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Abstract

The Pure Parsimony Haplotyping (PPH) problem is a NP-hard combinatorial optimization problem that consists of finding
the minimum number of haplotypes necessary to explain a given set of genotypes. PPH has attracted more and more
attention in recent years due to its importance in analysis of many fine-scale genetic data. Its application fields range from
mapping complex disease genes to inferring population histories, passing through designing drugs, functional genomics
and pharmacogenetics. In this article we investigate, for the first time, a recent version of PPH called the Pure Parsimony
Haplotype problem under Uncertain Data (PPH-UD). This version mainly arises when the input genotypes are not accurate,
i.e., when some single nucleotide polymorphisms are missing or affected by errors. We propose an exact approach to
solution of PPH-UD based on an extended version of Catanzaro et al. [1] class representative model for PPH, currently the
state-of-the-art integer programming model for PPH. The model is efficient, accurate, compact, polynomial-sized, easy to
implement, solvable with any solver for mixed integer programming, and usable in all those cases for which the parsimony
criterion is well suited for haplotype estimation.

Citation: Catanzaro D, Labbé M, Porretta L (2011) A Class Representative Model for Pure Parsimony Haplotyping under Uncertain Data. PLoS ONE 6(3): e17937.
doi:10.1371/journal.pone.0017937

Editor: Thomas Mailund, Aarhus University, Denmark

Received November 9, 2010; Accepted February 16, 2011; Published March 25, 2011

Copyright: � 2011 Catanzaro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: DC acknowledges support from the Belgian National Fund for Scientific Research (F.N.R.S.), of which he is Chargé de Recherches and from the Belgian
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Introduction

The human genome is divided in 23 pairs of chromosomes

thereof, one copy is inherited from the father and the other from

the mother. When a nucleotide site of a specific chromosome

region shows a variability within a population of individuals then it

is called Single Nucleotide Polymorphism (SNP). Specifically, a site is

considered a SNP if for a minority of the population a certain

nucleotide is observed (called the least frequent allele) while for the

rest of the population a different nucleotide is observed (the most

frequent allele) [2]. The least frequent allele, or mutant type, is

generally encoded as ‘1’, as opposed to the most frequent allele, or

wild type, generally encoded as ‘0’ [3]. A haplotype is a set of alleles,

or more formally, a string of length p over an alphabet S~f0,1g
[4]. Haplotypes represent a fundamental source of information for

disease association studies. In fact, over 90% of sequence variation

among individuals is due to common variant sites, most of which

arose from single historical mutation events on the ancestral

chromosome [5]. Hence, in a group of people affected by a

disease, the SNPs causing or associated with the disease will be

enriched in frequency compared with the corresponding frequen-

cies in a group of unaffected individuals. This observation was of

considerable assistance, for example, in the identification of the

genes responsible for type 1 diabetes [6–8], type 2 diabetes [9,10],

Alzheimer’s disease [11], deep vein thrombosis [12], inflammatory

bowel disease [13–15], hypertriglyceridaemia [16], schizophrenia

[17], asthma [18], stroke [19], myocardial infarction [20], cystic

fibrosis and diastrophic dysplasia [21,22].

Extracting haplotypes from a population of individuals is not an

easy task. In fact, the current molecular sequencing techniques

only provide information about the conflation of the paternal and

maternal haplotypes of an individual (also called genotype) rather

than haplotypes themselves [23]. When the family-based genetic

information of a population is available, haplotypes can be

retrieved experimentally [24]. However, the experimental ap-

proach is generally laborious, cost-prohibitive, requires advanced

molecular isolation strategies [25], and sometimes not even

possible [26]. In absence of a family-based genetic information,

a valid alternative to the experimental approach is provided by

computational methods which estimate, by means of specific

criteria, haplotypes from the set of genotypes extracted from a

population of individuals.

A genotype can be formally defined as a string of length p over

an alphabet S~f0,1,2g, where the symbols ‘0’ or ‘2’ denote

homozygous sites (of wild and mutant type, respectively) and the

symbol ‘1’ denotes heterozygous sites. As an example, the

sequence S0,2,1T encodes a genotype in which: the first SNP is

homozygous of wild type; the second SNP is homozygous of

mutant type; and finally the third SNP is heterozygous. A

genotype is said to be degenerate if it does not contain ‘1’s. A

genotype gk is said to be resolved from a pair of haplotypes fhi,hjg,
in symbols gk~hi+hj , if the p-th entry of gk, denoted as gkp, is
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equal to the sum of the p-th entries of hi and hj , denoted as hip and

hjp, respectively. For example, the genotype gk~S1,2,1,0T is

resolved from hi~S0,1,1,0T and hj~S1,1,0,0T. Haplotyping a set

of genotypes G means finding the set of haplotypes resolving G.

