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Abstract

Clinical observations showed that schizophrenia (SCZ) patients reported little or no

pain under various conditions that are commonly associated with intense painful sen-

sations, leading to a higher risk of morbidity and mortality. However, this phenome-

non has received little attention and its underlying neural mechanisms remain

unclear. Here, we conducted two experiments combining psychophysics, electroen-

cephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques

to investigate neural mechanisms of pain insensitivity in SCZ patients. Specifically,

we adopted a stimulus–response paradigm with brief stimuli of different sensory

modalities (i.e., nociceptive, non-nociceptive somatosensory, and auditory) to test

whether pain insensitivity in SCZ patients is supra-modal or modality-specific, and

used EEG and fMRI techniques to clarify its neural mechanisms. We observed that

perceived intensities to nociceptive stimuli were significantly smaller in SCZ patients

than healthy controls, whereas perceived intensities to non-nociceptive somatosen-

sory and auditory stimuli were not significantly different. The behavioral results were

confirmed by stimulus-evoked brain responses sampled by EEG and fMRI techniques,

thus verifying the modality-specific nature of the modulation of nociceptive informa-

tion processing in SCZ patients. Additionally, significant group differences were

observed in the spectral power of alpha oscillations in prestimulus EEG and the seed-

based functional connectivity in resting-state fMRI (seeds: the thalamus and per-

iaqueductal gray that are key nodes in ascending and descending pain pathways

respectively), suggesting a possible contribution of cortical–subcortical dysfunction

to the phenomenon. Overall, our study provides insight into the neural mechanisms

of pain insensitivity in SCZ and highlights a need for systematic assessments of their

pain-related diseases.
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1 | INTRODUCTION

Schizophrenia (SCZ) is a psychiatric disorder marked by a large spec-

trum of positive symptoms (e.g., hallucination, delusion), negative

symptoms (e.g., anhedonia, apathy), and cognitive impairments

(Kendler, 2016; Tandon et al., 2013). Despite mental suffering, SCZ

patients have an extremely high risk of various pain-related diseases,

such as irritable bowel syndrome, cardiovascular diseases, stroke, frac-

tures, and diabetes mellitus (Fan, Wu, Shen, Ji, & Zhan, 2013; Gar-

akani et al., 2003; Li, Fan, Tang, & Cheng, 2014; Stubbs, Gaughran,

et al., 2015; Stubbs, Vancampfort, De Hert, & Mitchell, 2015). How-

ever, a lower prevalence of perceived pain is reported in SCZ patients

as compared to patients with other psychosis or general population

(Chaturvedi, 1987; Engels et al., 2014; Stubbs, Eggermont, et al.,

2015; Stubbs, Vancampfort, et al., 2015). This observation could be

due to the abnormal pain sensitivity in SCZ patients, which is pervasive

but an ignored topic in clinic. The abnormal pain response profile could

result in lower possibility for SCZ patients to seek medical help under

various conditions normally associated with severe pain (Engels et al.,

2014), which could lead to higher morbidity and mortality rates

(De Hert, Cohen, et al., 2011; De Hert, Correll, et al., 2011; Dworkin,

1994; Jarcho, Mayer, Jiang, Feier, & London, 2012). These facts prompt

the urgency to explore the interrelationship between pain and SCZ.

Although there are a few conflicting results (Bonnot, Anderson,

Cohen, Willer, & Tordjman, 2009; Girard, Plansont, Bonnabau, &

Malauzat, 2011; Guieu, Samuelian, & Coulouvrat, 1994), the majority

of previous studies has demonstrated that pain sensitivity is

decreased in SCZ patients, mainly supported by three lines of evi-

dence. First, clinical case reports have shown that SCZ patients have

little pain complaints in conditions that are commonly associated with

intense painful sensations (e.g., bacterial peritonitis caused by perfo-

rated appendix) (Apter, 1981; Murakami et al., 2010; Murthy,

Narayan, & Nayagam, 2004; Potvin, Stip, & Marchand, 2016;

Rosenthal, Porter, & Coffey, 1990; Virit, Savas, & Altindag, 2008). Sec-

ond, population studies have demonstrated a remarkably high preva-

lence of reduced or absent pain symptoms in SCZ patients (Singh,

Giles, & Nasrallah, 2006; Torrey, 1979), but an extremely low preva-

lence of SCZ diagnosis in chronic pain patients (Fishbain, Goldberg,

Meagher, Steele, & Rosomoff, 1986; Reich, Tupin, & Abramowitz,

1983). Third, empirical studies have described increased pain threshold

or tolerance in SCZ patients during various types of nociceptive stimu-

lations (e.g., heat, cold, electrical) (Blumensohn, Ringler, & Eli, 2002;

Jochum et al., 2006; Kudoh, Ishihara, & Matsuki, 2000). Therefore, it

has been suggested that pain insensitivity could be considered as a

potential endophenotype of SCZ (Stubbs, Thompson, et al., 2015).

Notably, a few pilot studies directly compared the neural activity

evoked by nociceptive stimuli between patients and healthy controls

(HC), and revealed abnormal pain processing at cortical level during a

psychotic state in SCZ (de la Fuente-Sandoval, Favila, Gomez-Martin,

Leon-Ortiz, & Graff-Guerrero, 2012; de la Fuente-Sandoval, Favila,

Gomez-Martin, Pellicer, & Graff-Guerrero, 2010; Linnman, Coombs

3rd, Goff, & Holt, 2013). These findings suggest that abnormal pain

sensitivity in SCZ may be consequent upon a general deficit of

sensory information processing (Javitt & Freedman, 2015), which has

been frequently reported in multiple sensory modalities (e.g., auditory,

somatosensory, visual) (Braff, Light, & Swerdlow, 2007; Butler et al.,

2007; Levy et al., 2000; Turetsky et al., 2008). However, competing

evidence has shown the intact function of sensory detection in some

modalities (e.g., auditory detection thresholds or visual acuity) in SCZ

(Carter et al., 2017; Javitt & Freedman, 2015), suggesting an alterna-

tive hypothesis that mechanisms underlying pain insensitivity in SCZ

may not be generic across sensory modalities, but rather specific to

nociception.

To test whether pain insensitivity in SCZ is a supra-modal or

modality-specific phenomenon, we conducted two experiments com-

bining with psychophysics, electroencephalography (EEG), and func-

tional magnetic resonance imaging (fMRI) techniques. In Experiment

1 (n = 42), we used a stimulus–response paradigm to obtain stimulus-

evoked and prestimulus EEG data and compared sensory processing

across three different modalities (i.e., nociceptive, non-nociceptive

somatosensory, and auditory) between SCZ and HC. In Experiment

2 (n = 40), we further compared fMRI blood-oxygen-level dependent

(BOLD) responses to nociceptive stimuli and seed-based resting-state

functional connectivity (RSFC) between SCZ and HC.

