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Abstract: Zinc finger proteins are widely involved and play an important role in plant growth and
abiotic stress. In this research, MdZAT5, a gene encoding C2H2-type zinc finger protein, was cloned
and investigated. The MdZAT5 was highly expressed in flower tissues by qRT-PCR analyses and GUS
staining. Promoter analysis showed that MdZAT5 contained multiple response elements, and the
expression levels of MdZAT5 were induced by various abiotic stress treatments. Overexpression of
MdZAT5 in apple calli positively regulated anthocyanin accumulation by activating the expressions
of anthocyanin biosynthesis-related genes. Overexpression of MdZAT5 in Arabidopsis also enhanced
the accumulation of anthocyanin. In addition, MdZAT5 increased the sensitivity to salt stress in apple
calli. Ectopic expression of MdZAT5 in Arabidopsis reduced the expression of salt-stress-related genes
(AtNHX1 and AtABI1) and improved the sensitivity to salt stress. In conclusion, these results suggest
that MdZAT5 plays a positive regulatory role in anthocyanin accumulation and negatively regulates
salt resistance.

Keywords: apple; MdZAT5; anthocyanin; salt tolerance

1. Introduction

Among the numerous external natural environmental factors, light (one of the most
important) affects the entire plant life cycle [1–3]. Light is an essential factor in anthocyanin
synthesis [4]. Previous studies have shown that the longer the light exposure and the
greater the light intensity, the more conducive to anthocyanin formation [5,6]. Additionally,
salt is one of the most important environmental stresses, which limits the growth and
development of plants and poses a serious threat to global agriculture [7,8]. Salt stress
significantly inhibits the growth of apple plants, mainly manifesting in slow growth, leaf
wilting, and other symptoms, which even leads to plant death in serious cases [9]. Salt
tolerance varies amongst different apple varieties. For example, Red fruit Begonia is
affected by salt stress at 0.5 mg/g NaCl, and Mulus zhumei and Midget Crabapple appear
to be affected by salt stress at 5.5 mg/g NaCl [10]. In order to adapt to complex and
changing environmental factors, complex regulatory mechanisms have gradually evolved
in plants [11–13]. At present, many transcription factors have been found to regulate
anthocyanin accumulation and respond to salt stress, such as MYB, bHLH, WRKY, ZFP,
DREB/CBF, NAC, and AP2/ERF [14–21].

Zinc finger proteins are among the most widely distributed proteins in eukary-
otes [22,23]. The Cys2/His2 (C2H2)-type zinc finger proteins, also known as TFIIIA zinc
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finger protein, are the most common protein in the zinc finger gene family [23]. TFIIIA
transcription factor was first found in Xenopus laevis [24]. In plants, C2H2-type zinc finger
proteins have a highly conserved amino acid sequence (QALGGH) located at the junction of
the zinc finger and the DNA α Spiral zone [25]. In addition to the typical zinc finger domain
that binds to DNA, most C2H2-type zinc finger proteins also contain three characteristic
motifs [17,26]. One is the ERF-associated amphiphilic repression (EAR) motif (also known
as DLN-box)—a short hydrophobic transcriptional repressor domain near the C-terminal.
The second is a nuclear localization signal (NLS)—mainly related to subcellular localization.
The third is an L-box—possibly related to protein interactions.

The C2H2-type zinc finger proteins play an important role in the growth and develop-
ment of plants [27–29]. In Arabidopsis, JAGGED (JAG) can regulate cell differentiation and
flower morphological development [30]. ZINC FINGER of ARABIDOPSIS THALIANA 6
(ZAT6) plays an important role in the regulation of anthocyanin under hydrogen peroxide
treatment [18]. ZINC FINGER PROTEIN 5 (ZFP5) can affect root hair development by
directly regulating root hair development-related genes [31]. In addition, it also plays
an important role in abiotic stress [32,33]. AtZAT18 positively regulates plant drought
tolerance, while its mutant decreased the tolerance to drought stress in Arabidopsis [34].
Triticum aestivum predicted that Dof zinc finger protein (TaZNF) regulates salt tolerance [35].
Ectopic expression of GmZFP3 in Arabidopsis plays a negative regulatory role in drought re-
sponse [36]. Oryza sativa drought-responsive zinc finger protein 1 (OsDRZ1) overexpression
in rice can improve plant drought tolerance by accumulating more proline and scavenging
ROS [37]. A multi-stress-responsive gene (OsMSR15) in Oryza sativa L. shows positive
regulation in cold, drought, and heat stress conditions at various developmental stages of
rice [38]. MdZAT10 positively regulates JA-induced leaf senescence by interacting with
MdBT2 (BTB-TAZ 2) and negatively regulates plant drought tolerance in apple [39,40].

