜎 > 0 measures the curvature of the utility 

function, i.e. the decline in marginal utility of income as 
income increases. We examine total fertility N∗ = N∗

1
+ N∗

2
 

and the fertility-human capital relationship, dN
∗

dh
 . For 𝜎 < 1 

and close enough to 1, Table 1 shows five theoretical pre-
dictions, along with our corresponding empirical results for 
the correlation between polygenic scores and RLRS.6 The 
key insight of the model is that for middling levels of � , the 
substitution effect dominates at low income levels, but as 

(2)U(N1,N2) = u(Y1) + u(Y2) + aN1 + aN2

Fig. 5   Selection effects by age at first live birth terciles (women only)

6  Predictions 1-3 also hold in the one-period model with constant 
relative risk aversion. Our empirical results are actually stronger than 
prediction 5, in that correlations with fertility are reversed at higher 
AFLB. This prediction can be accommodated in the model if children 
have a money cost as well as a time cost (Appendix Figure 24).
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income increases, the income and substitution effect bal-
ance out.

Thus, a simple economic model can explain many of our 
results. Other empirical work in economics also supports the 
link from human capital to fertility. Caucutt et al. (2002) and 
Monstad et al. (2008) show that education and skills affect 
age at first birth and fertility. Income decreases fertility at 
low income levels, but increases it at higher income levels 
(Cohen et al. 2013). US fertility decreases faster with edu-
cation among single mothers than married mothers (Baudin 
et al. 2015), in line with our prediction 3 and as predicted 
by Becker (1981). A related literature shows negative cor-
relations between IQ and fertility (e.g. Lynn and Van Court 
2004; Reeve et al. 2018).

Testing the Theory

We test the economic theory in two ways. First, it predicts 
that genetic variants will be selected for (or against) in pro-
portion to their correlation with human capital. Figure 6 
plots selection effects on each polygenic score against that 
score’s correlation with two measures of human capital: 
earnings in a respondent’s first job, and educational attain-
ment. The relationships are strongly negative. Thus, human 
capital appears to be relevant to natural selection. The nega-
tive relationship suggests that substitution effects dominate 
income effects, which fits the known negative association 
between income and fertility (Becker 1960; Jones and Tertilt 
2006). The correlations reverse when we control for age at 
first live birth, suggesting that within AFLB categories, the 
income effect dominates.

Table 1   Predictions from the theoretical model and corresponding empirical results

Theory: the fertility-human capital relationship is. Empirical results

1. Negative: dN
∗

dh
< 0. Figures 1 and 2.

2. Weaker (closer to zero) at higher wages and/or levels of human capital. Figure 3a. Selection effects are also weaker at higher 
polygenic scores for educational attainment (Appendix 
Fig. 10).

3. More negative when the time burden of children b is larger. Stronger effects for single parents (Fig. 4).
4. Weaker at higher levels of education s. Figure 3b.
5. Weaker among those who start fertility in period 2 ( N∗

1

= 0 ) than among 
those who start fertility in period 1 ( N∗

1

> 0).
Effects weaker among those starting fertility later (Fig. 5).

Fig. 6   Selection effects by correlations with earnings and educational attainment. Each point represents one polygenic score. Selected scores are 
annotated
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Second, we run a mediation analysis to directly test 
whether the correlation between each polygenic score and 
fertility is mediated by educational attainment (Appendix 
Table 4). We use the 23 scores where the selection effect 
is significant at p < 0.05/33. Figure 7 shows estimated pro-
portions explained by educational attainment, along with 
bootstrap 95% confidence intervals (uncorrected; 100 boot-
straps). For 22 scores, the indirect effect of the score on 
fertility via educational attainment takes the same sign as 
the overall effect, and is significantly different from zero (p 
< 0.05/23). Among these scores, the median proportion of 
the total effect explained by the indirect effect is 25%. The 
educational attainment variable is a relatively crude meas-
ure of human capital: more accurate measures would likely 
explain more of the total effect.

We consider three alternative theories that might explain 
our results. First, welfare benefits which incentivize child-
bearing might be taken up more among low-income peo-
ple. However, the majority of effect sizes appear unchanged 
over a large span of twentieth-century history (Appendix 
Table 3), during which government spending on child-
related benefits varied considerably (Social Security Com-
mittee 1999). In general, there is only weak evidence that 
welfare benefits affect fertility (Gauthier 2007; see also 
Bergsvik et al. 2021). Future work could test this theory 
more explicitly. A second alternative theory is that poly-
genic scores correlate with the motivation to have children, 
i.e. parameter a in the model (cf. Jones et al. 2008). This 

theory would not explain why selection effects are smaller 
at higher incomes and education levels. In fact, in the model, 
a’s effect on fertility gets stronger at higher levels of human 
capital. A third alternative is that traits under selection are 
linked to externalizing behaviour and risk-seeking. This 
might be partially captured by our parameter � , which can 
be interpreted as a measure of risk aversion over income; a 
more direct channel is risky sexual behaviour (Mills et al. 
2021). The data here provide some support for this story: 
scores which might plausibly be linked to externalizing 
behaviour, like ADHD and younger age at smoking initia-
tion, are selected for. However, risk-seeking seems unlikely 
to explain variation in fertility across the full range of scores 
under selection, including physical measures like waist-hip 
ratio and BMI. We test this theory directly by re-estimat-
ing equation (1) controlling for a measure of risk attitude 
(UK Biobank field 2040). The median ratio of effect sizes 
between regressions with and without controls is 0.98; all 
scores which are significant at p < 0.05∕33 in uncontrolled 
regressions remain so when controlling for risk attitude. This 
non-result could simply reflect the imprecision of the risk 
attitude measure, which is a single yes/no question. But this 
measure does predict the overall number of children, highly 
significantly ( p < 2 × 10−16 in 33 out of 33 regressions). 
Given that, and the statistical power we get from our sample 
size, we believe that the non-result is real: while risk attitude 
does predict fertility in the sample, it is not an important 
channel for natural selection.

