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1. Introduction

The cardiovascular system keeps blood in continuous motion around the body ensuring that adequate cellular 
oxygen and nutrient requirements are met at any given time. The system must be able to adapt to acute changes 
in the body’s physiology such as sleep, postural changes and exercise (Dampney et al 2002). Analysis of the blood 
pressure (BP) signal, which is an approximately periodic waveform, allows quantification of the state of the 
cardiovascular system.

In humans, continuous blood pressure waveform measurements can be collected using an indwelling arterial 
catheter while fully implanted radiotelemetry devices are capable of remotely collecting blood pressure wave-
form data from conscious, freely moving research animals (Sand et al 2015). Non-invasive monitoring technolo-
gies also exist (Li et al 2016). In all cases, sampling frequencies can be high (typically 250–1000 Hz or higher) and 
data collection can take place over long time periods (days to weeks). However, these time series are often irregu-
lar, strongly non-stationary and noisy. The classic problem, having collected a large quantity of data, is to derive 
useful information from it. As Sydney Brenner, a Nobel prize winner, said: ‘We are drowning in a sea of data and 
starving for knowledge’ (Brenner 2003).

A simple analysis of the data consists of filtering (to remove obvious artefacts), averaging and time-binning 
and is often presented as discontinuous blocks averaged over a finite period of time. Typically measures such as 
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Abstract
Advances in monitoring technology allow blood pressure waveforms to be collected at sampling 
frequencies of 250–1000 Hz for long time periods. However, much of the raw data are under-
analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted 
and analysed, have been extensively studied. However, this approach discards the majority of the 
raw data. Objective: Our aim is to detect changes in the shape of the waveform in long streams of 
blood pressure data. Approach: Our approach involves extracting key features from large complex 
data sets by generating a reconstructed attractor in a three-dimensional phase space using delay 
coordinates from a window of the entire raw waveform data. The naturally occurring baseline 
variation is removed by projecting the attractor onto a plane from which new quantitative measures 
are obtained. The time window is moved through the data to give a collection of signals which 
relate to various aspects of the waveform shape. Main results: This approach enables visualisation 
and quantification of changes in the waveform shape and has been applied to blood pressure data 
collected from conscious unrestrained mice and to human blood pressure data. The interpretation 
of the attractor measures is aided by the analysis of simple artificial waveforms. Significance: We have 
developed and analysed a new method for analysing blood pressure data that uses all of the waveform 
data and hence can detect changes in the waveform shape that HRV methods cannot, which is 
confirmed with an example, and hence our method goes ‘beyond HRV’.

PAPER
2018

Original content from 
this work may be used 
under the terms of the 
Creative Commons 
Attribution 3.0 licence.

Any further distribution 
of this work must 
maintain attribution 
to the author(s) and the 
title of the work, journal 
citation and DOI.

RECEIVED  
14 July 2017

REVISED  

15 November 2017

ACCEPTED FOR PUBLICATION  

19 January 2018

PUBLISHED   
1 March 2018

OPEN ACCESS

https://doi.org/10.1088/1361-6579/aaa93dPhysiol. Meas. 39 (2018) 024001 (32pp)

publisher-id
doi
mailto:P.Aston@surrey.ac.uk
https://doi.org/10.1088/1361-6579/aaa93d
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/aaa93d&domain=pdf&date_stamp=2018-03-01
https://doi.org/10.1088/1361-6579/aaa93d


2

P J Aston et al

the maximum, minimum, mean (systolic, diastolic and mean arterial pressure), peak to peak amplitude (pulse 
pressure) and rate (heart rate) are reported, but this ignores much of the raw waveform data. Alternatively, the 
data may be analysed in the time domain, transformed into the frequency domain, or analysed using various 
nonlinear approaches which are often derived from the theory of nonlinear dynamical systems (O’Rourke 2009, 
Voss et al 2009). However these approaches do not have wide clinical uptake, possibly because they require some 
degree of data post-processing and/or because the clinical interpretation of the analysis is not always clear. This 
extra burden is not appropriate for the clinical setting.