2 | METHODS

2.1 | Experiment 1 (EEG)

2.1.1 | Subjects

Twenty-one right-handed patients, diagnosed with SCZ according to

DSM-V (Bhati, 2013) at the inpatient and outpatient psychiatric ser-

vices of Beijing Huilonguan Hospital, were recruited through clinical

assessments in Experiment 1. Further inclusion criteria were as fol-

lows: illness duration longer than 2 years, considered clinically stable

by their treating physician, no electric compulsive treatment in the

past 6 months. Exclusion criteria included concomitant severe medical

or neurological illness, comorbidity of any other DSM-V Axis I disor-

der, past or current alcohol abuse, high suicidal risk, and contraindica-

tions of MRI scanning. Twenty-one age-gender matched, right-

handed HC without positive personal/family history of psychosis or

current concomitant physical pain were recruited from the local com-

munities. Other exclusion criteria for HC were identical to SCZ. All

subjects provided written informed consent. The experiment was

approved by the Ethics Review Board at the Beijing Huilonguan Hos-

pital and registered with ChiCTR-BOC-17013972 in the Chinese Clin-

ical Trial Registry. All experimental procedures were carried out in

accordance with the Declaration of Helsinki.

2.1.2 | Clinical assessments

For SCZ, clinical assessments included age at illness onset, duration of

illness, personal and family psychopathology, substance use, and
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medication. The personal and family psychopathology was assessed

using the Positive and Negative Syndrome Scale (PANSS) (Kay,

Fiszbein, & Opler, 1987). Substance use, particularly the duration and

daily dose of smoke, was evaluated, as nicotine can modify subjective

pain sensitivity (Girdler et al., 2005). Type and dosage of antipsychotic

were recorded, and the daily antipsychotic dose was converted into

chlorpromazine equivalents (Gardner, Murphy, O'Donnell,

Centorrino, & Baldessarini, 2010). Clinical assessments on HC, which

included personal and family psychopathology and substance use,

were conducted using a semi-structural clinical interview.

Sociodemographic and clinical data are summarized in Table 1.

2.1.3 | Sensory stimuli

Nociceptive stimuli were pulses of radian heat generated by an infrared

neodymium yttrium aluminum perovskite laser (Deka: Stimul 1,340;

wavelength: 1.34 μm; pulse duration: 4 ms; Electronic Engineering,

Italy). At this wavelength and pulse duration, laser stimuli activate

directly nociceptive terminals in the most superficial skin layers in a

synchronized fashion (Iannetti, Zambreanu, & Tracey, 2006). A He–Ne

laser pointed to the area to be stimulated. The laser beam was set at a

diameter of ~7 mm by focusing lenses connected to the optic fiber,

with a fixed stimulus intensity of 3.5 J to elicit a painful pinprick sen-

sation (Bromm & Treede, 1984). To prevent fatigue or sensitization of

the nociceptors, the laser beam target was manually shifted by at least

1 cm in a random direction after each stimulus. Laser pulses were

delivered to a squared area (4 × 4 cm2) on the dorsum of left hand.

Non-nociceptive somatosensory stimuli were constant current square-

wave electrical pulses generated by an electrical stimulator (pulse

duration: 1 ms; SXC-4A, Sanxia Technique Inc., China). The electrical

pulses were delivered via a pair of surface round electrodes (diameter:

16 mm; inter-electrode distance: 1 cm) placed over the median nerve

at the left wrist. The stimulus intensity was fixed at 7 mA to elicit a

nonpainful tactile sensation. Auditory stimuli were brief 1,000-Hz pure

tones (~70 dB; duration: 50 ms; 5-ms rise and fall time) delivered bin-

aurally through custom-built headphones (Sennheiser, HD201,

Germany).

2.1.4 | EEG experimental design

The EEG experiment consisted of three blocks (Figure 1, top panel). In

each block, 30 sensory stimuli, belonging to three different sensory

modalities (i.e., nociceptive, non-nociceptive somatosensory, and audi-

tory), were delivered in a pseudorandom order. For each sensory

modality, we delivered 10 stimuli in each block (30 stimuli per sensory

modality in total). A typical trial started with a 4-s fixation of white

cross-centered on the screen, which was followed by the delivery of a

sensory stimulus. A visual cue presented 2 s after the sensory stimulus

TABLE 1 The characteristics of subjects in Experiments 1 and 2

Experiment 1 Experiment 2

Variables Categories SCZ (n = 21) HC (n = 21) SCZ (n = 20) HC (n = 20)

Age, y 37.6 ± 7.9 34.4 ± 7.2 37.9 ± 7.1 34.4 ± 6.5

Education, y 13.7 ± 2.5 14.6 ± 3.5 14.0 ± 2.6 14.3 ± 3.6

Gender, no. (%) Male 16 (76.2%) 16 (76.2%) 15 (75.0%) 16 (80.0%)

Female 5 (23.8%) 5 (23.8%) 5 (25.0%) 4 (20.0%)

Ethnicity, no. (%) Han 18 (85.7%) 21 (100%) 18 (90.0%) 20 (100%)

Minority 3 (14.3%) 0 (0%) 2 (10.0%) 0 (0%)

Onset-age of SCZ, y 22.0 ± 6.8 21.9 ± 6.9

Duration of SCZ, y 15.9 ± 8.0 16.6 ± 7.8

Positive symptoms 13.2 ± 5.2 13.3 ± 5.1

Negative symptoms 16.4 ± 7.5 16.1 ± 7.6

General psychosis 25.7 ± 5.9 24.9 ± 5.2

PANSS 55.3 ± 12.9 54.3 ± 13.1

Personal/family history of psychosis, no. (%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Duration of smoke, y 11.1 ± 6.7 (n = 9) 14.4 ± 9.9 (n = 7) 9.3 ± 5.4 (n = 10) 14.4 ± 9.9 (n = 7)

Daily dose of smoke, no. 8.7 ± 7.6 10.0 ± 9.5 8.3 ± 7.3 10.0 ± 9.5

Antipsychotic dosage,a mg 608.5 ± 262.9 659.5 ± 269.7

First-generation antipsychotic,b no. (%) 2 (9.5%) 2 (10.0%)

Second-generation antipsychotic,b no. (%) 19(90.5%) 18(90.0%)

Note: Data are expressed in mean ± SD.
aAntipsychotic dosage has been converted into chlorpromazine equivalents.
bSome patients were taking both first-generation and second-generation antipsychotics.
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prompted the subjects to verbally rate the perceived intensity within

5 s on an 11-point Numeric Rating Scale (NRS) ranging from 0 to 10.

For nociceptive stimuli, “0” represented “not painful at all” and “10”

represented “extremely painful”; for non-nociceptive somatosensory

stimuli, “0” represented “no sensation at all” and “10” represented

“extremely strong/intense sensation”; for auditory stimuli, “0” repre-

sented “no sound at all” and “10” represented “extremely loud”. The

inter-trial interval (ITI) was 3–5 s. Subjects could have a short break

(3–8 min) after each block. During the experiment, all subjects were

required to keep themselves awake and eyes-open, and focused

themselves on detecting the perceived intensity for each sensory

stimulus.