Fig. 7   Proportion of selection effect mediated by educational attainment, among polygenic scores with significant selection effects. Bootstrap 
confidence intervals for the proportion are shown only where the interval is bounded (Franz 2007)
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Discussion

Previous work has documented natural selection in modern 
populations on variants underlying polygenic traits (Beau-
champ 2016; Kong et al. 2017; Sanjak et al. 2018). We show 
that correlations between polygenic scores and fertility are 
highly concentrated among specific subgroups of the popula-
tion, including people with lower income, lower education, 
younger first parenthood, and more lifetime sexual partners. 
Among mothers aged 22+, selection effects are reversed. 
Furthermore, the size of selection effects on a polygenic 
score correlates with that score’s association with labour 
market earnings. Strikingly, some of these results were pre-
dicted by Fisher (1930), pp. 253-254. The economic theory 
of fertility gives a parsimonious explanation for these find-
ings. Because of the substitution effect of earnings on fer-
tility, scores are selected for when they correlate with low 
human capital, and this effect is stronger at lower levels of 
income and education.

Polygenic scores which correlate with lower earnings and 
less education are being selected for. In addition, many of 
the phenotypes under positive selection are linked to disease 
risk. Many people would probably prefer to have high edu-
cational attainment, a low risk of ADHD and major depres-
sive disorder, and a low risk of coronary artery disease, but 
natural selection is pushing against genes associated with 
these traits. Potentially, this could increase the health burden 
on modern populations, but that depends on effect sizes. 
Our results show that naïve estimates can be affected by 
sample ascertainment bias. There may be remaining sources 
of ascertainment bias after our weighting; if so, we expect 
that, like the sources of ascertainment we have controlled 
for, they probably bias our results towards zero. Researchers 
should be aware of the risks of ascertainment when studying 
modern natural selection.

We also do not know how estimated effect sizes of natu-
ral selection will change as more accurate polygenic scores 
are produced, or whether genetic variants underlying other 
phenotypes will show a similar pattern to those studied here. 
Also, effects of polygenic scores may be inflated in pop-
ulation-based samples, because of indirect genetic effects, 
gene-environment correlations, and/or assortative mat-
ing (Lee et al. 2018; Selzam et al. 2019; Kong et al. 2018; 
Howe et al. 2021), although we do not expect that this should 
change their association with number of offspring, or the 
resulting changes in allele frequencies. Although effects on 
our measured polygenic scores are small even after weight-
ing, individually small disadvantages can cumulate to create 
larger effects. Lastly, note that our data comes from people 
born before 1970. Recent evidence suggests that fertility pat-
terns may be changing (Doepke et al. 2022). Overall, it is 
probably too early to tell whether modern natural selection 

has a substantively important effect on population averages 
of phenotypes under selection.

Because selection effects are concentrated in lower-
income groups, they may also increase inequality with 
respect to polygenic scores. For example, Figure 8 plots 
mean polygenic scores for educational attainment (EA3) 
among children from households of different income groups. 
The blue bars show the actual means, i.e. parents’ mean 
polygenic score weighted by number of children. The grey 
bars show the hypothetical means if all households had equal 
numbers of children. Natural selection against genes associ-
ated with educational attainment is stronger at the bottom 
of the income distribution, and this increases the differences 
between groups. Overall, natural selection increases the 
correlation of polygenic scores with income for 28 out of 
33 polygenic scores, with a median percentage increase of 
16.43% in the respondents’ generation (Appendix Table 5). 
If inequalities in polygenic scores are important for under-
standing social structure and mobility (Belsky et al. 2018; 
Rimfeld et al. 2018; Harden 2021), then these increases are 
substantive. Similarly, since many polygenic scores are pre-
dictive of disease risk, they could potentially increase health 
inequalities. In general, the evolutionary history of anatomi-
cally modern humans is related to disease risk (Benton et al. 
2021); understanding the role of contemporary natural selec-
tion may help researchers to map the genetic architecture of 
health disparities.

Existing evidence on human natural selection has led 
some to “biocosmic pessimism” (Sarraf and Feltham 2019). 
Others are more sanguine, and argue that natural selection’s 
effects are outweighed by environmental improvements, like 

Fig. 8   Mean polygenic score for educational attainment (EA3) of 
children by household income group. Blue is actual. Grey is hypo-
thetical in the absence of selection effects (Color figure online)
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those underlying the Flynn effect (Flynn 1987). The evi-
dence here may add some nuance to this debate. Patterns 
of natural selection have been relatively consistent across 
the past two generations, but they are not the outcome of a 
single, society-wide phenomenon. Instead they result from 
opposing forces, operating in different parts of society and 
pulling in different directions.

Any model of fertility is implicitly a model of natu-
ral selection, but so far, the economic and human genet-
ics literatures have developed in parallel. Integrating the 
two could deepen our understanding of natural selection in 
modern societies. Economics possesses a range of theoreti-
cal models on the effects of skills, education and income 
(see Hotz et al. 1997; Lundberg and Pollak 2007). One 
perennial problem is how to test these theories in a world 
where education, labour and marriage markets all interact. 
Genetic data, such as polygenic scores, could help to pin 
down the direction of causality, for example via Mende-
lian randomization (Smith and Shah 2003). Conversely, 
economic theories and empirical results can shine a light 
on the mechanisms behind natural selection, and thereby 
on the nature of individual differences in complex traits 
and disease risk.

Materials and Methods

We use participant data from UK Biobank (Bycroft et al. 
2018), which has received ethical approval from the National 
Health Service North West Centre for Research Ethics Com-
mittee (reference: 11/NW/0382). We limit the sample to 
white British participants of European descent, as defined by 
genetic estimated ancestry and self-identified ethnic group, 
giving a sample size of 409,629. For regressions on number 
of children we use participants over 50 (males)/45 (females), 
since most fertility is completed by this age. This gives a 
sample size of 348,595.

Polygenic scores were chosen so as to cover a reasonably 
broad range of traits, and based on the availability of a large 
and powerful GWAS which did not include UK Biobank. 
Scores were computed by summing the alleles across ~1.3 
million genetic variants weighted by their effect sizes as esti-
mated in 33 genome-wide association studies (GWASs) that 
excluded UK Biobank. To control for population stratifica-
tion, we corrected the polygenic scores for 100 principal 
components (PCs). To compute polygenic scores and PCs, 
the same procedures were followed as described in Abdel-
laoui et al. (2019).

Fig. 9   Selection effects by sex. Solid lines are significant differences at p < 0.05/33. Solid points are significantly different from 0 at p < 0.05/66
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Earnings in first job are estimated from mean earnings in 
the 2007 Annual Survey of Hours and Earnings, using the 
SOC 2000 job code (Biobank field 22617).