So far, C2H2-type zinc finger proteins have been widely cloned and identified in
Arabidopsis. However, ZAT5 has been rarely reported in other species, and its function in
apple is poorly understood. In this assay, we identified a C2H2-type zinc finger protein
transcription factor MdZAT5 in apple and characterized its roles in regulating apple calli
and transgenic Arabidopsis anthocyanin accumulation and salt stress.

2. Results
2.1. Identification and Bioinformatics Analysis of the MdZAT5 Gene in Apple

MdZAT5 (MD03G1128800) was identified as the closest apple homolog of the C2H2-
type zinc finger transcription factor AtZAT5 (At2G28200) on the NCBI database. Its full-
length cDNA was 969 bp long and encoded 322 aa. As shown in Figure 1A, it contained two
conserved zinc finger domains. We predicted the secondary structure of MdZAT5 protein
and found that it was mainly random coils (69.88%), followed by alpha-helices (14.29%),
extended-strands (12.73%), and beta-turns (3.11%) (Figure 1B). Based on the prediction
results of the secondary structure, the tertiary structure was predicted (Figure 1C).

2.2. Phylogenetic and Conserved Motif Analysis of ZAT5 Proteins from Different Plants

In order to analyze the phylogenetic relationship between MdZAT5 protein and ZAT5
proteins of other species, an evolutionary tree was constructed using MEGA_X software. It
was found that the ZAT5 protein of apple (Malus domestica) showed the closest evolutionary
relationship with pear (Pyrus × bretschneideri and Pyrus ussuriensis × Pyrus communis)
(Figure 2A). In addition, we compared the ZAT5 protein sequences of apple and the other
nine species and found that they all contained two conserved zinc finger domains and an
EAR motif (Figure 2B).
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Figure 1. Basic information about the MdZAT5 sequence. (A) Conserved sequence of MdZAT5 pro-
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2.3. Tissue Expression Pattern of MdZAT5

To further explore the potential biological function of MdZAT5 in apple, we detected its
expression in five different organ tissues of apple (roots, stems, leaves, flowers, and fruits)
by qRT-PCR. MdZAT5 was expressed in organs and tissues, among which the expression
was the highest in flowers, followed by stems and leaves, and lower in roots and fruits
(Figure 3A). The constructed ProMdZAT5::GUS vector was genetically transformed into
Arabidopsis to obtain ProMdZAT5::GUS transgenic Arabidopsis. GUS staining showed that
MdZAT5 was expressed in roots, stems, leaves, flowers, and fruits (Figure 3B), and the
results were consistent with Figure 3A.
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Figure 3. Tissue expression analysis of MdZAT5. (A) The relative expression level of MdZAT5
in different tissues (roots, stems, leaves, flowers, and fruits) by qRT-PCR. (B) Tissue expression
analysis of MdZAT5 via GUS staining in transgenic Arabidopsis. Different lowercase letters represent
a significant difference (p < 0.05). Data are the mean ± SD of three independent replicates.

2.4. Cis-Elements Analysis of MdZAT5 Promoter Sequence and Expression Patterns of MdZAT5

We analyzed MdZAT5 cis-elements in promoter 2000 bp upstream using the PlantCARE
online software. There are various response elements in the MdZAT5 promoter (Table 1),
such as cis-elements in response to plant hormones: abscisic responsive element (ABRE)
and MeJA responsive element (CGTCA-motif). A large number of light response elements
is known in the MdZAT5 promoter, such as Box 4, G-Box, GATA-motif, GT1-motif, MRE,
and TCCC-motif. In addition, there is an ARE element that responds to hypoxia in the
MdZAT5 promoter.