It is worth noting that, given a genotype and denoted n as the

number of its heterozygous sites, there exist 2n{1 possible

haplotypes that may resolve it [26]. As an example, genotype

S0,2,1,1T may be resolved from either the pair of haplotypes

fS0,1,0,0T,S0,1,1,1Tg or the pair fS0,1,1,0T,S0,1,0,1Tg. This

fact involves as a necessary consequence the use of a criterion to

select pairs of haplotypes among plausible alternatives. Gusfield

[27] and Wang and Xu [28] observed that the number of distinct

haplotypes existing in a large population of individuals is

generally much smaller than the overall number of distinct

genotypes observed in that population. This insight has suggested

that, for low-rate recombination genes at least, the criterion of

minimizing the overall number of haplotypes necessary to resolve

a set of genotypes may have good chances to recover the

biological haplotype set. This criterion, formally introduced by

Gusfield [27], is known as the pure parsimony criterion of haplotype

estimation and was of considerable assistance, for example, in the

identification of the genes responsible for psoriasis and severe

alopecia areata [2]. Haplotyping a set of genotypes under the

parsimony criterion involves solving an optimization problem,

called the Pure Parsimony Haplotyping (PPH) problem, that can be

stated as follows:

Problem. The Pure Parsimony Haplotyping (PPH) problem

Given a set G of m non-degenerating genotypes, having s SNPs each, find

the minimum set H of haplotypes such that for each genotype gk [G there

exists a pair of haplotypes fhi,hjg [H resolving gk.

As an example, an instance of PPH and the corresponding

solution is shown in Table 1.

PPH is known to be polynomially solvable when each genotype

has at most two heterozygous sites [29], and NP-hard when each

genotype has at least three heterozygous sites [26].

Recently, Brown and Harrower [30] introduced an interesting

version of PPH called the Pure Parsimony Haplotype problem under

Uncertain Data (PPH-UD). This version mainly arises when the

input genotype set G is not accurate, i.e., when some SNPs are

missing or affected by errors, a situation that often occurs in

practice. In this case, the input of the problem may include also a

binary matrix B, called the error mask matrix, whose generic entry

bkp is equal to 1 if the p-th SNP of genotype gk is uncertain (i.e.,

missing or affected by an error), and 0 otherwise. When a given

SNP is uncertain its actual value could significantly deviate from

its true value. For example, the true value of a wild type

homozygous SNP affected by uncertainty could be homozygous

of mutant type or even heterozygous. Similarly, the true value of

a heterozygous SNP affected by uncertainty could be homozy-

gous of wild or mutant type. The presence of uncertain data

modifies the standard definition of resolution for a genotype.

Specifically, Brown and Harrower [30] stated that when

uncertainty occurs in the input data a genotype gk is resolved

by a pair of haplotypes fhi,hjg if gkp~hipzhjpzbkpekp, for all

SNPs p, being ekp a integer variables assuming values in the set

E~f{2,{1,0,1,2g. Brown and Harrower [30] described an

integer programming model able to tackle instances of PPH

affected by uncertain data. Unfortunately, the authors did not

offer experimental evidence of the performances of their model

due to its unpractical runtimes. In this article we address this

critical issue by introducing a possible integer linear program-

ming model to solve exactly instances of PPH-UD. The model is

based on an extension of Catanzaro et al. [1] Class Representative

Model (CRM), currently one of the best integer programming

model for PPH described in the literature. The model that we

propose is efficient, compact, polynomial-sized, easy to imple-

ment, solvable with any solver for mixed integer programming,

and usable in all those cases for which the parsimony criterion is

well suited for haplotype estimation.

Methods

As shown in Catanzaro et al. [1], any feasible solution of PPH

induces a family of subsets of genotype such that: (i) each subset

represents one unique haplotype with elements in the subset being

genotypes carrying the haplotype, (ii) each genotype belongs to

exactly two subsets, and (iii) every pair of subsets intersects in at

most one genotype. This principle can be exploited also when

dealing with PPH-UD. Specifically, let associate an index to each

subset S of genotypes induced by a haplotype h. If i is the smallest

index of a genotype belonging to S, then i is the index associated

to S and the subset will be denoted as Si. Since each genotype k
belongs to exactly two subsets (as it must be explained by exactly

two haplotypes) it may happen that k is itself the genotype with

smallest index in both subsets. In this case a dummy genotype k’
is added, and the subset Sk’ is created. As an example, one

can imagine that the haplotype h1 induces the subset

Si~fgi,gj ,gk, . . .g, h2 induces the subset Si’~fgi,gl ,gr,gs, . . .g,
h3 induces the subset Sk~fgk,gl ,gs,gt, . . .g, and so on. We remark

that the index k’ can be considered only if k was previously used,

i.e., if the subset Sk already exists.

Since at most 2m haplotypes are necessary to resolve m
genotypes [26], then the indices i of the subsets Si can vary inside

the index set Q~K|K ’, where K~f1, . . . ,mg and

K ’~f1’, . . . ,m’g. Assume that an order is defined on Q in such

a way that 1v1’v2v2’v . . . vmvm’. Define xi, Vi [Q, as a

decision variable equal to 1 if, in the solution, there exists a

Table 1. Graphical representation of an instance of PPH and
the corresponding solution.

Instance of PPH

Genotypes SNPs

Genotype 1 2 1 1 2

Genotype 2 1 0 1 1

Genotype 3 1 0 2 2

Genotype 4 2 0 1 1

Genotype 5 2 1 0 1

Solution

Haplotypes SNPs

Haplotype 1 1 0 1 1

Haplotype 2 1 1 0 1

Haplotype 3 0 0 1 1

Haplotype 4 1 0 0 0

Resolution

Genotype 1 = Haplotype 1 + Haplotype 2

Genotype 2 = Haplotype 3 + Haplotype 4

Genotype 3 = Haplotype 1 + Haplotype 3

Genotype 4 = Haplotype 1 + Haplotype 4

Genotype 5 = Haplotype 2 + Haplotype 4

doi:10.1371/journal.pone.0017937.t001

A Class Representative Model for PPH-UD
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haplotype inducing a subset Si of genotypes whose smallest index

genotype is gi, and 0 otherwise. Denote yk
ij , Vk [K,Vi,j [Q, as a

decision variable equal to 1 if genotype k belongs to the subsets Si

and Sj , and 0 otherwise. Denote P as the set of the input SNPs

and zip, Vi [Q, p [P, as a decision variable equal to 1 if the

haplotype inducing the subset Si of genotypes has such a value at

p-th site, and 0 otherwise. Variables zip describe explicitly the

haplotypes of the solution.