2.1.5 | EEG data acquisition

Subjects were seated in a comfortable chair in a silent room, and were

instructed to focus on the stimuli, keep their eyes open, and gaze at a

fixation point on the screen. EEG data were recorded using 64 Ag-

AgCl scalp electrodes placed according to the International 10–20

system (ANT Neuro; pass band: 0.01–100 Hz; sampling rate:

1,000 Hz). The nose was used as the reference, and electrode imped-

ances were kept lower than 10 kΩ. To monitor eyeblinks and ocular

movements, electrooculographic (EOG) signals were simultaneously

recorded from two surface electrodes, one placed over the left lower

eyelid and the other placed lateral to the outer canthus of the

left eye.

2.1.6 | EEG data preprocessing

EEG data were preprocessed using EEGLAB, an open source toolbox

running in the MATLAB environment. Continuous EEG data were

band-pass filtered between 1 and 30 Hz, and segmented into epochs

using a time window of 1,500 ms, ranging from 500 ms prestimulus to

1,000 ms poststimulus. Baseline correction was performed using the

prestimulus interval. Trials contaminated by eye-blinks and move-

ments were corrected using an independent component analysis (ICA)

algorithm (Delorme & Makeig, 2004).

2.1.7 | Event-related potentials: Time-domain
analysis

For each subject, epochs belonging to the same sensory modality

were averaged, yielding three average waveforms time-locked to the

F IGURE 1 EEG and fMRI experimental paradigms. Top panel: EEG experiment (Experiment 1) was composed of three blocks, and in each
block 30 trials with transient stimuli belonging to three different sensory modalities (i.e., nociceptive, non-nociceptive somatosensory, and
auditory) were delivered in a pseudorandom order. Subjects were allowed to have a short break (3–8 min) after each block. Each trial started with
a 4-s fixation of white cross-centered on the screen, and followed by the delivery of a sensory stimulus. A visual cue presented 2 s after the
sensory stimulus prompted the subjects to verbally rate the perceived intensity within 5 s on a 11-point NRS ranging from 0 (no sensation) to
10 (unbearable sensation). The inter-trial interval (ITI) was 3–5 s. Bottom panel: fMRI experiment (Experiment 2) contained a single block of
30 trials with transient nociceptive stimuli. Each trial started with a 6-s fixation of the white cross-centered on the screen, and followed by the
delivery of a nociceptive stimulus. A visual cue presented 14 s after the nociceptive stimulus prompted the subjects to rate the perceived
intensity within 6 s on the same 11-point NRS. The ITI was 1–2 s
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stimulus onset. For laser-evoked potentials (LEPs), peak latencies and

amplitudes of N1, N2, and P2 waves were measured from the average

waveform. N2 and P2 waves were defined as the most negative and

positive deflections between 150 and 500 ms after stimulus onset

at the central electrode (Cz-nose, vertex potentials), respectively

(Kunde & Treede, 1993; Valentini et al., 2012). N1 wave, defined as

the most negative deflection preceding the N2 wave, can be opti-

mally detected at the central electrode contralateral to the stimu-

lated side referenced to Fz (C4-Fz) (Hu, Mouraux, Hu, & Iannetti,

2010; Valentini et al., 2012). For non-nociceptive somatosensory-

evoked potentials (SEPs) and auditory-evoked potentials (AEPs),

peak latencies and amplitudes of N2 and P2 waves were measured

from the average waveforms. For both SEPs and AEPs, N2 and P2

waves were defined as the most negative and positive deflections

between 100 and 400 ms after stimulus onset at the central elec-

trode (Cz-nose, vertex potentials), respectively (Mouraux & Iannetti,

2009; Peng, Hu, Zhang, & Hu, 2012). Please note that vertex poten-

tials elicited by intense stimuli belonging to non-nociceptive

somatosensory and auditory modalities are functionally similar to

the N2–P2 complex in LEP responses (Mouraux & Iannetti, 2009).

For this reason, we used the same nomenclatures (i.e., N2 and P2

waves) for all sensory modalities in the present study. Single-subject

average waveforms of each sensory modality were averaged across

subjects to obtain group-level waveforms. Group-level scalp topog-

raphies at the peak latency of all waves were computed by spline

interpolation.

2.2 | Experiment 2 (fMRI)

2.2.1 | Subjects

Twenty patients and 20 age-gender matched HC were recruited in

Experiment 2, and most of them (15 patients and 17 HC) also partici-

pated in Experiment 1. The inclusion/exclusion criteria and other

experimental requirements were identical to Experiment

1. Sociodemographic and clinical data are summarized in Table 1.

2.2.2 | fMRI experimental design

The fMRI experiment consisted of a resting-state fMRI session and a

task fMRI session (Figure 1, bottom panel). For the resting-state fMRI

scanning session, subjects were required to lay supine in the scanner,

and kept their eyes fixed on a white cross centered on the screen for

~10 min. For the task fMRI scanning session, the paradigm was similar

to that in Experiment 1, but only nociceptive stimuli were delivered as

the main aim of this experiment was to explore the neural mecha-

nisms underlying the alterations of pain sensitivity in SCZ. Thirty noci-

ceptive stimuli (laser pulses were also generated by Stimul 1,340,

which is an MRI-compatible device) were delivered to a squared area

(4 × 4 cm2) on the dorsum of the left hand. Other laser parameters

(i.e., wavelength, pulse duration, beam diameter, and stimulus

intensity) were identical to Experiment 1. Please note that, the laser

beam target was manually shifted by an experimenter in the scanning

room for at least 1 cm in a random direction after each stimulus to

prevent fatigue or sensitization of the nociceptors. Each trial started

with a 6-s fixation of the white cross-centered on the screen, followed

by the delivery of a nociceptive stimulus. Fourteen seconds after the

delivery of nociceptive stimulus, a visual cue was presented to prompt

the subjects to rate the perceived intensity within 6 s on the same

11-point NRS by pressing buttons on a shank in their right hand. The

ITI was 1–2 s.

2.2.3 | MRI data acquisition

Both structural and functional MRI data were acquired on a 3.0 Tesla

Siemens Prisma magnetic resonance scanner (Erlangen, Germany)

with a standard 64-ch head coil at Beijing HuiLongGuan Hospital. For

each subject, a T1-weighted structural image (echo time = 3.97 ms,

repetition time = 1,900 s, voxel size = 1 × 1 × 1 mm3, in-plane matrix

size = 240 × 240, slices = 192, field of view = 192 × 192 mm2) was

acquired to exclude the possibility of clinically silent lesions for all

subjects and for use of spatial registration during the functional imag-

ing data analyses. A whole-brain gradient-echo, echo-planar imaging

(GE-EPI) sequence was used for obtaining functional data (echo

time = 30 ms, repetition time = 2,000 ms, flip angle = 90�, field of

view = 224 × 224 mm2, matrix = 64 × 64, 33 contiguous slices with

thickness of 3.5 mm) of 300 volumes for resting-state fMRI session

and 414 volumes for task fMRI session.