Table 1. Cis-elements analysis of MdZAT5 promoter regions.

Cis-Element Name Cis-Element
Sequence (5′-3′) Function Location

ABRE ACGTG cis-acting element involved in the abscisic acid
responsiveness +550

CGTCA-motif CGTCA cis-acting regulatory element involved in the
MeJA-responsiveness −1649

ARE AAACCA cis-acting regulatory element essential for the anaerobic
induction +1006

Box 4 ATTAAT part of a conserved DNA module involved in light
responsiveness +245

G-Box CACGTG cis-acting regulatory element involved in light
responsiveness +550

GATA-motif AAGGATAAGG part of a light-responsive element −1583
GT1-motif GGTTAA light-responsive element +20
MRE AACCTAA MYB binding site involved in light responsiveness −17
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To gain further insight into the expression patterns of MdZAT5 with multiple abiotic
stressors, we measured the expression of the MdZAT5 gene under NaCl (150 mM), PEG6000
(10%), temperature (4 ◦C), and ABA (100 µM) treatments. Under treatment with 150 mM
NaCl, the expression of MdZAT5 reached its highest at 12 h, and the overall trend was first
decreasing and then increasing (Figure 4A). In response to 10% PEG 6000, the expression of
MdZAT5 reached its highest at 12 h (Figure 4B). Under low temperature conditions (4 ◦C),
MdZAT5 showed a downward trend first and then an upward trend, reaching its maximum
at 12 h (Figure 4C). The expression of MdZAT5 showed an upward trend with the treatment
of 100 µM ABA over time (Figure 4D). These results showed that MdZAT5 expression was
caused by different stressors, which meant that MdZAT5 played an important regulatory
role in the process of stress response.
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2.5. The Abiotic Stress Response of MdZAT5

Based on the analysis of cis-acting elements and expression patterns, we treated
ProMdZAT5::GUS transgenic Arabidopsis with different treatment conditions. Compared
with the control, 150 mM NaCl, 6% PEG6000, and high light could significantly promote
GUS activity, but at 4 ◦C, it was lightly stained. Moreover, we found that 100 µM ABA
caused no significant changes in leaf color relative to the control (Figure 5A). In addition, we
also observed that the staining was deeper in older leaves and less intense in younger leaves,
indicating that MdZAT5 was expressed higher with leaf age. We obtained ProMdZAT5::GUS
transgenic calli, and their staining results were consistent with that of ProMdZAT5::GUS
transgenic Arabidopsis (Figure 5A–C).
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2.6. Overexpression of MdZAT5 in Apple Calli and Arabidopsis Promoted the Accumulation
of Anthocyanin

To study the function of MdZAT5, we constructed the MdZAT5 overexpression vector
and transferred it into apple calli. Wild-type calli (WT) and transgenic apple calli (MdZAT5-
OVX) were cultured under high light for 18 days. As shown in Figure 6A, MdZAT5-OVX
accumulated more anthocyanins, while WT accumulated less anthocyanins. At the same
time, we used a spectrophotometer to quantitatively determine the content of anthocyanin.
The results also showed that the anthocyanin content of MdZAT5-OVX was higher than
that of WT (Figure 6B). In addition, the expression levels of flavonoid structural genes in
WT and MdZAT5-OVX were analyzed by qRT-PCR. The results showed that compared
with WT, the expression levels of anthocyanin biosynthesis-related genes (MdANR, MdCHI,
MdCHS, MdDFR, MdF3H, and MdUFGT) increased by different degrees (Figure 6C).

In addition, we genetically transformed the constructed MdZAT5 overexpression
vector into Arabidopsis (Columbia ecotype) and obtained three overexpression lines (OE1,
OE2, and OE3) (Figure 6F). Comparing the anthocyanin content of Col-0 and MdZAT5-OE,
it was found that under high light, the anthocyanin content accumulated by the three
overexpression lines was significantly higher than that of Col-0 (Figure 6G).