For every non-null entry of the error mask matrix B denote ec
kp

as a decision variable accounting for the difference between the

value of gkp and the true underlying value. Specifically, ec
kp is equal

to 1 if the p-th entry of genotype gk is corrected with a value

c [C~f{2,{1,1,2g, and 0 otherwise. Finally, let ELB and EUB

be a lower and an upper bounds on the overall number of errors in

G. Then, the following model is a valid formulation of PPH-UD:

Formulation. Class Representative Model (CRM) for PPH-UD

min
X

i [Q

xi ð1:1Þ

s:t: xi’ƒxi Vi [Q ð1:2Þ

X

i,j [Q

yk
ij§1 Vk [K ð1:3Þ

X

j [Q

yk
ijƒxi Vk [K ,Vi [Q ð1:4Þ

yk

kk
0ƒx

k
0 Vk [K ð1:5Þ

zkpzz
k
0
p
~gkp Vk [K ,Vp [P : bkp~0 ð1:6Þ

zkpzz
k
0
p
~e1

k,pz2e2
k,p Vk [K ,Vp [P : gkp~0,bkp~1 ð1:7Þ

zkpzz
k
0
p
~2z({e{1

k,p{2e{2
k,p ) Vk [K ,Vp [P : gkp~2,bkp~1ð1:8Þ

zkpzz
k
0
p
~1z(e1

k,p{e{1
k,p ) Vk [K ,Vp [P : gkp~1,bkp~1 ð1:9Þ

zipƒ1{
X

j [Q

yk
ij Vk [K ,Vp [P : gkp~0,bkp~0,Vi [Q : i=k,k

0
ð1:10Þ

zip§

X

j [Q

yk
ij Vk [K ,Vp [P : gkp~2,bkp~0,Vi [Q : i=k,k

0
ð1:11Þ

Table 2. Performances of the CRM for PPH-UD when considering input data having an error ratio of 1%.

Dataset Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

Uniform

50610 9.919 34.771 2.381 0.000 0.000 0.000 1.000 1 1

50610r4 11.446 37.582 2.899 0.000 0.000 0.000 1.000 1 1

50610r16 12.247 31.963 3.144 0.556 8.333 0.000 1.467 7 1

50630 43.089 94.633 11.440 0.743 5.882 0.000 5.867 42 1

30650 35.471 130.316 4.053 1.569 9.091 0.000 34.490 531 1

30675 57.063 211.341 9.842 1.475 6.250 0.000 42.000 159 1

306100 85.675 254.772 21.987 0.285 2.778 0.000 30.222 186 3

Non-Uniform

50610 10.601 88.367 1.857 8.333 0.000 0.000 1.000 1 0

50630 41.606 134.018 4.833 0.401 5.882 0.000 18.200 81 1

30650 30.277 89.376 1.531 1.144 4.785 0.000 60.400 231 1

30675 98.110 235.745 25.101 0.410 3.947 0.000 175.000 1039 1

306100 624.549 7209.090 44.103 0.866 4.545 0.000 2290.667 31284 17

Biological

CHR10-CEU 35.717 81.623 0.465 1.667 5.000 0.000 124.000 341 1

CHR21-CEU 8.811 23.387 0.106 0.000 0.000 0.000 2.000 3 1

CHR10-HBC 111.930 308.471 0.000 2.381 7.143 0.000 800.667 1750 0

CHR21-HBC 33.311 99.340 0.069 5.556 16.667 0.000 29.667 83 1

CHR10-JPT 16.022 46.252 0.758 1.458 4.375 0.000 41.667 121 1

CHR21-JPT 14.004 19.798 8.209 0.018 0.035 0.000 39.500 76 3

CHR10-YRI 2491.275 7245.020 47.468 1.562 2.652 0.034 5477.333 16323 53

CHR21-YRI 2548.248 7641.350 0.459 2.667 8.000 0.000 143.667 429 1

doi:10.1371/journal.pone.0017937.t002

A Class Representative Model for PPH-UD
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zipzzjp§yk
ij Vk [K,Vp [P : gkp~1,bkp~0,Vi,j [Q ð1:12Þ

zipzzjpƒ2{yk
ij Vk [K ,Vp [P : gkp~1,bkp~0,Vi,j [ Q ð1:13Þ

zipƒ1{
P
j [Q

yk
ijz(e1

k,pz2e2
k,p)

Vk [K ,Vp [P : gkp~0,bkp~1,Vi [Q,i=k,k
0
ð1:14Þ

zip§
P
j [Q

yk
ijz({e{1

k,p {2e{2
k,p )

Vk [K ,Vp [P : gkp~2,bkp~1,Vi [Q,i=k,k
0
ð1:15Þ

zipzzjp§yk
ijz(e1

k,p{e{1
k,p )

Vk [K ,Vp [P : gkp~1,bkp~1,Vi,j [Q
ð1:16Þ

zipzzjpƒ2{yk
ijz(e1

k,p{e{1
k,p )