2.2.4 | fMRI data preprocessing

fMRI data were preprocessed using FSL tools (FMRIB's Software

Library, Version 6.00, www.fmrib.ox.ac.uk/fsl). The same

preprocessing procedures were applied to the resting-state and task

fMRI data, which included motion correction (mcflirt), distortion cor-

rection with field map (FUGUE) (Jenkinson, Bannister, Brady, & Smith,

2002), nonbrain tissue removal using Brain Extraction Tool (BET), spa-

tial smoothing with a Gaussian kernel of 5-mm full-width at half-

maximum (FWHM), high-pass temporal filtering using a Gaussian-

weighted least-squares straight line fitting with sigma of 100 s. For

the resting-state fMRI data, ICA-based denoising was performed

(Beckmann & Smith, 2004) for each subject to remove the artifacts,

including head motion, white matter, cerebrospinal fluid, high-

frequency noise, slice dropouts, gradient instability, EPI ghosting, and

field inhomogeneities, etc.

2.2.5 | Task fMRI: General linear model analysis

Each single-subject task fMRI data were modeled on a voxel-by-voxel

basis through a general linear model (GLM) approach (Woolrich, Rip-

ley, Brady, & Smith, 2001). The fMRI time series were modeled using
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a series of regressors including the events of interest (i.e., occurrence

of nociceptive stimuli) convolved with a gamma hemodynamic

response function, its temporal derivative, and six head motion

parameters estimated during motion correction. For each subject,

the contrast corresponding to the regressor of nociceptive stimuli

was used to assess the BOLD responses associated with nociceptive

stimuli. As all contrasts were constructed in individual functional

space, a two-stage spatial registration procedure was applied to nor-

malize individual functional images to the Montreal Neurological

Institute (MNI) standard space: single-subject low-resolution func-

tional images were first co-registered to their corresponding high-

resolution structural images using FMRIB's Linear Image Registration

Tool (FLIRT) (Jenkinson et al., 2002) and then transformed to a stan-

dard brain (MNI 152 2 mm template) using FLIRT and FMRIB's Non-

linear Image Registration Tool (FNIRT) (Andersson, Jenkinson, &

Smith, 2007). Group-level statistical analyses were carried out using

a mixed-effect approach (FLAME, FMRIB's Local Analysis of Mixed

Effects) (Beckmann, Jenkinson, & Smith, 2003; Woolrich, Behrens,

Beckmann, Jenkinson, & Smith, 2004). The single-subject contrast

maps entered a one-sample t test to obtain the group-level brain

responses to nociceptive stimuli for each group (SCZ and HC). The

differences between SCZ and HC were assessed using the

independent-sample t test of single-subject contrast maps. The sta-

tistical images were thresholded using cluster-forming correction

determined by Z > 2.3 and a corrected cluster significance threshold

of p < .05 (Worsley, 2003).

2.2.6 | Resting-state fMRI: Functional connectivity
analysis

Given that the thalamus and periaqueductal gray (PAG) are key

nodes in the ascending and descending pain modulation pathways

respectively (Ab Aziz & Ahmad, 2006; Basbaum & Fields, 1984), and

showed significant differences in BOLD responses to nociceptive

stimuli between SCZ and HC detected in the task fMRI GLM analy-

sis, these two brain regions were defined as two seed ROIs for the

functional connectivity analysis of resting-state fMRI data. The ROI

of thalamus was defined from the Harvard Oxford subcortical struc-

tural atlas (Frazier et al., 2005), which are population-based probabil-

ity atlas in MNI 152 standard space. The ROI of PAG was defined

from Duvernoy's atlas of the Human Brainstem and Cerebellum

(Naidich et al., 2009) in MNI 152 standard space (Ezra, Faull,

Jbabdi, & Pattinson, 2015). To investigate the RSFC of each ROI in

individual functional space using FEAT (FMRI Expert Analysis Tool,

Version 6.00), the two seed ROIs in standard space were first trans-

formed into individual low-resolution functional space via inverted

registration files with nearest-neighbor interpolation. Voxel-wise

seed-based RSFC analyses were completed using standard methods

(Segerdahl, Themistocleous, Fido, Bennett, & Tracey, 2018) for each

seed ROI as follows. The mean time series of a given ROI was set as

a connectivity EV with realignment parameters, averaged white mat-

ter signal and cerebrospinal fluid signal as the nuisance regressors.

Functional connectivity maps were transformed straight into stan-

dard space following the same registration steps as task fMRI. The

differences in the RSFC of each ROI between SCZ and HC were

assessed using the independent-sample t test. The statistical images

were thresholded using cluster-forming correction determined by

Z > 2.3 and a corrected cluster significance threshold of p < .05

(Worsley, 2003).

2.2.7 | Statistics

The average ratings of the perceived intensity and event-related

EEG responses were compared using two-way mixed-design ana-

lyses of variance (ANOVA), with “modality” (three levels: nociceptive,

non-nociceptive somatosensory, and auditory) as a within-subject

factor and “group” (two levels: SCZ and HC) as a between-subject

factor. The statistical P values were adjusted with Greenhouse–

Geisser correction to avoid violation of the sphericity assumption,

when necessary. When the main effects or the interaction reach sta-

tistical significance, post hoc pairwise comparisons with Bonferroni

correction were performed. The peak latency and amplitude of N1

wave in LEPs were compared between groups using an

independent-sample t test.

In addition, Pearson's correlation analyses were performed

between the ratings of perceived pain and a series of variables,

including: (1) laser-evoked EEG responses (i.e., N1, N2, and P2

amplitudes), (2) prestimulus EEG oscillations (i.e., lower and higher

α oscillations, which were detailed in the Supplementary materials),

(3) laser-evoked BOLD responses (BOLD responses in brain

regions showed significant group differences), and (4) seed-based

RSFC (RSFC between thalamus/PAG and clusters showed signifi-

cant group differences). To quantify the relationship between EEG

and fMRI measures at resting state, Pearson's correlation analyses

were also performed between prestimulus EEG oscillations and

seed-based RSFC.