2.7. MdZAT5 Increased Sensitivity to Salt Stress in Transgenic Apple Calli and Arabidopsis

To further explore the function of MdZAT5 under abiotic stress, the 16-day-old WT
and MdZAT5-OVX were transferred to 100 mM NaCl MS medium. As shown in Figure 7A,
the growth rate of MdZAT5-OVX was much lower than that of WT in 100 mM NaCl.
Meanwhile, the fresh weight of MdZAT5-OVX was significantly lower than that of WT, and
its MDA content and relative electronic conductivity were significantly higher than that of
WT (Figure 7B–D). Therefore, the overexpression of MdZAT5 negatively regulates the salt
resistance of apple calli.
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tion. The phenotypes (A) and anthocyanin content (B) of WT and MdZAT5-OVX. Expression analysis
of MdZAT5 (D) and genes involved in anthocyanin biosynthesis-related genes (MdANR, MdCHI,
MdCHS, MdDFR, MdF3H, and MdUFGT) (C) in WT and MdZAT5-OVX. The phenotypes (E) and
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mean ± SD of three independent replicates.
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(D) of WT, and MdZAT5-OVX. Different lowercase letters represent a significant difference (p < 0.05).
Data are the mean ± SD of three independent replicates.

Furthermore, Arabidopsis seedlings (Col-0 and MdZAT5-OE) were grown on MS
medium for 3 days and then transferred to 150 mM NaCl MS medium for 14 days. In
the control condition, there was no significant difference in the number of lateral roots or
primary root lengths. However, the number of lateral roots of MdZAT5-OE was greater
than that of Col-0, and the length of primary roots was lower than that of Col-0 under the
salt treatment (Figure 8B,C). In addition, we conducted salt tolerance tests on Col-0 and
transgenic plants for 14 days. As shown in Figure 8D, Col-0 grew normally, while MdZAT5-
OE had yellow and wilting leaves. Simultaneously, the content of MDA in MdZAT5-OE
was significantly higher than that in Col-0 plants under salt stress. In order to further study
the role of MdZAT5 in the signal pathway of salt stress, we detected the expression levels
of AtNHX1 and AtABI1 in Arabidopsis by qRT-PCR. The results showed that the expression
levels of AtNHX1 and AtABI1 in MdZAT5-OE Arabidopsis were significantly lower than
those in Col-0 (Figure 8F,G).

2.8. Ectopic Expression of MdZAT5 Increased ROS Accumulation under Salt Stress

H2O2 levels were measured using diaminobenzidine (DAB) staining and O2
− using

nitro blue tetrazolium (NBT). In the control group, no significant difference was observed
between WT and MdZAT5-OE. Under salt treatment, the staining of MdZAT5-OE was
deeper, while that of Col-0 was weaker (Figure 9A,B). At the same time, we quantitatively
determined H2O2 and O2

−, and the results were consistent with their staining results. The
contents of H2O2 and O2

− of MdZAT5-OE were significantly higher than those of Col-0
under salt stress, indicating that MdZAT5 increased sensitivity to salt stress in Arabidopsis
(Figure 9C,D).
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Figure 8. MdZAT5 enhanced the sensitivity to salt in transgenic Arabidopsis. (A) The phenotypes
of Arabidopsis seedlings treated with MS medium, 150 mM NaCl treatment. Lateral root numbers
(B) and primary root length (C) in Col-0 and MdZAT5-OE. (D) Phenotypes of Arabidopsis treated with
150 mM NaCl after 14 days and MDA content (E). The expression level of AtNHX1 (F) and AtABI1
(G) in Col-0 and MdZAT5-OE. Different lowercase letters represent a significant difference (p < 0.05).
Data are the mean ± SD of three independent replicates.
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Data are the mean ± SD of three independent replicates.