Vk [K ,Vp [P : gkp~1,bkp~1,Vi,j [Q
ð1:17Þ

e1
k,pze2

k,pƒ1 Vk [K ,Vp [P : gkp~0,bkp~1 ð1:18Þ

e{1
k,p ze{2

k,p ƒ1 Vk [K,Vp [P : gkp~2,bkp~1 ð1:19Þ

e1
k,pze{1

k,p ƒ1 Vk [K,Vp [P : gkp~1,bkp~1 ð1:20Þ

X

k [K

X

p [P:bkp~1

X

c [C

ec
kp§ELB ð1:21Þ

X

k [K

X

p [P:bkp~1

X

c [C

ec
kpƒEUB ð1:22Þ

xi,zip,yk
ij ,e

c
kp [ f0,1g ð1:23Þ

Table 3. Performances of the CRM for PPH-UD when considering input data having an error ratio of 5%.

Dataset Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

Uniform

50610 9.775 35.814 2.030 0.000 0.000 0.000 1.000 1 1

50610r4 8.699 62.160 2.642 0.000 0.000 0.000 1.000 1 1

50610r16 11.055 44.405 2.635 0.000 0.000 0.000 2.067 7 1

50630 43.273 122.443 7.878 1.338 5.882 0.000 5.533 49 1

30650 36.903 178.408 4.270 1.620 9.091 0.000 34.760 827 1

30675 40.422 115.258 10.835 1.383 6.250 0.000 9.900 37 1

306100 98.348 354.685 7.330 0.484 2.590 0.000 43.700 244 1

Non-Uniform

50610 12.878 135.199 1.576 1.000 8.333 0.000 1.000 1 1

50630 42.623 193.406 3.422 0.498 4.762 0.000 14.667 111 1

30650 32.124 120.886 1.576 0.837 4.762 0.000 62.467 562 1

30675 110.105 323.692 29.245 0.644 3.819 0.000 203.200 1317 3

306100 639.736 7210.800 45.658 0.642 4.000 0.000 2527.867 34214 6

Biological

CHR10-CEU 25.568 76.186 0.033 5.000 5.000 0.000 83.667 249 1

CHR21-CEU 12.137 32.109 0.593 0.000 0.000 0.000 16.333 27 1

CHR10-HBC 54.896 150.916 1.570 2.381 7.143 0.000 121.000 321 1

CHR21-HBC 33.719 100.581 0.071 10.317 16.667 0.000 9.667 23 1

CHR10-JPT 5.204 14.500 0.003 1.668 5.000 0.000 5.000 13 1

CHR21-JPT 9.691 19.591 0.021 1.830 5.490 0.000 43.667 123 1

CHR10-YRI 2864.727 7254.880 49.311 0.889 2.667 0.000 5464.000 13956 77

CHR21-YRI 2551.640 7651.670 0.165 8.684 26.051 0.000 128.000 382 1

doi:10.1371/journal.pone.0017937.t003

A Class Representative Model for PPH-UD
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The objective function (1.1) represents the number of distinct

haplotypes or equivalently the cardinality of H. Since the index i’
is considered only if i is already used, constraints (1.2) implies that

if the haplotype hi is not used, then hi’ should not be used.

Constraints (1.3) impose that each genotype gk must belong to

exactly two subsets Si,Sj , and constraints (1.4) force xi to be 1, i.e.,

to take haplotype hi into account, if some genotype gk is resolved

by hi. Constraints (1.5) are a consequence of the definition of the

dummy genotype k’. Actually, they constitute a special version of

constraints (1.4) when genotype k is resolved by haplotype k’.
Constraints (1.6) impose the sum operation among haplotypes in

absence of uncertainty. Constraints (1.7–1.9) translate the sum

operation among haplotypes when uncertainty occurs in the input

data. Specifically, constraints (1.7) account for the correction

imposed on the p-th SNP of haplotypes hi and hi’ when gi has its p-

th SNP equal to 0. In this case, two situations may occur at the p-

th SNP: either no correction is performed, or a correction is

performed by setting to 1 one between e1
kp and e2

kp. If a correction

is performed and e1
kp is set to 1 at the p-th SNP then one haplotype

will be homozygous of wild type and the other of mutant type. On

the contrary, if e2
kp is set to 1 then both haplotypes will be

homozygous of mutant type. Constraints (1.8) account for the

correction imposed on the p-th SNP of haplotypes hi and hi’ when

gi has its p-th SNP equal to 2. Similarly to constraints (1.7), also in

this case two situations may occur: either no correction is

performed, or a correction is performed by setting to 1 one

between e{1
kp and e{2

kp . If a correction is performed and e{1
kp is set

to 1 at the p-th SNP then one haplotype will homozygous of wild

type and the other of mutant type. On the contrary, if e{2
kp is set to

1 then both haplotypes will be homozygous of wild type. Finally,

constraints (1.9) account for the correction imposed on the p-th

SNP of haplotypes hi and hi’ when gi has its p-th SNP equal to 1. If

a correction is performed and e1
kp is set to 1 at the p-th SNP then

both haplotypes will be homozygous of mutant type. On the

contrary, if e{1
kp is set to 1 then both haplotypes are homozygous of

wild type. Constraints (1.10) establish the relations between

variables zis and yk
ij in absence of uncertainty. Specifically, they

force the p-th site of the haplotype hi to be equal to 0 when at least

one genotype gk, whose p-th entry equal to 0, belongs to the

induced subset Si. By analogy, constraints (1.11) force the p-th site

of the haplotype hi to be equal to 1 when at least one genotype gk,

whose p-th entry equal to 2, belongs to the induced subset Si.