3 | RESULTS

3.1 | Psychophysics

For both experiments, no significant differences were observed

between SCZ and HC in age, years of education, and substance

use (Table 1). For ratings of perceived intensity to sensory

stimuli, significant main effect of “group” (F[1,40] = 7.002, p = .012,

η2p = 0.149) and interaction between “group” and “modality”

(F[2,40] = 3.573, p = .033, η2p = 0.082) were observed. Post hoc pairwise

comparisons revealed that the perceived intensities to nociceptive

stimuli in SCZ were significantly smaller than that in HC (p = .006),

while the perceived intensities to non-nociceptive somatosensory

(p = 1.000) and auditory (p = 1.000) stimuli were not significantly dif-

ferent between the two groups (Table 2; Figure 2, top left panel), indi-

cating a selective reduction of pain sensitivity in SCZ patients.
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3.2 | Event-related EEG responses to sensory
stimuli in the time domain

Group-level LEP waveforms and scalp topographies of N1, N2, and

P2 waves in the time domain are shown in the top panel of Figure 3.

In line with previous studies (Hu, Cai, Xiao, Luo, & Iannetti, 2014;

Valentini et al., 2012), scalp topographies of the N1 wave were maxi-

mal at central electrodes contralateral to the stimulated hand, as it

has been demonstrated that N1 wave is generated in the contralat-

eral primary somatosensory/motor cortices. Scalp topographies of

the N2 wave were maximal at the vertex and extended bilaterally

towards temporal regions, and scalp topographies of the P2 wave

were more centrally distributed (Mouraux & Iannetti, 2009). Group-

level SEP waveforms and scalp topographies of N2 and P2 waves in

the time domain, which were maximal at the vertex, are shown in

the bottom left panel of Figure 3. Group-level AEP waveforms and

scalp topographies of N2 and P2 waves in the time domain, which

were maximal at the vertex, are shown in the bottom right panel of

Figure 3.

For N2 amplitude, significant main effect of “group”

(F[1,40] = 23.194, p < .001, η2p = 0.367) and “modality” (F[2,40] = 21.512,

p< .001, η2p = 0.350) were observed. Specifically, N2 amplitude was

significantly smaller in SCZ than in HC regardless of sensory modal-

ity (LEP: p < .001, SEP: p = .001, AEP: p = .021; Table 2; Figure 2,

middle left panel). There was no significant interaction

between "group" and "modality" on N2 amplitude (F[2,40] = 1.005,

p = .322, η2p = 0.025). For N2 latency, significant main effects of

“group” (F[1,40] = 7.140, p = .011, η2p = 0.151) and “modality”

(F[2,40] = 215.795, p< .001, η2p = 0.844), as well as the interaction

between “group” and “modality” (F[2,40] = 5.955, p = .007, η2p = 0.130)

were observed. Post hoc pairwise comparisons showed that signifi-

cant group difference of N2 latency was only observed in LEPs

(SCZ>HC, p = .001; Table 2; Figure 2, bottom left panel).

For P2 amplitude, significant main effects of “group”

(F[1,40] = 4.096, p = .050, η2p = 0.093) and “modality” (F[2,40] = 54.285,

p< .001, η2p = 0.576), as well as the interaction between “group” and

“modality” (F[2,40] = 18.767, p< .001, η2p = 0.319) were observed. Post

hoc pairwise comparisons showed that significant group difference of

P2 amplitude was only observed in LEPs (SCZ<HC, p = .004; Table 2;

Figure 2, middle right panel). For P2 latency, significant main effects

of “group” (F[1,40] = 6.142, p = .018, η2p = 0.133) and “modality”

(F[2,40] = 155.848, p< .001, η2p = 0.796), as well as the interaction

between “group” and “modality” (F[2,40] = 3.313, p = .041, η2p = 0.076)

were observed. Post hoc pairwise comparisons showed that signifi-

cant group difference of P2 latency was only observed in LEPs

(SCZ>HC, p = .018; Table 2; Figure 2, bottom right panel).

In LEPs, N1 amplitude was significantly smaller in SCZ than in HC

(t[21.322] = 4.014, p < .001, Cohen's d = 1.269); N1 latency was sig-

nificant larger in SCZ than in HC (t[40] = 3.657, p = .001, Cohen's

d = 1.156; Table 2; Figure 2, top right panel).

In summary, all tested variables in the event-evoked EEG

responses to nociceptive stimuli were significantly different between

SCZ and HC, represented as smaller peak amplitude and longer peak

latency in SCZ than in HC. Whereas N2 latency, P2 latency and ampli-

tude in the event-evoked EEG responses to non-nociceptive somato-

sensory and auditory stimuli were not significantly different between

the two groups, N2 amplitude was significantly smaller in SCZ than

HC. These results demonstrated that different from non-nociceptive

somatosensory and auditory modalities, there is an overall dysfunction

of nociceptive information processing in SCZ, which is in line with the

behavioral data.

3.3 | Event-evoked BOLD responses

Nociceptive stimuli elicited significant activations in a wide range

of brain regions for HC, including the periaqueductal gray (PAG),

thalamus, primary somatosensory cortex (S1), secondary somato-

sensory cortex (S2), insula, and dorsal anterior cingulate cortex

(dACC) (Z > 2.3, p < .05 corrected; Figure 4, top panel). However,

only the right S2 and bilateral insula were activated during the

nociceptive stimuli for SCZ (Z > 2.3, p < .05 corrected; Figure 4,

middle panel). Group-level statistical results revealed that brain

activations were significantly smaller in SCZ than HC in almost all

brain regions associated with nociceptive information processing,

including the PAG, thalamus, S2, insula, and dACC (Z > 2.3,

p < .05 corrected; Figure 4, bottom panel). These results con-

firmed the systematic deficit of nociceptive information

processing in SCZ.

TABLE 2 Comparisons of psychophysics and electrophysiological

features between SCZ and HC

Features Variables SCZ (n = 21) HC (n = 21)

Perceived

intensities

Nociceptive 3.7 ± 1.4 5.4 ± 1.5

Non-nociceptive

somatosensory

4.4 ± 1.4 5.1 ± 1.6

Auditory 4.2 ± 1.6 4.8 ± 1.6

LEP

responses

N1 latency (ms) 206.0 ± 27.9 174.6 ± 27.7

N1 amplitude (μV) −1.4 ± 1.1 −6.6 ± 5.9

N2 latency (ms) 254.1 ± 41.0 217.1 ± 31.5

N2 amplitude (μV) −4.5 ± 2.4 −16.1 ± 12.5

P2 latency (ms) 397.3 ± 41.3 356.0 ± 49.7

P2 amplitude (μV) 4.3 ± 4.3 15.9 ± 13.4

SEP

responses

N2 latency (ms) 127.4 ± 40.6 119.9 ± 9.6

N2 amplitude (μV) −9.2 ± 6.9 −19.9 ± 10.3

P2 latency (ms) 260.3 ± 32.9 256.0 ± 41.7

P2 amplitude (μV) 23.4 ± 8.6 28.3 ± 14.6

AEP

responses

N2 latency (ms) 141.3 ± 9.9 142.4 ± 12.5

N2 amplitude (μV) −14.8 ± 8.4 −23.5 ± 7.6

P2 latency (ms) 260.9 ± 43.8 240.0 ± 29.3

P2 amplitude (μV) 18.7 ± 7.9 17.6 ± 6.9

Note: Data are expressed in mean ± SD.
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3.4 | Resting-state fMRI functional connectivity