Weighting data was kindly provided by Alten et  al. 
(2022).

Appendix

Selection Effects by Sex

Figure 9 plots selection effects by sex. Differences are par-
ticularly large for educational attainment, height, ADHD and 
MDD. Several polygenic scores for mental illness and per-
sonality traits are more selected for (or less against) among 
women, including major depressive disorder (MDD), schizo-
phrenia and neuroticism, while extraversion is more selected 
for among men.

Alternative Weighting Schemes

We compare results for our main weights to 3 alternative 
weighting schemes: weighting by age/qualification; geo-
graphical (weighting by Middle Super Output Area); and 
for women only, age, qualification and age at first live birth. 
Population data for weighting is taken from the 2011 UK 
Census and the 2006 General Household Survey (GHS). 
Weighting for Age/Qualification and Age/Qualification/
AFLB weights was done using marginal totals from a linear 
model, using the calibrate() function in the R “survey” 
package (Jones and Tertilt 2020). Geographical weighting 
was done with iterative post-stratification using the rake() 
function, on Census Middle Layer Super Output Areas, sex 
and presence/absence of a partner.

Table  2 gives effect sizes as a proportion of the 
unweighted effect size, for all polygenic scores which are 
consistently signed and which are significantly different 
from zero in unweighted regressions.

Table 2   Weighted effect sizes 
as a proportion of unweighted 
effect sizes

Only consistently-signed and significant (when unweighted) estimates are shown. Age/Qual/AFLB as a 
proportion of unweighted regressions including females only

Weighting

PGS Main Geographical Age/Qualifica-
tion

Age/Qual/AFLB

Eating disorder 2.19 1.62 1.69 0.76
Waist-hip ratio 1.89 1.54 1.19 0.96
Coronary Artery Disease 1.79 0.97 1.17 1.09
Height 1.76 1.85 1.31 0.98
Educ. attainment 2 (no UKBB) 1.63 1.51 1.25 1.14
Educ. attainment 3 (no UK) 1.62 1.57 1.24 1.17
Major Depressive Disorder 1.61 1.44 1.24 1.01
Age at smoking initiation 1.59 1.38 1.13 0.97
Waist circumference 1.58 1.52 1.09 1.19
ADHD 1.54 1.14 1.15 1.03
Age at menopause 1.54 1.63 1.17 0.85
Cigarettes per day 1.54 1.73 0.97 0.98
Smoking initiation 1.53 1.30 1.07 0.87
BMI 1.52 1.68 1.01 1.20
Caffeine 1.48 0.86 1.14 1.44
Hip circumference 1.44 1.51 0.98 1.44
Cannabis (ever vs. never) 1.38 1.41 1.02 0.83
Cognitive Ability 1.25 1.21 1.09 1.59
Body Fat 1.23 1.36 1.13 1.16
Extraversion 1.13 0.91 1.08 2.47
Autism 0.81 1.51 0.57 −0.70
Agreeableness 0.45 0.99 0.63 13.30
Mean 1.48 1.39 1.11 1.62
Median 1.54 1.47 1.13 1.06
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Stabillizing and Disruptive Selection

Stabilizing selection reduces variance in the trait under 
selection, while disruptive selection increases variance. 
To check for these, we rerun Eq. (1), adding a quadratic 
term in PGSi . Scores for hip circumference show significant 
stabilizing selection ( p < 0.05∕33 , negative coefficient on 
quadratic term). The EA2 score for educational attainment 
shows significant disruptive selection ( p < 0.05∕33 , positive 
coefficient), which reduces the strength of selection against 
educational attainment at very high levels of the PGS. (The 
quadratic on the EA3 score has a similar coefficient but is 
not significant at p < 0.05∕33 .) Figure 10 plots predicted 
number of children against polygenic score from these 
regressions.

We also checked for stabilizing selection in the parents’ 
generation, using weights multiplied by the inverse of num-
ber of siblings. Scores for EA2 and EA3 show significant 
disruptive selection ( p < 0.05∕33 , positive coefficient on 
quadratic). Other scores including hip circumference were 
not significant.

Controlling for Age

Results in Fig. 3 could be explained by age, if older respond-
ents have lower income and are less educated, and also 
show more natural selection on polygenic scores. However, 
when we rerun the regressions, interacting the polygenic 
score with income category and also with a quadratic in 
age, the interaction with income remains significant at p < 
0.05/33 for 17 out of 33 regressions. Similarly if we inter-
act the PGS with age of leaving full time education and a 
quadratic in age, the interaction with age leaving full time 

education remains significant at p < 0.05/33 for 12 out of 
33 regressions.

Number of Partners and Presence of Partner by Sex

Figure 11 splits up Fig. 4 by sex. The pattern of results is 
the same in both sexes: selection effects are stronger among 
those with more lifetime sexual partners, and among those 
not currently living with a partner.

Parents’ Generation

Selection Effects and Change Over Time

The UK Biobank data contains information on respond-
ents’ number of siblings (including them), i.e. their parents’ 
number of children. Since respondents’ polygenic scores 
are equal in expectation to the mean scores of their parents, 
we can use this to look at selection effects in the parents’ 
generation. We estimate equation (1) using parents’ RLRS 
as the dependent variable.7 The parents’ generation has an 
additional source of ascertainment bias: sampling parents of 
respondents overweights parents who have many children. 
For instance, parents of three children will have, on average, 
three times more children represented in UK Biobank than 
parents of one child. Parents of no children will by definition 

Fig. 10   Stabilizing/disruptive selection: predicted number of children by polygenic score

7  We don’t have data on parents’ year of birth for most respondents. 
To create parents’ RLRS, we divide respondents’ number of siblings 
by the average number of siblings of all respondents born in the same 
year, weighting the average by respondents’ inverse of number of sib-
lings to compensate for ascertainment bias.
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Fig. 11   Selection effects by number of sexual partners and presence of a partner, for men and women separately
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not be represented. To compensate, we multiply our weights 
by the inverse of number of siblings.

Figure 12 shows regressions of parents’ RLRS on poly-
genic scores. For a clean comparison with the respondents’ 
generation, we rerun regressions on respondents’ RLRS 
excluding those with no children, and show results in the 
figure. Selection effects are highly correlated across the two 
generations, and most share the same sign. Absolute effect 
size estimates are larger for the parents’ generation. We treat 
this result cautiously, because effect sizes in both generations 
may depend on polygenic scores’ correlation with childless-
ness, and we cannot estimate this for the parents’ generation.