Constraints (1.12–1.13) force one of the two p-th sites of

haplotypes hi and hj to be equal to 1 when the p-th entry of

genotype gk is equal to 1. Constraints (1.14–1.17) are the

analogous version of constraints (1.10–1.13) in presence of

uncertainty in the input data. Constraints (1.18–1.20) impose that

at most one variable ec
kp can be equal to one in presence of

uncertainty in the input data. Finally, constraints (1.21–1.22)

impose the upper and lower bounds on the error variables ec
kp.

Reducing model size
The particular nature of the set of indices Q can be exploited to

reduce the size of the CRM for PPH-UD. This operation proves

Table 4. Performances of the CRM for PPH-UD when considering input data having an error ratio of 10%.

Dataset Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

Uniform

50610 9.641 47.717 2.461 0.000 0.000 0.000 1.000 1 1

50610r4 16.057 62.160 2.663 0.000 0.000 0.000 1.067 2 1

50610r16 13.838 44.178 2.678 0.000 0.000 0.000 2.667 9 1

50630 38.338 85.872 9.874 1.445 8.889 0.000 6.733 35 1

30650 39.799 222.460 3.249 1.192 8.333 0.000 40.020 1113 1

30675 43.441 138.641 10.366 1.579 6.250 0.000 22.800 58 1

306100 120.666 323.663 17.943 0.303 2.778 0.000 78.800 538 1

Non-Uniform

50610 13.174 126.922 1.765 8.333 0.000 0.000 1.000 1 0

50630 40.194 84.860 2.418 0.919 5.882 0.000 23.933 265 1

30650 27.455 73.425 1.488 0.922 4.737 0.000 18.467 66 1

30675 108.737 325.864 33.529 0.814 4.348 0.000 250.733 1539 3

306100 1563.970 7208.110 37.634 0.773 4.000 0.000 11673.800 74593 2

Biological

CHR10-CEU 32.592 95.712 0.209 0.000 0.000 0.000 144.667 431 1

CHR21-CEU 4.935 11.259 0.544 1.852 5.556 0.000 2.000 4 1

CHR10-HBC 185.619 529.879 2.228 2.381 7.143 0.015 1739.333 4926 1

CHR21-HBC 42.578 127.162 0.074 10.317 16.667 0.000 33.000 93 1

CHR10-JPT 19.037 56.795 0.003 1.667 5.000 0.000 33.667 99 1

CHR21-JPT 8.433 19.635 2.716 2.225 6.667 0.000 33.667 99 1

CHR10-YRI 2992.214 7231.800 30.751 0.877 2.632 0.000 6538.000 14597 9

CHR21-YRI 2534.816 7600.780 1.083 4.119 12.356 0.000 117.000 349 1

doi:10.1371/journal.pone.0017937.t004

A Class Representative Model for PPH-UD
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fundamental to vastly improve the efficiency of whole model.

Specifically, as shown in Catanzaro et al. [1], variables yk
ij

belonging to one of the following sets:

R1~fyk
ij : k [K ,i,j [K|K ’,jvivkg, ð2Þ

R2~fyk
ik’ : k [K, i [K|K ’,iƒ(k{1)’g, ð3Þ

R3~fyk
ii’ : k [K, i [K|K ’,2ƒiƒk{1g: ð4Þ

do not need to be defined. Moreover, the sets of redundant

variables can be further expanded by taking into account the

entries of the error mask matrix and by observing that for each

triplet of genotypes fgi,gj ,gkg such that the respective p-th SNP

is gip~0, gjp~0, gkp~1, and bip~bjp~bkp~0, variable yk
ij is

necessarily equal to 0 since the containment of genotype gk to

the subsets Si and Sj would violate the sum operator among

haplotypes at least at p-th SNP. Extending this argument to all

the possible combinations of triplets of genotypes that violate

the haplotype sum operator, it is easy to see that the following

sets of variables are redundant and can be removed from the

model:

R4~fyk
ij : i,j,k [K,p [P,gkp~1,

gip~gjp=1,bkp~bip~bjp~0g
ð5Þ

R5~fyk
ij : i,j,k [K ,p [P,gkp~0,

gip~2 or gjp~2,bkp~bip~bjp~0g
ð6Þ

R6~fyk
ij : i,j,k [K,p [P,gkp~2,

gip~0 or gjp~0,bkp~bip~bjp~0g:
ð7Þ

Note that, removing the redundant variables yk
ij belonging to

the sets R4–R6 can be performed in O(m3s). Finally, a similar

process of reduction can be applied to variables zip both by

removing those whose value is fixed by constraints (1.6) (e.g.,

when gkp~0 or when gkp~2). In this way, only variables zip

involved in constraints (1.6) when gkp~1 and in constraints

(1.7–1.9) need to be defined.

Results and Discussion

In this section we analyze the performances of the Class

Representative Model (CRM) to solve instances of the pure

Table 5. Performances of the CRM for PPH-UD when considering input data having an error ratio of 15%.