A common approach to the analysis of time series data is to transform it into the frequency domain using an 
FFT. This gives information on the various frequencies that are contained in the waveform data, but provides no 
information about changes occurring in the data at a point in time. Alternatively, a short time Fourier transform 
can be used on a moving window of data which provides information on changes in frequency at various times, 
but non-stationarity of the data compromises the frequency resolution (Acharya et al 2006).

Methods to obtain a better understanding of the information captured within cardiovascular waveforms 
have been investigated for a number of decades. Whilst a number of approaches have been taken to quantify and 
interpret the variability of cardiovascular signals, the associated physiological relevance of these measures has 
been the subject of much debate and there is still disagreement around this (Parati et al 2006). Much attention 
in this area has focussed on heart rate variability (HRV) which considers variability in the beat-to-beat inter-
vals, which are influenced by both the sympathetic and parasympathetic nervous systems, as well as many other 
factors (Karim et al 2011). This variability was first identified by Hon and Lee in 1963 (Hon and Lee 1963) as a 
physiological biomarker that can predict foetal distress. It is well established that subtle changes in cardiovascular 
physiology, as measured by HRV, correlate with many physiological conditions including myocardial infarction, 
cardiac arrhythmias and renal failure (Acharya et al 2006, Karim et al 2011) and have been proposed as early clini-
cal markers in sepsis and post-stroke infections (Hon and Lee 1963, Pontet et al 2003, Günther et al 2012).

From a mathematical perspective, it has long been debated as to whether the heart rate is chaotic or not. In 
2009, the journal Chaos addressed the question ‘Is the normal heart rate chaotic?’ (Glass 2009). The contributed 
papers used a variety of methods to address this issue, ranging from deterministic to stochastic. Responses to the 
question posed include that ‘normal heartbeat series are nonchaotic, nonlinear, and multifractal’ (Baillie et al 
2009), ‘such a task is actually a difficult problem in the case of heart rates’ (Freitas et al 2009) and ‘HRV data are 
mostly stochastic’ (Hu et al 2009).

A Web of Science search for articles on ‘heart rate variability’ or ‘HRV’ gives over 26 000 results, with 
many thousands in recent years. However, a recent report in 2015 (Sassi et al 2015) concluded that ‘The novel 
approaches to HRV analysis . . . [have] contributed in the technical understanding of the signal character of NN 
sequences. On the other hand, their success in developing new clinical tools, such as those for the identification of 
high-risk patients, has been so far rather limited’ (p 1349). Moreover, the physiological interpretation of the data 
is often complex and controversy exists regarding the meaning of HRV measures (Billman 2013).

The first step for all HRV analysis is the extraction of beat-to-beat intervals from an ECG or blood pressure 
signal. There are many available methods for doing this and it has also been recommended that ‘manual editing 
of the RR data should be performed to a very high standard’ (Cam et al 1996, p 364), although the large amount 
of data currently collected makes this impractical. The vast array of HRV methods then analyse this reduced 
time series in a wide variety of different ways. However, in extracting the beat-to-beat intervals, the majority of 
the data that makes up the entire waveform has already been discarded before the start of any analysis. For both 
ECG and blood pressure signals, various features of the signal have been characterised. These include the PQRST 
points and various intervals of the ECG waveform or the systolic, mean and diastolic pressures, the augmentation 
index and the position and morphology of the dichrotic notch and wave reflections on a blood pressure wave-
form. Subtle changes in the waveform shape can occur in response to normal activity, drug effects or changes in 
the underlying pathophysiology (O’Rourke 1995) and more information could be gleaned from the signal by 
detecting such changes in addition to variability in the heart rate.

HRV methods have been thoroughly explored for decades. Given the technological advances in monitoring 
systems, we consider that it is time to move beyond HRV and to develop a new generation of methods of analysis 
of physiological data that analyse all of the data contained within a particular waveform, not just interval lengths. 
Our approach is to use attractor reconstruction (using the entire data) to represent the data in a bounded phase 
space, such that changes in particular features of the waveform can be associated with specific changes in the 
reconstructed attractor. Clearly, this approach has the potential for extracting much more diagnostic informa-
tion from the waveform data that is already routinely collected than is possible from an HRV analysis. Further, 
by using all of the data contained within any particular waveform, there is little requirement for a scientist/
clinician to manipulate or process the data which limits the introduction of bias in preclinical and clinical data 
interpretation.