When thalamus was used as the ROI for the functional connectiv-

ity analysis of resting state fMRI data, we observed that thalamus

exhibited weaker RSFC with the right S1, right S2, left posterior

insula (PI) in HC than in SCZ (Z > 2.3, p < .05 corrected; Figure 5,

top panel), suggesting an abnormal function of the ascending pain

pathway at resting state in SCZ. In contrast, when PAG was used

as the ROI for the same functional connectivity analysis, PAG

showed stronger RSFC with the supplementary motor area (SMA),

F IGURE 2 Comparison of behavioral variables and electrophysiological features between SCZ and HC. Top left panel: Perceived intensities to
different sensory stimuli. While the perceived intensities to nociceptive stimuli were significantly smaller for SCZ compared to HC, the perceived
intensities to non-nociceptive somatosensory and auditory stimuli showed no significant differences between the two groups. Top right, middle,
and bottom panels: Event-related EEG responses to different sensory stimuli in the time domain. Latencies and amplitudes of all LEP waves
(i.e., N1, N2, and P2) were significantly different between SCZ and HC. In contrast, no significant differences between SCZ and HC were found in
N2 latency, P2 latency, and P2 amplitude of SEPs and AEPs. Notably, for both SEPs and AEPs, N2 amplitudes were significantly smaller in SCZ
than HC (*p < .05; **p < .01; ***p < .001; ns: not significant)
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dACC, and dorsolateral prefrontal cortex (DLPFC) in HC than in

SCZ (Z > 2.3, p < .05 corrected; Figure 5, bottom panel), indicating

a possible degenerated function of the descending pain modula-

tion pathway in SCZ.

3.5 | Correlation results

When assessing the relationship between behavioral measures and

laser-evoked EEG responses, significant correlations were observed

F IGURE 3 Group-level event-related EEG responses to sensory stimuli in the time domain. Top panels: Group-level LEP waveforms and scalp
topographies of N1 wave (C4-Fz) and N2-P2 complex (Cz-nose). Data from SCZ and HC are displayed in blue and red, respectively. Time intervals
with significant difference between the two groups are marked in green and yellow for negative and positive T values, respectively. Scalp
topographies are plotted at the peak latency of each wave. Bottom left panel: Group-level SEP waveforms and scalp topographies of N2 and P2
waves (Cz-nose). Bottom right panel: Group-level AEP waveforms and scalp topographies of N2 and P2 waves (Cz-nose)
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between ratings of perceived intensity and N1 amplitude (r = −0.548,

p < .001), N2 amplitude (r = −.468, p = .002), as well as P2 amplitude

(r = 0.483, p = .001; Table S2). When assessing the relationship

between behavioral measures and prestimulus EEG oscillations, signif-

icant correlation was observed between ratings of perceived intensity

and prestimulus lower alpha oscillations (r = −0.314, p = .043;

Table S3).

When assessing the relationship between behavioral measures

and laser-evoked BOLD responses, significant correlations were

observed between ratings of perceived intensity and BOLD

responses to nociceptive stimuli in bilateral insula (r = 0.454,

p = .007), as well as S2 (r = 0.339, p = .050; Table S4). When

assessing the relationship between behavioral measures and resting-

state fMRI measures, significant correlation was observed between

ratings of perceived intensity and RSFC of thalamus with right S2

(r = −0.396, p = .020; Table S3).

When assessing the relationship between EEG and fMRI mea-

sures at resting state, significant correlations were observed

(1) between prestimulus lower alpha oscillations (6–7 Hz) and RSFC of

thalamus with S1 (r = 0.533, p = .001) and S2 (r = 0.455, p = .007), and

F IGURE 4 Event-evoked BOLD responses to nociceptive stimuli. Top panel: For HC, nociceptive stimuli elicited significant activations in the
PAG, thalamus, S1, S2, insula, and dACC. Middle panel: For SCZ, nociceptive stimuli elicited significant activations in the right S2 and bilateral
insula. Bottom panel: Brain activations were significantly smaller in SCZ than HC in almost all brain regions associated with nociceptive
information processing, including the PAG, thalamus, S2, insula, and dACC

F IGURE 5 Resting-state fMRI functional connectivity. Top panel: Thalamus showed weaker resting-state functional connectivity with the
right S1, right S2, left posterior insula in HC than in SCZ. Bottom panel: PAG had stronger resting-state functional connectivity with the SMA,
dACC, and DLPFC in HC than in SCZ
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(2) between prestimulus higher alpha oscillations (9–10 Hz) and RSFC

of thalamus with S1 (r = 0.539, p = .001; Table S3).

4 | DISCUSSION

In the present study, combining with psychophysics, EEG, and fMRI

techniques, we comprehensively investigated the difference of sen-

sory processing across modalities between SCZ and HC. We obtained

two main findings. First, SCZ patients were insensitive to nociceptive

stimuli compared to HC, as revealed by three lines of evidence:

(1) lower pain ratings (Table 2; Figure 2, top left panel), (2) lower

amplitudes of all laser-evoked EEG responses with longer latencies in

the time domain (Table 2; Figures 2 and 3, top panels), and (3) lower

laser-evoked BOLD responses in almost all brain regions within the

“pain matrix” (Figure 4, bottom panel). This finding is consistent with

previous studies (de la Fuente-Sandoval et al., 2010; de la Fuente-

Sandoval et al., 2012; Linnman et al., 2013), and could be related to

the dysfunction of both ascending and descending pain modulation

pathways in SCZ patients: thalamus exhibited stronger functional con-

nectivity with the right S1, right S2, and left posterior insula, and PAG

showed weaker functional connectivity with the SMA, dACC, and

DLPFC in SCZ than HC (Figure 5). Second, even the perceived inten-

sity ratings and the late part of neural responses (i.e., P2 wave) to

non-nociceptive somatosensory and auditory stimuli were not signifi-

cantly different between SCZ and HC, N2 amplitude was significantly

smaller in SCZ than HC (Table 2; Figures 2 and 3). This finding, which

showed the dysfunction of sensory information processing across

modalities, could be associated with the abnormality of the recurrent

neuronal activity within the thalamocortical system in SCZ patients:

compared with HC, the magnitudes of prestimulus alpha oscillations

at both occipital and central electrodes were significantly larger in

SCZ (Table S1; Figure S2, right panel; Figure S3).

4.1 | Pain insensitivity in SCZ patients

Our observation that pain insensitivity in SCZ is supported by several

previous studies (de la Fuente-Sandoval et al., 2010; de la Fuente-

Sandoval et al., 2012; Linnman et al., 2013; Minichino et al., 2016).