To learn more about this, we compare effect sizes exclud-
ing and including childless people in the current genera-
tion. The correlation between the two sets of effect sizes is 
0.95. So, patterns across different scores are broadly similar 
whether the childless are counted or not. However, absolute 
effect sizes are smaller when the childless are excluded, for 
27 out of 33 scores; the median percentage change is –41%.

The fact that childless people have such a strong effect on 
estimates makes it hard to compare total effect sizes across 
generations. In particular, since the parents’ generation has 
a different distribution of numbers of children, childless 
people may have had more or less effect in that generation. 
Another issue is that we are estimating parents’ polygenic 
scores by the scores of their children. This introduces noise 

into our independent variable, which might lead to errors-
in-variables and bias coefficients towards zero.

As an alternative approach, we run regressions interact-
ing polygenic scores with birth year, median split at 1950 
(“early born” versus “late born”). We use both respondents’ 
RLRS and parents’ RLRS as a dependent variable. We use 
our standard weights, and further adjust for selection in the 
parents’ generation (see above).

Table 3 summarizes the results. We report the num-
ber of scores showing significant changes over time (i.e. a 
significant interaction between polygenic score and the 
“late born” dummy): either a significant change in sign, a 
significant increase in effect size, or a significant decrease 
in size. There is little evidence for changes in selection 
effects within the parents’ generation, with just one score 
showing a significant decrease in size. In the respondents’ 

Fig. 12   Selection effects, respondents’ parents vs.  respondents. Parental generation weights multiplied by 1/number of siblings. Respondents’ 
regression excludes childless respondents

Table 3   Numbers of polygenic scores showing changes in selection 
effects between early and late born. Parental generation weights mul-
tiplied by 1/number of siblings

Significance is measured at p < 0.05/66

Change Parents’ RLRS Respond-
ents’ 
RLRS

Insignificant 32 25
Size decreasing 1
Size increasing 8
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generation, effect sizes were significantly larger in abso-
lute size among the later-born for eight polygenic scores: 
ADHD, age at menopause, cognitive ability, Coronary 
Artery Disease, EA2, EA3, extraversion and Major 
Depressive Disorder. These changes are inconsistent with 

the intergenerational change, where estimated effect sizes 
were larger among the earlier, parents’ generation.

Overall, while there is some suggestive evidence for 
an increase in the strength of selection in recent history, 

Fig. 13   Selection effects (parents’ RLRS) by Townsend deprivation quintile of birth area. Higher = more deprived. Weights multiplied by 1/
number of siblings

Fig. 14   Selection effects in the respondents’ generation by Townsend deprivation quintile of birth area. Higher = more deprived
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Fig. 15   Selection effects (parents’ RLRS) among eldest siblings, by parents’ age at first live birth terciles. Weights multiplied by 1/number of 
siblings
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Fig. 16   Selection effects (parents’ RLRS) among eldest siblings, controlling for parents’ age at birth. Weights multiplied by 1/number of siblings

Fig. 17   Effects of polygenic scores on age at first live birth
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the clearest result is that the pattern of relative effect sizes 
across scores is broadly consistent over time.

Area Deprivation

Figure 13 plots effects on parents’ RLRS by Townsend 
deprivation quintile of birth area.

For comparison, Fig. 14 plots effects on respondents’ 
RLRS by Townsend deprivation quintile of birth area.

Age at First Live Birth

Among the parents’ generation, we can control for age 
at first live birth using the subsets of respondents who 
reported their mother’s or father’s age, and who had no 
elder siblings. We run regressions on parents’ RLRS on 
these subsets. Figure 15 shows selection effects by terciles 
of age at first live birth, for mothers and fathers. As in 
the respondents’ generation, effect sizes are smaller, or 
even oppositely signed, for older parents. Importantly, this 
holds for both sexes.

Figure 16 shows the regressions controlling for either 
parent’s age at their birth. Effect sizes are very similar, 
whether controlling for father’s or mother’s age. As in the 
respondents’ generation, effect sizes are negatively cor-
related with the effect sizes from bivariate regressions 

without the control for age at birth (father’s age at birth: � 
–0.43; mother’s age at birth: � –0.59).

Effects of Polygenic Scores on Age at First Live Birth

Our results suggest that polygenic scores may directly cor-
relate with age at first live birth. Figure 17 plots estimated 
effect sizes from bivariate regressions for respondents. Fig-
ure 18 does the same for their parents, using only eldest 
siblings.8 Effect sizes are reasonably large. They are also 
highly correlated across generations. Effect sizes of poly-
genic scores on father’s age at own birth, and on own age at 
first live birth, have a correlation of 0.99; for mother’s age 
and own age it is 0.99. 

Mediation Analysis

We run a standard mediation analysis in the framework of 
Baron and Kenny (1986). For each polygenic score where 
the bivariate correlation with RLRS is significant at p < 
0.05/33, we estimate

where RLRSi is relative lifetime reproductive success, PGSi 
is the polygenic score, EAi is educational attainment (age of 
leaving fulltime education), and Xi is a vector of controls. 

(3)RLRSi = � + �PGSi + �EAi + Xi� + �i

(4)EAi = � + �PGSi + Xi� + �i

Fig. 18   Effects of polygenic scores on parents’ age at respondent’s birth, eldest siblings. Weights multiplied by 1/number of siblings

8  Parental AFLB can only be calculated for this group.
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Table 4   Mediation analysis

* p < 0.05/23. Analysis run on 23 PGS which correlated significantly with fertility

PGS Total effect Indirect effect Proportion (%) Proportion 95% c.i. (%)