Attractor reconstruction using delay coordinates was first proposed by Takens (1981) and has since been 
applied to many types of experimental data including blood pressure data (Narayana Dutt and Krishnan 1999), 
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plethysmographic signals (Deloya Vélez et al 2014), respiration (Small et al 1999) and EEG time series (Wang et al 
2010), to name but a few. The advantage of this approach is that a biological signal that is typically visualised as 
stretched out along the time axis can be represented in a bounded reconstructed phase space. From the recon-
structed attractor, various dynamic invariants can be estimated, such as the largest Lyapunov exponent, correla-
tion dimension or entropy (Acharya et al 2006, Wang et al 2010, Deloya Vélez et al 2014). Attractor reconstruc-
tion is one of the methods used for HRV analysis but, in this context, it is applied to the reduced RR interval data 
(Acharya et al 2006). In contrast, our approach is to use attractor reconstruction using all of the waveform data. 
By doing so, we are able to limit the introduction of inadvertent bias and to represent the gradients and contours 
of the waveform in a manner which allows us to extract extra information from the input signal. This may pro-
vide a deeper understanding of physiological or pathological changes within the cardiovascular system that may 
be missed when focussing on maxima, minima and interval data alone.

In section 2, we describe the four steps of our attractor reconstruction method. We start with a quick over-
view of the steps and then consider each of them in more detail. In section 3, we analyse some artificial periodic 
signals composed of piecewise polynomials in order to identify the link between some features of a typical blood 
pressure signal and properties of our attractor in the reconstructed phase space. Section 4 describes some proper-
ties of the attractor that we monitor as a time window moves through the data, while in section 5 we apply our 
approach to some mouse blood pressure data and show that our method is able to detect changes that HRV does 
not. We consider more artificial signals in section 6 which have fixed cycle length, and hence no variability in heart 
rate, and show that variability in the upstroke results in a different attractor from variability in the downstroke. 
Section 7 contains a brief description of the method applied to other types of physiological signals, including 
human blood pressure data, which is followed in section 8 by a discussion of this new method, some conclusions 
and a summary detailing the association between the attractor features and their physiological meaning. All the 
proofs of the various results stated in the paper are presented in the appendix.

2. Attractor reconstruction method

Our aim is to extract diagnostic information from blood pressure data with high sampling frequency, utilising 
the numerical waveform data in its entirety. We first give an overview of our method and then review each of the 
steps in more detail.

2.1. Overview
Our attractor reconstruction method consists of four fundamental steps, which we now summarise.

 1. Reconstruct an attractor using delay coordinates
  The first step is to reconstruct an attractor using Takens’ delay coordinates (Takens 1981) for data in a 

given time window. We choose the embedding dimension to be n  =  3 and the time delay τ to be one third 
of the average cycle length of the data in the time window. The reason for these choices is discussed in 
sections 2.2 and 2.4.

  With an embedding dimension of n  =  3, if the signal is x(t) then we define the two new variables

y(t) = x(t − τ), z(t) = x(t − 2τ) (1)

  for a fixed time delay τ > 0 (see figure 1). We can then plot the data in the reconstructed phase space as 
(x(t), y(t), z(t)) for all t in the given time window.

 2. Remove baseline variation
  We note that the variables in our reconstructed attractor are all derived from the one signal x(t). If we 

shift the signal up or down by a constant amount, so that x(t) → x(t) + c  for some c ∈ R, then this 
implies that y(t) → y(t) + c and z(t) → z(t) + c  also. In the phase space, the shift in our signal x(t) 
implies that (x(t), y(t), z(t)) → (x(t) + c, y(t) + c, z(t) + c) = (x(t), y(t), z(t)) + c(1, 1, 1) which 
corresponds to a shift in the reconstructed phase space in the direction of the vector (1, 1, 1). To eliminate 
the effect of a constant vertical translation, we project our three-dimensional attractor onto a plane that is 
perpendicular to the vector (1, 1, 1). Thus, we define the new variables

u =
1

3
(x + y + z), v =

1√
6
(x + y − 2z), w =

1√
2
(x − y). (2)