For instance, Minichino et al. (2016) demonstrated that compared to

HC, SCZ patients had higher pain thresholds, and lower N1/N2/P2

amplitudes in laser-evoked potentials. Additionally, de la Fuente-

Sandoval et al. (2010)) observed that drug-naïve SCZ patients had a

higher pain tolerance and a reduced activation in brain regions related

to affective-cognitive aspects of pain processing (insula and cingulate

cortex) to thermal painful stimuli than HC. This pain insensitivity in

SCZ patients was normally explained by a supra-spinal mechanism

involving bottom-up and/or top-down modulations in previous stud-

ies (de la Fuente-Sandoval et al., 2010; Levesque et al., 2012; Potvin

et al., 2008). For example, Levesque et al. (2012) observed that SCZ

patients had a decreased sensitivity to prolonged pain, which was not

accompanied by any difference in the nociceptive flexion reflex

response. To achieve better understandings of the supra-spinal mech-

anism, we performed seed-based RSFC analyses for thalamus and

PAG, which are key nodes in the ascending and descending pain mod-

ulation pathways respectively. We found that thalamus exhibited

stronger RSFC with the right S1, right S2, left posterior insula in SCZ

than in HC (Figure 5, top panel), which was consistent with numerous

previous studies that highlighted the potential of the abnormal

thalamocortical functional connectivity as a promising neurobiological

marker to SCZ (Ferrarelli & Tononi, 2011; Giraldo-Chica, Rogers,

Damon, Landman, & Woodward, 2018; Welsh, Chen, & Taylor, 2010;

Woodward, Karbasforoushan, & Heckers, 2012). Since thalamus is a

key node responsible for transmissions of sensory signals in the

ascending pain modulation pathway (Andersen & Dafny, 1983), the

enhanced thalamocortical functional connectivity could indicate that

the ascending pain pathway was hyper-activated during rest in SCZ

possibly due to sensory information overload. Therefore, the

thalamocortical network dysfunction could provide an alternative

explanation of pain insensitivity in SCZ. It is reasonable to speculate

that overloaded irrelevant internal information (e.g., hallucination) in

the thalamocortical network interrupt the transmission of nociceptive

inputs, thus leading to the reduced pain experience. This surmise

could be indirectly (at least partly) supported by a recent study that

was focused on the role of excitatory and inhibitory systems in the

pain modulation in SCZ patients applied a temporal summation para-

digm before and after the activation of diffuse noxious inhibitory con-

trol (DNIC) system via a cold-pressor test (Potvin et al., 2008). A lack

of temporal summation in SCZ was observed in this study, which

suggested a lack of central pain sensitization in patients, as temporal

summation of pain is thought to reflect the progressive enhancement

of C-fiber (involving nociceptive information transmission) evoked

responses in the central nervous system (Hu et al., 2014; Iannetti

et al., 2003).

Additionally, we observed that PAG had weaker RSFC with the

SMA, dACC, and DLPFC in SCZ than in HC (Figure 5, bottom panel),

indicating a possible pain inhibition mechanism of the descending pain

modulation pathway in SCZ contributed to their pain insensitivity.

Extensive evidence has highlighted the importance of this descending

pathway in modulating pain experience through inhibitory/excitatory

mechanisms (De Felice et al., 2011; Tracey, 2017). As a crucial nucleus

in the descending pathway, the enhanced RSFC of PAG to key brain

regions of pain (e.g., the S1, thalamus and ACC) is responsible to cen-

tral sensitization in chronic pain patients (Iannetti et al., 2005; Seg-

erdahl et al., 2018; Zambreanu, Wise, Brooks, Iannetti, & Tracey,

2005), whose pain sensitivity is increased. Conversely, SCZ patients,

whose pain sensitivity was decreased, showed attenuated RSFC of

PAG to similar brain regions. Our observation was also supported by

Potvin's finding, which DNIC significantly reduced pain perception in

both SCZ and HC, but such reduction was more evident in HC than in

SCZ (at the end of curve [80–120 s] in figure 1 in Potvin et al. (2008).

Since DNIC involves an endogenous modulation mechanism triggered

by nociceptive stimuli (Potvin et al., 2008), pain insensitivity in SCZ

could not be due to the enhanced functioning of endogenous inhibi-

tory systems. On the contrary, as the pain sensitivity is diminished in
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SCZ, there is no need for descending inhibitory system to modulate

pain. As a longitudinal consequence, the function of the descending

pain modulation pathway in SCZ could be degenerated according to

the theory of use and disuse.

4.2 | Abnormalities across sensory modalities in
SCZ patients

In addition to pain insensitivity, dysfunction of sensory information

processing across modalities was also observed in SCZ patients: the

early part of brain responses (i.e., N2 amplitude) to non-nociceptive

somatosensory and auditory stimuli was significantly smaller in SCZ

than HC (Table 2; Figures 2 and 3). Similar to LEP responses, vertex

potentials elicited by intense stimuli belonging to different sensory

modalities (Mouraux & Iannetti, 2009) largely reflect saliency-related

neural processes possibly related to the detection of relevant changes

in the sensory environment (Downar, Crawley, Mikulis, & Davis, 2002).

Considering that N2 wave is mainly generated from the insula that is an

interoceptive integration brain structure playing a crucial role in the

salience network, as it conveys multisensory information about internal

body state and external surrounding environment (Craig, 2009), previ-

ous studies suggested that dysfunction of sensory information

processing across modalities in SCZ patients could represent an epiphe-

nomenon of salience network dysfunctions (Alustiza et al., 2018; Liddle

et al., 2016; Minichino et al., 2016; Palaniyappan & Liddle, 2012; Potvin

et al., 2008; Smucny, Wylie, Kronberg, Legget, & Tregellas, 2017). The

salience network is involved in detecting and filtering salient stimuli

and functions to segregate the most prominent information among

internal and external stimuli in order to guide behavior (Legrain,

Iannetti, Plaghki, & Mouraux, 2011; Mouraux, Diukova, Lee, Wise, &

Iannetti, 2011). In accordance with this notion, the salience network

dysfunction in SCZ patients would result in reduced ability to distin-

guish self-initiated neural activity from neural activity evoked by exter-

nal stimuli, which contributes to the dysfunction of sensory information

processing across modalities and some psychotic symptoms, for exam-

ple, hallucination (Palaniyappan & Liddle, 2012). Notably, we are aware

that the majority of LEP responses are nonspecific to pain. However,

they can still provide important information related to the state of the

afferent nociceptive system, and be potentially useful to better under-

stand the neural mechanisms of pain modulation through well-designed

control or longitudinal studies in clinical settings (Mouraux & Iannetti,

2018). For example, LEPs can help document the deficit of the nocicep-

tive system (e.g., lesions in the spinothalamic tract), and thus are rec-

ommended as a diagnostic tool to distinguish patients with

hyperalgesia or neuropathic pain from healthy populations (Treede,

Lorenz, & Baumgartner, 2003).