ADHD 0.0262 0.0054 * 20.7 [16.5, 28.1]
Smoking initiation 0.0229 0.0046 * 20.2 [16.2, 28.5]
BMI 0.0181 0.0034 * 19.1 [14.1, 29.2]
Major Depressive Disorder 0.0146 0.0017 * 11.5 [8.1, 18.0]
Waist circumference 0.0144 0.0033 * 22.9 [16.2, 37.1]
Extraversion 0.0127 0.0006 * 4.9 [1.9, 10.6]
Hip circumference 0.0117 0.0018 * 15.5 [10.0, 33.5]
Waist-hip ratio 0.0107 0.0035 * 32.9 [21.4, 56.5]
Coronary Artery Disease 0.0106 0.0033 * 30.8 [21.1, 54.8]
Cigarettes per day 0.0088 0.0026 * 30.2 [18.4, 129.0]
Body Fat 0.0072 0.0029 * 40.8 [21.7, 120.6]
Caffeine 0.0054 0.0000 0.5 Unbounded
Cannabis (ever vs. never) 0.0049 0.0006 * 11.8 Unbounded
Alzheimer 0.0049 0.0013 * 26.6 Unbounded
Age at menopause −0.0048 −0.0012 * 25.2 Unbounded
Autism −0.0048 −0.0015 * 31.2 Unbounded
Eating disorder −0.0081 −0.0019 * 23.9 [13.7, 73.5]
Height −0.0087 −0.0020 * 23.2 [13.1, 84.1]
Smoking cessation −0.0092 −0.0028 * 30.7 [17.7, 71.5]
Cognitive Ability −0.0138 −0.0054 * 39.2 [29.1, 64.3]
Age at smoking initiation −0.0153 −0.0033 * 21.3 [15.7, 33.1]
Educ. attainment 3 (no UK) −0.0302 −0.0114 * 37.8 [30.2, 46.8]
Educ. attainment 2 (no UKBB) −0.0305 −0.0113 * 36.9 [29.5, 46.5]

Fig. 19   Selection effects controlling for sibling-group fixed effects, with and without a control for education (left education before 16, 16-18, or 
after 18). Each set of 29 results is from a single regression of RLRS on 29 polygenic scores. Standard errors clustered by sibling group
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The total effect of PGS on RLRS is � + �� . The “indirect 
effect” mediated by EA is �� . The standard error of the indi-
rect effect can be calculated as

where 𝜎̂𝜁 is the standard error of 𝜁 , etc. We include controls 
for age and sex in X.

Table 4 shows results. For 22 out of 23 scores, the indirect 
effect on fertility via human capital is significantly different 
from 0 at p = 0.05/23 and has the same sign as the total 
effect. We also calculate the proportion of the total effect 
that is mediated via the indirect effect, along with uncor-
rected 95% confidence intervals (100 bootstraps). Note that 
if the confidence interval for the total effect contains zero, 
the confidence interval for the proportion may be unbounded 
(Franz 2007).

Within‑Siblings Regressions

Results in the main text support our theory that natural 
selection on polygenic scores is driven by their correlation 
with human capital. Here, we test whether polygenic scores 
cause fertility by running within-siblings regressions. We 
run a single regression on 29 polygenic scores within 17161 
sibling groups (N = 31169). Thus, we control both for envi-
ronmental confounds (since scores are randomly allocated 
within sib-groups by meiosis), and for genetic confounds 
captured by our polygenic scores. We remove four scores 
which correlate highly with other scores (educational attain-
ment 2, hip circumference, waist circumference and waist-
hip ratio). Figure 19 shows the results.

With a reduced sample size, all within-sibling effects are 
insignificant after Bonferroni correction. However, effect 
sizes are positively correlated with effect sizes from the 
pooled model, and about 70% smaller (regressing within-
sibling on pooled effect sizes, b = 0.292). This attenuation is 
broadly consistent with the decrease in heritability in within-
sibling GWASs on age at first birth and educational attain-
ment (Howe et al. 2021). We see these results as providing 
tentative evidence that polygenic scores cause fertility, with 
effects being partly driven by correlations with environmen-
tal variation in human capital. We also reran within-siblings 
regressions adding a control for education. Most effect sizes 
barely change, suggesting that our measure of education 
does not in general mediate differences in fertility among 
siblings.

Effects on Inequality

Table 5 shows correlations between children’s polygenic 
scores and household income (UKB data field 738). Column 

√

𝛾̂2𝜎̂2
𝜁
+ 𝜁2𝜎̂2

𝛾

“With selection” uses respondents’ scores, multiplying 
weights by number of children. Column “Without selection” 
uses our standard weights, i.e.  it estimates the counterfac-
tual correlation if all respondents had the same number of 
children.

Further Results

Selection Effects on Raw Polygenic Scores

Figure 20 compares selection effects on polygenic scores 
residualized for the top 100 principal components of the 

Table 5   Correlations of polygenic scores with income group

PGS Cor. with selection Cor. 
without 
selection

Ratio

Educ. attainment 3 (no UK) 0.163 0.141 1.15
Educ. attainment 2 (no 

UKBB)
0.155 0.135 1.15

Cognitive Ability 0.058 0.053 1.08
Age at smoking initiation 0.049 0.039 1.26
Smoking cessation 0.047 0.042 1.13
Height 0.043 0.039 1.09
Eating disorder 0.020 0.018 1.10
Agreeableness 0.018 0.017 1.02
Openness 0.016 0.014 1.19
Extraversion 0.014 0.016 0.92
Age at menopause 0.014 0.012 1.18
Bipolar 0.014 0.012 1.17
Drinks per week 0.009 0.009 1.08
Alcohol use 0.005 0.006 0.83
Age at menarche 0.004 0.002 1.82
Conscientiousness 0.003 0.001 3.63
Autism −0.009 −0.009 1.00
Caffeine −0.011 −0.011 1.00
Alzheimer −0.012 −0.011 1.06
Cannabis (ever vs. never) −0.015 −0.008 1.72
Schizophrenia −0.027 −0.029 0.94
Type 2 Diabetes −0.030 −0.025 1.24
Neuroticism −0.031 −0.031 1.02
Hip circumference −0.033 −0.027 1.24
Body Fat −0.050 −0.043 1.15
Cigarettes per day −0.052 −0.043 1.22
Coronary Artery Disease −0.053 −0.039 1.33
Waist circumference −0.057 −0.048 1.18
Waist-hip ratio −0.060 −0.051 1.17
Major Depressive Disorder −0.063 −0.054 1.16
BMI −0.065 −0.052 1.24
Smoking initiation −0.074 −0.059 1.25
ADHD −0.095 −0.077 1.24
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genetic data, to selection effects on raw, unresidualized poly-
genic scores. In siblings regressions, effect sizes are larger 
for raw scores—sometimes much larger, as in the case of 

height. 29 out of 33 “raw” effect sizes have a larger absolute 
value than the corresponding “residualized” effect size. The 
median proportion between raw and controlled effect sizes 

Fig. 20   Selection effects using unresidualized polygenic scores. Parental generation weights multiplied by 1/number of siblings
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is 0.8. Among the children regressions, this no longer holds. 
Effect sizes are barely affected by controlling for principal 
components.