3. Discussion

C2H2-type zinc finger proteins played key roles in regulating plant growth, abiotic,
and biotic stress responses in plants [37,41,42]. In recent years, many studies have studied
the function of C2H2-type zinc finger proteins. Their functions have been widely char-
acterized in Arabidopsis and rice. However, little has been reported in apple. Here, we
isolated ZAT5 from apple and found that both ZAT5 and AtZAT5 contained two highly
conserved zinc finger domains and an EAR motif, indicating that it has the conserved
function of this family (Figures 1A and 2B). The EAR motif, a short hydrophobic region,
has been shown to function as repressor, e.g., ZAT6, STZ/ZAT10, ZAT11, and ZAT12 in
Arabidopsis [43–45]. Different treatments (salt, drought, cold, ABA, and high light) induced
the expression of MdZAT5, suggesting that MdZAT5 may be involved in the tolerance of
many abiotic stressors (Figures 4 and 5). Previous studies have shown that AtSTZ/ZAT10
is induced by the same treatments [44,46]. MdZAT5 transgenic apple calli and Arabidopsis
were confirmed to perform biological functions. In this study, MdZAT5 was involved in
anthocyanin synthesis and salt stress response in apple.

Anthocyanin, a polyphenol water-soluble plant pigment, exists widely in flowers,
fruits, stems, leaves, and seeds of plants [47]. Here, the expression of MdZAT5 was highest
in flowers (Figure 3A). We analyzed promoter sequences of MdZAT5 and found a large
number of light-responsive elements (Table 1). Light is the most important external factor
regulating anthocyanin synthesis [4]. ProMdZAT5::GUS transgenic Arabidopsis was deeply
up-regulated under high light treatment, consistent with the result of GUS staining of
ProMdZAT5::GUS transgenic calli (Figure 5). Under high light, overexpression of MdZAT5
actively regulated anthocyanin accumulation in apple calli and Arabidopsis, further indicat-
ing that MdZAT5 plays an important role in plant response and adaptation to high light.
Under high light, AtZAT12 promotes the increase of anthocyanin and chlorophyll con-
tent [48]. In Petunia, ZPT2-1 participates in anthocyanin synthesis [49]. Few studies have
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reported the functions of zinc finger proteins in the regulation of anthocyanin synthesis;
thus, more work is needed in this area to perfect the content.

Salt stress is one of the most important limiting factors in plant growth, development,
and yield [50,51]. Therefore, it is necessary to study salt-stress-related genes and their
functions to improve crops. Previous studies have reported that many C2H2-type zinc
finger proteins are involved in the regulation of salt stress as transcriptional activators
or inhibitors [52]. In Arabidopsis, SALT-INDUCED ZINC FINGER PROTEIN1 (AtSIZ1)
positively regulates salt tolerance by maintaining osmotic balance and ion homeostasis [53].
RING/FYVE/PHD ZFP (AtRZFP) enhances salt and osmotic tolerance by scavenging ROS,
maintaining Na(+) and K(+) homeostasis [54]. AtZFP3 can enhance the salt resistance of
Arabidopsis, and its expression level is inhibited under salt stress [55]. OsZFP213 interacts
with OsMAPK3 to improve salt tolerance by scavenging reactive oxygen [56]. In other
species, there are also reports of C2H2-type zinc finger proteins involved in salt stress, such
as wheat, soybean, tomato, and sweet potato [35,57–59].

In this study, ProMdZAT5::GUS transgenic Arabidopsis and calli also further confirmed
that MdZAT5 was related to salt stress (Figure 5). Under salt stress, transgenic MdZAT5
apple calli and Arabidopsis showed weaker growth than wild-type plants, indicating that
MdZAT5 plays a negative regulatory role in plant response and adaptation to salt stress
(Figures 7 and 8). We measured the content of MDA in apple calli and Arabidopsis, and
found that the MDA content of transgenic plants was higher than in those of WT plants
(Figures 7C and 8E). The content of MDA can reflect the degree of stress damage to
plants [60]. The accumulation of ROS was related to the content of MDA [61]. Deeper
levels of DAB/NBT staining, higher H2O2 content levels, and higher O2

− generation rates
under salt treatment indicate that more ROS accumulation occurred in transgenic plants
(Figure 9). In addition, maintaining ion balance is an important method for plants to resist
salt stress [62]. NHX1, a Na+/H+ antiporter located on the vacuolar membrane, plays
an important role in maintaining ion homeostasis in plant cells [63]. ABI1 is a salt-stress-
related gene [64]. The AtNHX1 and AtABI1 expression levels in the overexpressed MdZAT5
Arabidopsis were significantly lower than those in Col-0 (Figure 8F,G). The above results
show that overexpression of MdZAT5 enhances the sensitivity of plants to salt stress by
reducing the expression level of NHX1 and ABI1.