Dataset Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

Uniform

50610 10.092 57.006 1.560 0.000 0.000 0.000 1.000 1 1

50610r4 11.570 33.895 3.275 0.000 0.000 0.000 1.000 1 1

50610r16 9.209 18.627 2.790 1.068 8.333 0.000 1.467 5 1

50630 44.276 157.222 7.467 1.123 5.882 0.000 4.133 15 1

30650 39.772 222.039 6.187 1.006 8.333 0.000 42.700 1149 1

30675 49.558 160.645 8.048 1.409 6.250 0.000 19.500 67 1

306100 97.879 262.453 23.986 0.664 3.836 0.000 32.800 98 1

Non-Uniform

50610 9.925 126.922 2.113 1.000 8.333 0.000 1.133 1 1

50630 38.689 84.860 4.000 0.400 5.882 0.000 11.267 265 1

30650 33.272 73.425 1.793 0.614 4.737 0.000 54.400 66 1

30675 88.030 325.864 32.260 0.800 4.348 0.000 95.400 1539 3

306100 631.495 7207.900 50.928 1.157 4.270 0.000 2371.200 32622 12

Biological

CHR10-CEU 27.340 68.299 1.669 0.000 0.000 0.000 53.667 155 3

CHR21-CEU 13.455 36.601 0.522 0.000 0.000 0.000 6.667 12 1

CHR10-HBC 87.770 248.825 2.228 4.347 7.143 0.015 384.333 1127 1

CHR21-HBC 39.878 118.866 0.075 10.317 16.667 0.000 27.000 69 1

CHR10-JPT 23.436 69.457 0.002 1.667 5.000 0.000 72.667 213 1

CHR21-JPT 2403.091 7188.610 2.781 2.222 6.667 0.000 4406.333 13125 1

CHR10-YRI 702.533 1777.450 62.414 0.000 0.000 0.000 583.000 1635 48

CHR21-YRI 2545.198 7630.880 1.500 5.449 16.346 0.000 123.333 368 1

doi:10.1371/journal.pone.0017937.t005
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parsimony haplotyping problem under uncertain data. Similar to

Brown and Harrower [30] and Catanzaro et al. [1], we emphasize

that our experiments aim simply to evaluate the runtime

performance of our model for solving PPH. We neither attempt

to study the efficiency of PPH for haplotype inference nor

compare the accuracy of our algorithm to haplotype inference

solvers that do not use the parsimony criterion. This analysis has

been already performed by Gusfield [31], Wang and Xu [28], and

Marchini et al. [32], and we refer the interested reader to their

respective articles.

As in Catanzaro et al. [1], we used the standard Brown and

Harrower’s datasets [30] for testing the performances of our

model. Specifically, through Hudson’s MS program [33], Brown

and Harrower created two families of datasets (called the uniform

and nonuniform datasets) by randomly pairing the resulting

haplotypes. The distinction in the two simulated methods comes

in how the random pairing is performed. In the uniform datasets

the haplotypes are randomly paired by sampling uniformly from

the set of distinct haplotypes. In the nonuniform datasets the

haplotypes are sampled uniformly from the collection of

haplotypes generated by the coalescent process. In this collection,

haplotypes may not be unique, so some haplotypes are sampled

with higher frequency than others. Both the uniform and non-

uniform datasets consist of collections of 30 or 50 genotypes having

10, 30, 50, 75 or 100 SNPs each. Each dataset contains a number

of instances variable between 15 and 50. The authors also

considered biological data from chromosomes 10 and 21, over all

four Hap-Map [21] populations. For each input the authors

selected sequences having 30, 50, and 75 SNPs, respectively,

giving a total of 8 datasets consisting of 3 instances each. Brown

and Harrower’s datasets are not subjected to uncertainty, for this

reason we considered four sets of random generated error mask

matrices having an error ratio (i.e., the number of entries equal to

1 divided mp) equal to 1%, 5%, 10%, and 15% respectively. Brown

and Harrower’s datasets and the error mask matrices used in our

experiments can be downloaded at the address: http://home

pages.ulb.ac.be/,dacatanz/PPHerr.zip.

In Tables 2–5 we show the performances of the CRM for PPH-

UD under different error ratios by showing, conservatively, the

same information described in Brown and Harrower [30] and

Catanzaro et al. [1]. Specifically, the columns of Tables 2–5

evidence the average, the maximum, and the minimum of: the

solution time, the gap (i.e., the difference between the optimal

value found and the value of linear relaxation at the root node of

the search tree, divided by the optimal value), and the number of

nodes expanded in each group of instances belonging to a given

dataset. The results have been obtained by implementing the

CRM for PPH-UD in Mosel 2.0 of Xpress-MP, Optimizer version

18, running on a Pentium 4, 3.2 GHz, equipped with 2 GByte

RAM and operating system Gentoo release 7 (kernel linux 2.6.17).

In our experiments we activated the Xpress-MP Optimizer

automatic cuts, the Xpress-MP pre-solving strategy, and used

the Xpress-MP primal heuristic to generate the first upper bound.

In order to obtain a qualitative measure of the running time

performances of the CRM for PPH-UD, we compared the

numerical results of the model with the corresponding ones of the

Table 6. Performances of the CRM for PPH (RM version) on Brown and Harrower’s datasets [30].