Overall, 72.73 per cent of effect sizes are consistently 
signed across all four regressions (on children and siblings, 
and with and without residualization).

To get a further insight into this we regress respondents’ 
and parents’ RLRS on individual principal components. 

Fig. 21   Selection effects of 100 principal components of genetic data. Each dot represents one bivariate regression. Parental generation weights 
multiplied by 1/number of siblings. Absolute effect sizes are plotted. Points are jittered on the Y axis. Top principal components are labelled

Fig. 22   Selection effects plotted against genetic correlation with EA3



228	 Behavior Genetics (2022) 52:205–234

1 3

Figure 21 shows the results. Labels show the top principal 
components. These have larger effect sizes in siblings regres-
sions. One possibility is that the parents’ generation was less 
geographically mobile, and so geographic patterns of chil-
drearing were more correlated with principal components, 
which partly capture the location of people’s ancestors.

Genetic Correlations with EA3

Another way to examine the “earnings” theory of natu-
ral selection is to compare selection effects of polygenic 
scores with their genetic correlation with educational 
attainment (EA3). Since EA3 strongly predicts earnings, if 
earnings drives differences in fertility, we’d expect a cor-
relation between the two sets of results. Figure 22 shows 
this is so: the correlation, after excluding EA2, is –0.82. 
Genetic correlations were calculated using LD score 
regression from GWAS summary statistics.

Model Proofs

Solution for the One‑Period Model

Differentiating and setting dU
dN

= 0 gives the first order condi-
tion for an optimal choice of children N∗ > 0:

Rearranging gives

Note that when 𝜎 < 1 , for high enough W, N∗ = 0 . Differen-
tiating gives the effect of wages on fertility for N∗ > 0 . This 
is also the fertility-human capital relationship:

This is negative if 𝜎 < 1 . Also,

For 0.5 < 𝜎 < 1 , this is positive, so the effect of fertility on 
wages shrinks towards zero as wages increase (and becomes 
0 when N∗ = 0 ). Next, we consider the time cost of children 
b:

bW

(W(1 − bN∗))𝜎
≥ a, with equality if N∗ > 0.
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Lastly we consider the effect of a. From (5), N∗ is increasing 
in a. Differentiating (6) by a gives

which is positive for 𝜎 < 1.

Solution for the Two‑Period Model

Period 1 and period 2 income are:

Write the Lagrangian of utility U (2) as

Lemma 5 below shows that if 𝜎 > 0.5 , this problem is glob-
ally concave, guaranteeing that the first order conditions 
identify a unique solution. We assume 𝜎 > 0.5 from here on.

Plugging (7) and (8) into the above, we can derive the 
Karush-Kuhn-Tucker conditions for an optimum (N∗

1
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2
, s∗) 

as:

Note that the Inada condition (that marginal utility of 
income grows without bound as income approaches zero, 
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Case 1: N∗
1
> 0,N∗

2
> 0

Rearranging (9), (10) and (11) gives:

Plugging the expressions for N∗
1
 and N∗

2
 into s∗ gives

which simplifies to

Plugging the above into (13) and (14) gives:

Note that that N∗
1
< N∗

2
 . For these both to be positive requires 

low values of h if 𝜎 < 1 and high values of h if 𝜎 > 1 . Also:

Observe that w(s∗, h) is increasing in h for 𝜎 > 0.5 , and con-
vex iff 0.5 < 𝜎 < 1.

While N∗
1
 and N∗

2
 are positive, they have the same deriva-

tive with respect to h:

Examining this and expression (16) gives:

Lemma 1  For 𝜎 < 1 , case 1 holds for h low enough, and 
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(

b

a

)1∕(2�−1)

h�∕(2�−1).

(17)
dN∗

t

dh
= −

1

b

(

b

a

)1∕(2�−1) 1 − �

2� − 1
h(1−�)∕(2�−1)−1

N∗
t
 is convex in h for 𝜎 > 2∕3 , and concave otherwise. s∗ 

is convex in h if 𝜎 < 2∕3 , and concave otherwise.

Case 2: N∗
1
= 0,N∗

2
> 0

Replace N∗
1
= 0 into the first order condition for s∗ from (11), 

and rearrange to give:

Now since N∗
2
> 0 , we can rearrange (10) to give

Plugging this into s∗ gives

which can be rearranged to

Differentiate the left hand side of the above to get

This is negative if and only if

which is always true since 𝜎 > 0.5 . Note also that since 
𝜎 > 0.5 , then the left hand side of (19) approaches infinity 
as s∗ → 0 and approaches 0 as s∗ → 1 . Thus, (19) implicitly 
defines the unique solution for s∗.

To find how s∗ changes with h, note that the right hand 
side of the above decreases in h for 𝜎 < 1 , and increases in 
h for 𝜎 > 1 . Putting these facts together: for 𝜎 < 1 , when 
h increases the RHS of (19) decreases, hence the LHS 
decreases and s∗ increases, i.e. s∗ is increasing in h. For 
𝜎 > 1 , s∗ is decreasing in h.

To find how N∗
2
 changes with h, we differentiate (18):

s∗ =
1

1 +
(

(1 − bN2)h
)1−1∕�

.

(18)N∗

2
=

1

b

(

1 −
(

b

a

)1∕�

(s∗h)(1−�)∕�
)

.

s∗ =
1

1 +
(

bh

a

)(�−1)∕�2

(s∗)−(1−�)
2∕�2

(19)(1 − s∗)(s∗)(1−2�)∕�
2

=

(

a

bh

)(1−�)∕�2

.