In this study, we identified a novel MdZAT5 transcription factor that directly or
indirectly activates the expression of anthocyanin synthesis-related genes to increase an-
thocyanin accumulation or reduce the expression of salt-stress-related genes to improve
the sensitivity of salt stress. This study provides new insights for future research on antho-
cyanin accumulation and resistance to salinization and provides new candidate genes for
improving apple quality and abiotic stress. However, the potential mechanism of MdZAT5
in regulating anthocyanin accumulation and salt stress is not clear. We next intend to
further improve its regulatory mechanism by verifying the direct downstream protein or
gene targets of MdZAT5.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The apple (Malus × domestica ‘Royal Gala’) shoot cultures were stored at 25 ◦C on MS
solid medium containing 0.5 mg/L 6-benzylaminopurine (6-BA) and 0.5 mg/L naphthyl
acetic acid (NAA) for a 16/8 h light/dark photoperiod and subcultured at 30-day intervals.
To obtain self-rooted plantlets, the 3-week-old shoot cultures were transferred to a root-
inducing MS solid medium containing 0.2 mg/L indoleacetic acids (IAA). For tissue
expression analysis, the roots, stems, leaves, flowers, and fruits were collected 80 days after
flowering from 7-year-old ‘Gala’ apple tree (Taian, China). Four-week-old self-rooted apple
seedlings were treated with NaCl (150 mM), PEG 6000 (10%), temperature (4 ◦C), and ABA
(100 µM), as described in [45].

Apple calli from the ‘Orin’ cultivar were grown on MS solid medium of 1.5 mg/L
2, 4-dichlorophenoxyacetic acid (2, 4-D), and 0.4 mg/L 6-BA for 18 days in the dark at
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24 ◦C. Then, for the stress treatment, calli were cultured in a medium with high light
and NaCl (100 mM) for 18 days. The seeds of ecotype Columbia (Col-0) and transgenic
Arabidopsis (MdZAT5-OE1, MdZAT5-OE2, MdZAT5-OE3) were sterilized and vernalized
for 3 days at 4 ◦C. Then, Arabidopsis seedlings were sown on MS solid medium for 3 days
under a photoperiod of 16/8 h light/dark and transferred to solid medium with high light
(~300 µmol m−2 s−1) and NaCl (150 mM) for 7 and 14 days, respectively. Twenty-one-day-
old seedlings of Arabidopsis were supplied with 150 mM NaCl for 14 days in soil.

4.2. Bioinformatics Analysis of the MdZAT5 Gene

The basic information of the MdZAT5 sequence came from the NCBI database (https:
//www.ncbi.nlm.nih.gov/, accessed on 3 November 2020). The secondary and tertiary
structure prediction of MdZAT5 adopted SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/
npsa_automat.pl?page=npsa_sopma.html, accessed on 15 March 2021) and Phyre2 (http:
//www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index, accessed on 15 March 2021),
respectively [65].

4.3. Phylogenetic Analysis and Multiple Sequence Alignment of ZAT5 Proteins

The adjacency algorithm of the online software MEGA_X was used to construct ZAT5
evolutionary neighbor-joining trees of different plants (the step test was set to 1000 times,
substitution method was the Poisson model) [66]. A multiple sequence alignment of ZAT5
proteins from 10 different plants was performed using Clustal Omega. We found several
highly conserved domains, which were visualized by the online software Jalview.

4.4. Analysis of the MdZAT5 Promoter

The cis-element in the MdZAT5 promoter (2000 bp upstream of the transcription
initiation site) was analyzed with the online software PlantCARE (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/, accessed on 18 March 2021) [67].