Dataset Time (sec.) Gap (%) Nodes

Average Max Min Average Max Min Average Max Min

Uniform

50610 1.143 2.404 0.102 0.000 0 0 1.000 1 1

50610r4 1.730 6.104 0.043 1.179 10 0 1.000 1 1

50610r16 8.092 30.623 2.011 1.644 10.7692 0 1.533 9 1

50630 11.772 53.42 2.732 2.440 7.14286 0 2.000 15 1

30650 8.922 47.467 0.73 1.694 7.69231 0 10.260 75 1

30675 15.624 35.693 1.358 1.649 6.66667 0 24.300 92 1

306100 10.142 31.994 2.593 1.402 7.35294 0 8.500 25 1

Non-Uniform

50610 0.634 1.726 0.127 0.513 7.69231 0 2.400 11 1

50630 11.882 30.411 1.59 1.164 6.25 0 11.867 35 1

30650 10.764 24.108 0.815 0.890 4.09091 0 20.533 61 1

30675 22.389 61.869 3.537 1.038 5.55556 0 62.286 387 1

306100 74.925 462.791 12.953 1.521 4.7619 0 216.071 1679 8

Biological

CHR10-CEU 102.792 305.103 0.774 0.000 0 0 270.333 807 1

CHR21-CEU 18.868 54.562 0.428 1.515 4.54545 0 49.667 145 1

CHR10-HBC 38.058 96.324 8.746 2.593 7.77778 0 67.000 151 1

CHR21-HBC 0.182 0.456 0.017 0.000 0 0 8.000 19 1

CHR10-JPT 0.895 1.583 0.368 1.515 4.54545 0 7.000 11 1

CHR21-JPT 1.781 2.87 0.967 0.833 2.5 0 15.667 29 1

CHR10-YRI 73.723 116.127 31.353 1.111 3.33333 0 89.667 123 63

CHR21-YRI 2349.331 6819.2 50.012 0.000 0 0 3815.667 11199 123

doi:10.1371/journal.pone.0017937.t006
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CRM for PPH (RM version, see Catanzaro et al. [1]) running on the

same datasets in absence of uncertainty. The performances of the

CRM for PPH are shown in Table 6. Moreover, in order to obtain a

measure of the accuracy of the CRM for PPH-UD, we used the

following procedure: fixed a generic instance of PPH-UD, we

computed the optimal solution provided by CRM for PPH in

absence of uncertainty and considered the corresponding set of

haplotypes as the ‘‘correct set’’; subsequently, we computed the

optimal solution provided by CRM for PPH-UD in presence of

uncertainty (i.e., when taking into account the corresponding input

error mask matrix) and assumed, as measure of the accuracy, the

ratio between the number of equal haplotypes in both solutions

divided the overall number of haplotypes in the solution provided by

CRM for PPH. When such a ratio is equal to 1 it means that CRM

for PPH-UD was able to recover the correct haplotype set,

otherwise, when the ratio is smaller than 1 it means that CRM

for PPH-UD was able to recover only a fraction of such a set. The

accuracy (expressed in percentage) of the CRM for PPH-UD under

increasing error ratios is shown in Table 7. For sake of notation, in

the following subsections we shall denote CRM1 and CRM2 as the

CRM for PPH and the CRM for PPH-UD, respectively.

Uniform Datasets
The experiments relative to the uniform datasets showed that,

when considering an error ratio of 1% already, CRM2 takes

significantly more time than CRM1 to solve Brown and

Harrower’s datasets, confirming the hardness of PPH-UD with

respect to PPH. Specifically, Tables 2–5 show, as general trend,

that the higher the error ratio the slower the runtime performances

of the model. For example, while CRM1 took in average

8 seconds to solve the most difficult dataset having 10 SNPs,

CRM2 took in average at least 10 seconds independently from the

error ratio, and even longer on instances 03, 05, 06, 08 and 11 of

dataset 50610r4 where 19.657, 62.160, 34.429, 40.416, and

15.974 seconds, respectively, were needed to find the optimum.

This trend persists also in the instances having 30 SNPs, where

CRM1 took in average 11.772 seconds while CRM2 needed an

average solution time of 43.273 seconds when considering an

error ratio of 5%, with the exception of instances 02, 08, 09, 11, 13

and 14 which needed 62.182, 51.462, 60.079, 60.020, 122.443,

and 58.514 seconds, respectively. We observed that the overall

performances of CRM2 with an error ratio of 1% generally tend to

be similar to the ones of CRM2 with an error ratio of 5%;

moreover, we experienced also a generalized decrement of the

average solution time when considering an error ratio of 10% and,

vice versa, an increment of the average solution time when

considering an error ratio of 15%. When considering instances

having a larger number of SNPs, we experienced a generalized

increment of the average solution time taken by CRM2,

proportional to the increment of the error ratio. Interestingly,

the average gap and number of branches performed by CRM2,

although not directly comparable with the corresponding one of

CRM1, results relatively small, confirming the tightness of the

class representative model also for uncertain data.

The accuracy of CRM2 in the uniform datasets result very

good. Specifically, the average accuracy is over 90% in the

Table 7. Accuracy of the CRM for PPH-UD under different error ratios.

Dataset 1(%) 5(%) 10(%) 15(%)

Average Max Min Average Max Min Average Max Min Average Max Min

Uniform

50610 100.00 100.00 100.00 99.01 100.00 92.31 100.00 100.00 100.00 98.02 100.00 90.91

50610r4 100.00 100.00 100.00 99.51 100.00 88.89 99.02 100.00 88.89 99.51 100.00 88.89

50610r16 99.11 100.00 92.31 98.22 100.00 84.62 98.22 100.00 92.31 96.00 100.00 75.00

50630 98.82 100.00 92.86 96.85 100.00 78.57 92.91 100.00 70.59 94.88 100.00 71.43

30650 95.68 100.00 57.14 90.22 100.00 57.14 89.83 100.00 50.00 84.24 100.00 25.00