(20)

1 − 2�

�2
(1 − s∗)(s∗)(1−2�)∕�

2−1 − (s∗)(1−2�)∕�
2

=
1 − 2�

�2
(s∗)(1−2�)∕�

2−1 −
�2 + 1 − 2�

�2
(s∗)(1−2�)∕�

2

=
1 − 2�

�2
(s∗)(1−2�)∕�

2−1 −
(1 − �)2

�2
(s∗)(1−2�)∕�

2

.

s∗ >
1 − 2𝜎

(1 − 𝜎)2

(21)
dN∗

2

dh
= −

1

b

(

b

a

)1∕� 1 − �

�
(s∗h)(1−2�)∕�(s∗ + h

ds∗

dh
)
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which is negative for 𝜎 < 1 , since ds∗
dh

> 0 in this case.
Differentiating again:

where X =
1

b

(

b

a

)1∕𝜎
1−𝜎

𝜎
> 0 . Note that d

2N2

dh2
 is continuous in 

� around � = 1 . Note also from (19) that for � = 1 , s∗ 
becomes constant in � . The term in square brackets then 
reduces to (s∗)2 > 0 . Putting these facts together, for � suf-
ficiently close to 1, d

2N∗
2

dh2
> 0 , i.e. N∗

2
 is convex in h.

This case holds for intermediate values on h. Equation 
(21) shows that for 𝜎 < 1 , N2 decreases in h; the require-
ment that N2 > 0 therefore puts a maximum on h. When 
𝜎 > 1 , N2 increases in h and this puts a minimum on h. The 
requirement N1 = 0 provides the other bound. Equation 
(9) requires −bY−�

1
+ a ≤ 0 since �1 must be non-negative. 

The LHS is increasing in Y1 , and hence decreasing in s as 
Y1 = 1 − s since N1 = 0 . Lastly, optimal choice of education 
s∗ increases in h for 𝜎 < 1 , and decreases for 𝜎 > 1 . Hence 
for 𝜎 < 1 , (9) puts a minimum on h, and for 𝜎 > 1 it puts a 
maximum on h.

Summarizing:

Lemma 2  Case 2 holds for intermediate values of h. In case 
2: for 𝜎 < 1 , s∗ is increasing in h and N∗

2
 is decreasing in h. 

For 𝜎 > 1 , s∗ is decreasing in h. For � close enough to 1, N∗
2
 

is convex in h.

Case 3: N∗
1
= 0,N∗

2
= 0

We can solve for s∗ by substituting values of Y1 and Y2 into 
(11):

which rearranges to

Conditions (9) and (10) become:

d2N2

dh2
= −X

[

1 − 2�

�
(s∗h)(1−3�)∕�(s∗ + h

ds∗

dh
)2

+(s∗h)(1−2�)∕�(2
ds∗

dh
+ h

d2s∗

dh2
)

]

= X(s∗h)(1−3�)∕�
[

2� − 1

�
(s∗

+h
ds∗

dh
)2 − (s∗h)(2

ds∗

dh
+ h

d2s∗

dh2
)

]

−(1 − s∗)−� + h(s∗h)−� = 0

(22)s∗ =
1

1 + h(�−1)∕�
.

−b(1 − s∗)−� + a ≤ 0

−bs∗h(s∗h)−� + a ≤ 0

equivalently

which can both be satisfied for a/b close enough to zero. 
Note from (22) that as h → ∞ , s∗ increases towards 1 for 
𝜎 < 1 , and decreases towards 0 for 𝜎 > 1 . Note also that the 
right hand side of the first inequality above approaches infin-
ity as s∗ → 1 , therefore also as h → ∞ for 𝜎 < 1 . Rewrite the 
second inequality as

and note that again, as h → ∞ , the RHS increases towards 
infinity for 𝜎 < 1 , and decreases towards zero otherwise. 
Thus, for 𝜎 < 1 , both equations will be satisfied for h high 
enough. For 𝜎 > 1 , they will be satisfied for h low enough. 
Summarizing

Lemma 3  For 𝜎 < 1 , case 3 holds for h high enough, and in 
case 3, s∗ increases in h. For 𝜎 > 1 , case 3 holds for h low 
enough and s∗ decreases in h.

Case 4: N∗
1
> 0,N∗

2
= 0

Rearranging the first order conditions (9) and (10) for N∗
1
 

and N∗
2
 gives

hence

Now rearrange the first order condition for s∗ from (11), not-
ing that since N∗

2
= 0 , s∗ > 0 by the Inada condition.

This, combined with the previous inequality, implies

which cannot hold since 0 < s∗ < 1.

a

b
≤ (1 − s∗)−�

a

b
≤ s∗h(s∗h)−�

a

b
< (s∗h)1−𝜎 =

(

h

1 + h(𝜎−1)∕𝜎

)1−𝜎

=
(

h−1 + h−1∕𝜎
)𝜎−1

a

b
= (1 − s∗ − bN∗

1
)−�

a

b
≤ s∗hY−�

2

(1 − s∗ − bN∗

1
)−� ≤ s∗hY−�

2
= (s∗h)1−�

⇔ (1 − s∗ − bN∗

1
)� ≥ (s∗h)�−1

⇔ 1 − s∗ − bN∗

1
≥ (s∗h)1−1∕�

h1∕�−1(1 − s∗ − bN∗

1
) = s∗

1 − s∗ − bN∗

1
= s∗h1−1∕�

(s∗h)1−1∕� ≤ s∗h1−1∕�

⇔ (s∗)−1∕� ≤ 1
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Comparative Statics

We can now examine how the fertility-human capital 
relationship

changes with respect to other parameters. We focus on the 
case 𝜎 < 1 , since it gives the closest match to our obser-
vations, and since it also generates “reasonable” predic-
tions in other areas, e.g. that education levels increase with 
human capital. Figure 23 shows how N∗ changes with h for 
a = 0.4, b = 0.25, � = 0.7.

Lemma 4  For 𝜎 < 1 in a neighbourhood of 1, N∗ is globally 
convex in h.

Proof  From Lemmas 1, 2 and 3, as h increases we move 
from N∗

1
,N∗

2
> 0 to N∗

1
= 0,N∗

2
> 0 to N∗

1
= N∗

2
= 0 . Further-

more, for 𝜎 > 2∕3 , N∗
1
 and N∗

2
 are convex in h when they are 

both positive, and for � close enough to 1, N∗
2
 is convex in 

h when N∗
1
= 0 . All that remains is to check that the deriva-

tive is increasing around the points where these 3 regions 
meet. That is trivially satisfied where N∗

2
 becomes 0, since 

thereafter dN
∗

dh
 is zero. The derivative as N∗

1
 approaches zero 

is twice the expression in (17):

and the derivative to the right of this point is given by (21):

dN∗

dh
, where N∗

≡ N∗

1
+ N∗

2
,

(23)−
2

b

(

b

a

)1∕(2�−1) 1 − �

2� − 1
h(1−�)∕(2�−1)−1

We want to prove that the former is larger in magnitude (i.e. 
more negative). Dividing (23) by (24) gives

Examining (19) shows that as � → 1 , s∗ → 0.5 and ds
∗

dh
→ 0 , 

and therefore the above approaches

	�  ◻

We can now gather the theoretical predictions stated 
in Table 1.