4.5. RNA Extraction and qRT-PCR Assays

Total RNAs of plant materials, including apple and Arabidopsis, were isolated using
the RNA Plant Plus Reagent Kit (Tiangen Biotech, Beijing, China). Reverse transcription
was conducted for single-stranded DNA synthesis using the PrimScript™ First Strand
cDNA Synthesis Kit (TaKaRa, Dalian, China), per the manufacturer’s protocol. qRT-PCR
was performed on the extracted RNA using an ABI7500, in which 18S (apple) and AtACTIN
(Arabidopsis) were used as internal control. Then, relative gene expression analysis was
conducted using the cycle threshold (Ct) 2−∆∆CT method. Quantitative primers are listed
in Supplementary Table S1.

4.6. Construction of the Expression Vectors and Genetic Transformation

To construct the overexpression vector of MdZAT5, we cloned the full-length coding
sequence of MdZAT5 into the plant expression vector pRI101 [40]. The MdZAT5 (2000 bp
promoter fragment from start codon) was cloned into a p1300-GN vector to construct
ProMdZAT5::GUS, and the vector drives Gus (β-glucuronidase) reporter gene [64]. The
MdZAT5 overexpression vector and ProMdZAT5::GUS constructs were transformed into
Arabidopsis by the flower dipping method to obtain transgenic plants [68]. The calli of
transgenic apple were obtained by the Agrobacterium-mediated method [69]. Transgenic
Arabidopsis and calli were identified with kanamycin.

4.7. GUS Histochemical Staining

The 18-day-old transgenic apple calli and 7-day-old transgenic Arabidopsis seedlings
of ProMdZAT5::GUS were cultured on solid medium with NaCl (150 mM), PEG 6000 (10%),
temperature (4 ◦C), ABA (100 µM), and high light (~300 µmol m−2 s−1) for 24 h. Apple calli
or Arabidopsis seedlings were subjected to staining using GUS staining buffer (containing

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index
http://bioinformatics.psb. ugent.be/webtools/plantcare/html/
http://bioinformatics.psb. ugent.be/webtools/plantcare/html/
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0.5 mM ferrocyanide, 0.1% Triton X-100, 0.1 mM EDTA, 0.5 mM ferricyanide, and 1 mM
X-Gluc) and then decolorized with absolute ethanol for 12 h [70].

4.8. Measurements of Anthocyanin, Relative Electronic Conductivity, and MDA

The anthocyanin of plants was extracted by the methanol hydrochloric acid method [71].
The plant materials were placed in anthocyanin extract (95% ethanol: 1.5 M HCl = 85:15,
v/v) in the dark at room temperature for 24 ◦C. The absorbance value of the extracted
samples was measured at 530, 620, and 650 nm with a UV–Vis spectrophotometer. The
anthocyanin content was calculated according to the previous method [72].

The relative electronic conductivity content of apple calli was measured by this
method and a DDS-12 conductometer (Hangzhou Wanda Instrument Factory, Hangzhou,
China) [73]. The content of MDA in apple calli and Arabidopsis was determined by the
thiobarbituric acid (TBA)-based method [74].

4.9. Measurement of ROS

The H2O2 content and O2
− production rate were determined using a kit (Keming,

Suzhou, China). H2O2 level was detected by diaminobenzidine (DAB) histochemical
staining, and O2

− level was detected by nitro blue tetrazolium (NBT) staining in accordance
with the methods described in [75].

4.10. Statistical Analysis

Each experiment was repeated at least three times (biological repetitions). Each
biological repetition was performed at least three times (technical repetitions). All Data
processing system (DPS) was used to analyze the significance of the data [76].

5. Conclusions

In short, overexpression of MdZAT5 promotes the expressions of anthocyanin
biosynthesis-related genes to actively regulate anthocyanin synthesis and increase sensitiv-
ity to salt stress by regulating the expression of NHX1 and ABI1. Our study provides new
insight into MdZAT5-mediated anthocyanin synthesis and salt resistance and is helpful to
further clarify the mechanism of anthocyanin synthesis and salt stress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms23031897/s1.
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