30675 96.59 100.00 81.25 88.07 100.00 62.50 86.36 100.00 62.50 77.84 100.00 6.25

306100 96.59 100.00 81.25 94.89 100.00 82.35 90.91 100.00 75.00 90.34 100.00 64.71

Non-Uniform

50610 95.07 100.00 81.25 92.61 100.00 78.57 96.55 100.00 86.67 94.58 100.00 81.25

50630 92.38 100.00 82.35 88.41 100.00 64.71 89.40 100.00 64.71 86.42 100.00 64.71

30650 88.55 100.00 63.16 86.87 100.00 68.42 85.52 100.00 68.75 81.14 100.00 59.09

30675 85.50 100.00 60.00 80.97 100.00 56.52 79.46 100.00 66.67 80.97 100.00 56.52

306100 76.72 100.00 68.00 82.18 95.00 72.00 75.00 95.71 65.00 78.74 95.71 60.00

Biological

CHR10-CEU 89.39 100.00 80.00 83.33 100.00 70.83 78.79 86.36 70.83 68.18 80.00 54.17

CHR21-CEU 93.75 100.00 83.33 91.67 100.00 83.33 58.33 75.00 33.33 56.25 83.33 27.78

CHR10-HBC 78.05 90.00 64.71 68.29 92.86 23.53 53.66 85.71 23.53 51.22 80.00 17.65

CHR21-HBC 99.84 100.00 73.68 99.81 100.00 68.42 65.63 100.00 47.37 71.88 100.00 52.63

CHR10-JPT 80.95 100.00 72.73 71.43 100.00 55.00 66.67 90.91 45.00 59.52 100.00 30.00

CHR21-JPT 84.91 94.12 66.67 69.81 80.95 60.00 50.94 57.14 41.18 43.40 52.94 33.33

CHR10-YRI 73.26 76.00 69.44 66.28 80.00 52.78 53.49 84.00 30.56 48.84 68.00 25.00

CHR21-YRI 63.29 100.00 50.94 50.63 100.00 35.85 41.77 100.00 20.75 40.51 100.00 26.42

doi:10.1371/journal.pone.0017937.t007
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majority of the analyzed datasets and independently from the

error ratio. However, it is worth noting that in some instances the

accuracy may decrease significantly (see, e.g., datasets 30650 and

30675) and proportionally to the increment of the error ratio, by

suggesting, as general trend, the fact that the higher the error ratio

the more difficult is to recover the correct haplotype set.

Nonuniform Datasets
The general trend observed in the uniform datasets persists also in

the nonuniform datasets. Specifically, as shown in Table 4, CRM2

took in average 10 times more the average solution time taken by

CRM1 to solve instances having 10 SNPs, reaching a maximum

solution time of 135.199 seconds when tackling instance 06 affected

by an error ratio of 5%. Similarly, when tackling instances having 30

SNPs, CRM2 took in average 4 times more the average solution

time taken by CRM1, reaching a maximum solution time of

193.406 seconds when tackling instance 00 affected by an error

ratio of 5%. When dealing with instances having more than 30

SNPs, CRM2 took significantly more than CRM1 reaching a

solution time of 7210.800 seconds when tackling the instance 100-

30.03 affected by an error ratio of 5%.

The accuracy of CRM2 in the nonuniform datasets result still

good, but slightly poorer than in the uniform datasets. Specifically,

the average accuracy is over 80% in the majority of the analyzed

datasets and independently from the error ratio. Similarly to the

uniform datasets, in some instances the accuracy may decrease

significantly (see, e.g., datasets 30675). However, in the worst case,

the decrement results much smaller than the corresponding one in

the uniform datasets.

Biological Datasets
To complete the performance analysis on Brown and Harrower’s

datasets, we tested CRM2 on the biological datasets. Once again, the

general trend observed in the uniform and nonuniform datasets

persists also in the biological datasets: CRM2 results significantly

slower than CRM1, a part from datasets CHR10-CEU and CHR21-

CEU in which the trend is inverted due to the peculiar nature of both

datasets. While the average gap of CRM1 never exceeded 2:6%, the

average gap of CRM2 was 10% or more, confirming the hardness of

the biological datasets. However, we stress once again the fact that

PPH and PPH-UD are de facto two different problems, hence

intrinsic values such as the gap cannot be directly compared. Our

analysis just aims at offering experimental evidence of the tightness of

the class representative model in tackling instances of the pure

parsimony haplotyping problem under uncertain data.

The small number of instances constituting each biological

dataset (three instances per dataset) prevents a clear statistical

characterization of the performances of CRM2 in terms of

accuracy. As general trend, we have observed that the accuracy

approaches 100% in the majority of the biological datasets

analyzed. Nevertheless, in a number of datasets this trend changes,

leading the accuracy level to low values. Investigating the reason

why this phenomenon arises and the possible corresponding

remedies warrants additional analysis.

Conclusion
In this article we have investigated, for the first time, a recent

version of PPH, called the Pure Parsimony Haplotype problem

under Uncertain Data (PPH-UD). This version mainly arises when

the input genotypes are not accurate, i.e., when some single

nucleotide polymorphisms are missing or affected by errors. We

proposed an exact approach to solution of PPH-UD based on an

extended version of Catanzaro et al. [1] class representative model

for PPH, possibly one of the best integer programming models

described so far in the literature on PPH. The model is efficient,

accurate, compact, polynomial-sized, easy to implement, solvable

with any solver for mixed integer programming, and usable in all

those cases for which the parsimony criterion is well suited for

haplotype estimation.
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