Prediction 1 for 𝜎 < 1 , total fertility N∗ ≡ N∗
1
+ N∗

2
 is 

decreasing in human capital h.
Furthermore, for � close enough to 1, fertility is convex 

in human capital, i.e. 
Prediction 2 part 1 the fertility-human capital relation-

ship is closer to 0 at high levels of h.
For 𝜎 < 1 , education levels s∗ increase in h, and so there-

fore do equilibrium wages w(s∗, h) . This, plus fact 1, gives:
Prediction 2 part 2 for 𝜎 < 1 and close to 1, the fertility-

human capital relationship is weaker among higher earners.
Prediction 4 for 𝜎 < 1 and close to 1, the fertility-human 

capital relationship is weaker at high levels of education.

(24)−
1

b

(

b

a

)1∕� 1 − �

�
(s∗h)(1−2�)∕�(s∗ + h

ds∗

dh
)

2
�

2� − 1

(

b

a

)(1−�)∕(�(2�−1)) h(1−�)
2∕(�(2�−1))

s∗(s∗ + h
ds∗

dh
)

2
1

(0.5)2
= 8.

Fig. 23   Fertility vs. human 
capital in the two-period model 
with a = 0.4, b = 0.25, � = 0.7
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Next, we compare people who start fertility early 
( N∗

1
> 0 ) versus those who start fertility late ( N∗

1
= 0 ). 

Again, for 𝜎 < 1 the former group have lower h than the lat-
ter group. Thus we have:

Prediction 5 for 𝜎 < 1 and close to 1, the fertility-human 
capital relationship is weaker among those who start fertil-
ity late.

Lastly, we prove prediction 3. Differentiating dN∗
t
∕dh in 

(17) with respect to b, for when N∗
1
> 0 gives:

which is negative for 0.5 < 𝜎 < 1 . When N∗
1
= 0 , differenti-

ating dN∗
2
∕dh in (21) gives:

which again is negative for 𝜎 < 1 . Therefore:
Prediction 3 for 𝜎 < 1 , the fertility-human capital rela-

tionship is more negative when the burden of childcare b is 
larger.

Including a Money Cost

The model can be extended by adding a money cost m per 
child. Utility is then

d2N∗
t

dhdb
=

2� − 2

2� − 1
b(3−4�)∕(2�−1)

(

1

a

)1∕(2�−1) 1 − �

2� − 1
h(�−1)

2∕(�(2�−1))

d2N∗
2

dhdb
= −

1 − �

�
b(1−2�)∕�

(

1

a

)1∕� 1 − �

�
(s∗h)(1−2�)∕�(s∗ + h

ds∗

dh
)

Figure   24 shows a  computed example with 
a = 0.4, b = 0.175, � = 0.7,m = 0.075 .  Fer t i l i ty  f i rst 
declines steeply with human capital, then rises. In addition, 
for parents with low AFLB ( N1 > 0 ), the fertility-human 
capital relationship is negative, while for parents with higher 
AFLB ( N1 = 0 ) it is positive.

Concavity

Lemma 5  For 𝜎 > 0.5 , U in equation (2) is concave in N1,N2 
and s.

Proof  We examine the Hessian matrix of utility in each 
period. Note that period 1 utility is constant in N2 and period 
2 utility is constant in N1 . For period 1 the Hessian with 
respect to N1 and s is:

with determinant

Thus, first period utility is weakly concave. For period 2 
with respect to N2 and s, the Hessian is:

U = u(1 − s − bN1 − mN1) + u(w(s, h)(1 − bN2) − mN2) + a(N1 + N2)

[

d2u∕dN2
1

d2u∕dsdN1

d2u∕dsdN1 d2u∕ds2

]

=

[

−�b2 − �b

−�b − �

]

Y−�−1
1

(�2b2 − �2b2)Y−2�−2
1

= 0.

Fig. 24   Fertility vs. human 
capital in the two-period model 
with money costs of children. 
a = 0.4, b = 0.175, � = 0.7,m = 0.075
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with determinant

which is positive if and only if 𝜎 > 0.5 . Thus, if 𝜎 > 0.5 then 
the Hessian is negative definite and thus utility is concave; 
this combined with weak concavity of period 1, and linearity 
of a(N1 + N2) , shows that (2) is concave. 	�  ◻

Effect of a

Lemma 6  For 𝜎 < 1 , d2N∗∕dadh > 0 , i.e. the effect of a 
increases at higher levels of human capital.

Proof  Differentiating (17) with respect to a gives

for t = 1, 2 when N∗
1
,N∗

2
> 0 . For 𝜎 > 0.5 this is positive.

When N∗
1
= 0,N∗

2
> 0 , differentiating (21) with respect 

to a gives

which is −a−1∕� times (21) and hence is positive.
	�  ◻
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[

d2u∕dN2
2

d2u∕dsdN2

d2u∕dsdN2 d2u∕ds2dN2

]

=

[

−�(bsh)2Y−�−1
2

− (1 − �)bhY−�
2

−(1 − �)bhY−�
2

− �[h(1 − bN∗
2
)]2Y−�−1

2

]

(−�(bsh)2Y−�−1
2

)(−�[h(1 − bN∗

2
)]2Y−�−1

2
) − (−(1 − �)bhY−�

2
)2

= �2(bsh)2[h(1 − bN∗

2
)]2Y−2�−2

2
− (1 − �)2(bh)2Y−2�

2

= �2(bh)2Y−2�
2

− (1 − �)2(bh)2Y−2�
2

, using that Y2 = (sh)(1 − bN)

= (bh)2Y−2�
2

(�2 − (1 − �)2)

d2N∗
t

dadh
= −

1

b

1

1 − 2�
a−1

(

a

b

)1∕(1−2�) 1 − �

2� − 1
h(1−�)∕(2�−1)−1

d2N∗
2

dadh
=

1

b

1

�
a−1

(

a

b

)−1∕� 1 − �

�
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