Importantly, we observed that the magnitudes of prestimulus

alpha oscillations were significantly larger in SCZ than HC (Table S1;

Figure S2, right panel; Figure S3), which could also be associated with

the dysfunction of sensory information processing across modalities.

Noted that such brain oscillations reflect the discharging capacity of

action potentials in thalamocortical relay neurons from tonic to burst

modes depended on the neuronal membrane potentials (Llinas &

Jahnsen, 1982). These state-dependent oscillatory activities could

characterize wakefulness/sleep, perceptual, and cognitive states

(Buzsaki, Logothetis, & Singer, 2013; Freeman, 2006; Llinas, Urbano,

Leznik, Ramirez, & van Marle, 2005) in an evolutionarily preserved

way. Thus, our observation that the increased magnitudes of pre-

stimulus alpha oscillations suggested an abnormal mental state at

baseline in SCZ, even though such state-dependent alpha oscillations

could also be modulated by other factors, for example, level of vigi-

lance, conscious awareness, and endogenous shifts of spatial attention

(Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, & Palva, 2004;

Mathewson, Gratton, Fabiani, Beck, & Ro, 2009; May et al., 2012). In

fact, emerging evidence that altered brain oscillations in neurological

diseases (e.g., Parkinson's disease and chronic pain) (Llinas, Ribary,

Jeanmonod, Kronberg, & Mitra, 1999; Walton, Dubois, & Llinas, 2010)

and neuropsychiatry disorders (e.g., depression and SCZ) (Schulman

et al., 2011; Vanneste, Song, & De Ridder, 2018) has given rise to a

postulated model known as thalamocortical dysrhythmia (TCD) (Llinas

et al., 1999; Llinas et al., 2005; Vanneste et al., 2018). The major point

behind the TCD model is that the generation of these intrinsic abnor-

mal low-frequency oscillations in the thalamocortical network could

interrupt the original state-dependent information flow between thal-

amus and cerebral cortex (Vanneste et al., 2018). In other words,

these low-frequency brain activities could serve as a trigger for the

dysfunction of thalamocortical system, in which intrinsic neuronal

properties form the substrate of illness-related pathophysiology

(Behrendt, 2006; Schulman et al., 2011). Specifically, the persistent

thalamic neuronal hyperpolarization induced by the activation of low-

threshold (Cav3, T-type) Ca++ channel and followed by the low-

frequency resonant recurrent interaction between thalamic and corti-

cal neurons disrupted the normal function of thalamocortical circuit

(Llinas, Ribary, Contreras, & Pedroarena, 1998). Notably, such hyper-

polarization could occur by blocking the N-methyl-D-aspartic acid

receptors (NMDAr) in reticular thalamus and lead to the generation of

low-frequency brain oscillations, which is consistent with the major

theories about the neuropathology of SCZ, including NMDAr

hypofunction (Lindsley et al., 2006; Singh & Singh, 2011; Snyder &

Gao, 2013), dopamine hyperfunction (Howes & Kapur, 2009; Lodge &

Grace, 2011), and GABAergic neuronal inhibition (Gonzalez-Burgos &

Lewis, 2008; Gordon, 2010). Based on the above understandings of

the intrinsic oscillatory properties of thalamic neurons and the bio-

chemical effects of neurotransmitter system on the thalamocortical

circuit, our results that the magnitude of prestimulus alpha oscillations

was significantly larger in SCZ than HC suggested a different explana-

tion: the abnormal sensory information processing across modalities

in SCZ is related to the abnormal recurrent neuronal activity

evidenced by the thalamocortical dysrhythmia.

4.3 | Limitations and future directions

There are several limitations of our study. First, as all patients were

receiving antipsychotic medication, we cannot exclude drug effects
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on pain sensitivity. Previous studies provided evidence showing that

pain insensitivity in SCZ was independent of antipsychotic effects:

(1) pain insensitivity in SCZ patients was reported before the introduc-

tion of antipsychotics (Hall & Stride, 1954; Marchand et al., 1959);

(2) pain sensitivity was similarly reduced in both antipsychotic-free

and medicated patients (Potvin et al., 2008; Stubbs, Vancampfort,

et al., 2015); (3) diminished pain sensitivity was observed in first-

degree relatives of SCZ patients (Hooley & Delgado, 2001). Neverthe-

less, these studies are rare and the antipsychotic effects on sensory

perception are frequently addressed by pharmacologist (Catalani

et al., 2014; Schreiber, Getslev, Backer, Weizman, & Pick, 1999). Thus,

further studies on unmedicated patients are needed. Second, the small

number of subjects (particularly the potential impact of patients' het-

erogeneity due to small sample size) limited the reliability and external

validity of our findings. To testify the reliability of our results, we cal-

culated values of Cohen's d for all statistical tests and further per-

formed a post hoc test on the effectiveness of sample size. We

obtained a large effect size of the detected group difference

(Appelbaum et al., 2018; Cohen, 1992), and confirmed the

sufficiency of our sample size (n = 42) with a large statistical power in

the EEG experiment (1 − β = .99, determined by a large effect size of

η2p = 0.1339 or 1− β = .82, determined by a large effect size of

Cohen's d = 0.8 at the significance level of 0.05). Moreover, the fMRI

results verify the findings of EEG experiment, thus increasing the reli-

ability of our findings from different aspects. Admittedly, our findings

still need to be replicated in a large and independent sample. Third, it

is still unclear whether pain sensitivity varies with the development of

the disease (i.e., acute, remission, chronic). To address this issue, our

findings ought to be tested in prodromal-phase or first-episode

patients in a longitudinal study, especially considering the tremendous

differences of pain sensitivity across individuals (Hu & Iannetti, 2019).

Forth, we did not detect the relationship between clinical symptoms

(illness severity, positive or negative symptom, and cognitive impair-

ments, etc.) and the dysfunction of pain processing due to the small

sample size. Future studies could investigate the possible effects of

these factors on pain perception in a multifactorial model, as the typi-

cal psychotic symptoms could be potential contributors to pain insen-

sitivity in SCZ. Last but not the least, subsequent studies involving

comparison of pain sensitivity between patients with SCZ versus

other psychosis (e.g., major depressive disorder, bipolar disorder) are

needed in the future to establish the specificity of this phenomenon

in psychosis spectrum. After all the above-mentioned issues have

been clarified, our findings could be of great significance as neural

index coded pain insensitivity could be used as a promising and

intriguing trait marker for the diagnosis of SCZ in the future

(Minichino et al., 2016).

5 | CONCLUSIONS

Beyond a general dysfunction of cortical sensory information

processing across modalities, the pain insensitivity in SCZ also relied

on a specific deficit of ascending and descending pathways

modulating nociceptive information processing. Our findings provide

insights into the neural mechanisms of pain insensitivity in SCZ and

highlight a need for systematic assessments of their pain-related

diseases.
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