  It is easily verified that a constant vertical shift in the signal x(t) implies that u(t) → u(t) + c  but that 
the coordinates v and w are invariant. Thus, projecting the attractor onto the (v, w) plane has the effect of 
removing such vertical translations.
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 3. Construct a density
  One of the problems of an attractor plotted in phase space is that it can become a blur of lines with little 

detail visible. In order to avoid this, we derive a density from our reconstructed attractor that has been 
projected onto the (v, w) plane. The density provides more information regarding the attractor since it 
can distinguish between high density regions which are visited frequently, and low density regions which 
indicate infrequent variations.

 4. Generate time traces of attractor measures
  For the fourth and final step of our approach, we extract a quantity of interest from the density in the 

(v, w) plane that has been derived using a given time window of data. As a simple example, we could 
determine the maximum value of the density. Repeating this process as the time window is moved 
through the data gives a time trace of the maximum density.

  The purpose of this approach is to use a collection of these time traces that have been obtained from 
various features of the density in order to provide diagnostic information regarding the signal.

We now review each of these steps in detail together with an example to illustrate the method. The data that 
we use is a single stream of blood pressure data sampled at 1000 Hz that has been collected from a healthy, con-
scious mouse using an implanted radiotelemetry device. More details of the data collection are given in section 5.

2.2. Attractor reconstruction using delay coordinates
When blood pressure data are viewed over long time intervals all that can be readily observed is the general 
pattern of the rise and fall of the average blood pressure and some indication of changes in the pulse pressure 
(amplitude), but little else. However, there is great variety within this signal as there are many factors that 
influence the blood pressure in a conscious animal, including the sympathetic and parasympathetic nervous 
systems, respiratory system and motor activity (Karim et al 2011). A full mathematical model of blood pressure 
that incorporated all of these factors would be very complicated and high-dimensional.

When (numerically) solving a system of nonlinear differential equations, the solutions can be plotted as a 
function of time, but it is often not possible to see any structure in the solutions in this way. A more useful repre-
sentation is to plot the trajectory in the phase space as the attractor is then contained in a bounded region. Even 
for chaotic systems, such as the Lorenz equations, some structure can be seen in the attractor when it is plotted in 
the phase space (Sparrow 1982).

When working with experimental data, a plot of the trajectory in the phase space would require each of the 
variables in the model equations to be measured. In most cases, measuring all such quantities is simply not pos-
sible. In many other cases, there are no model equations and so it is not even clear what should be measured. A 
commonly occurring situation is that a single quantity, such as blood pressure, is measured experimentally over 
a given time period. With only a single signal, it would seem that there is not enough information available to 
generate a plot of the trajectory in a phase space.

In 1981, Takens (1981) considered this problem of deriving information regarding a dynamical system from 
a single continuous observed variable. He showed that an attractor can be reconstructed in an n-dimensional 
‘phase space’ from a single signal x(t) by using a vector of delay coordinates

[x(t), x(t − τ), x(t − 2τ), . . . , x(t − (n − 1)τ)]

where τ > 0 is a fixed delay and n � 2 is the embedding dimension. This method has since been widely used to 
reconstruct chaotic attractors, including the familiar Lorenz attractor (Pecora et al 2007). It can be seen that the 
reconstructed attractor is qualitatively similar to the original (Abarbanel et al 1993).

While Takens’ theorem considers a C2 measurement function of the flow of a vector field, his approach has 
also been applied in many circumstances to a single stream of experimental data. If the data are obtained by 
sampling an underlying C2 function, then working with the data is essentially a discretised version of Takens’ 
approach. Of course much experimental data is subject to noise, in which case Takens’ method strictly does not 
apply. However, it is often applied where there is a certain amount of noise and generally works well provided that 
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Figure 1. A small sample (1 s) of blood pressure data from a healthy conscious mouse. If the blue dot is x(t*) for some time point t*, 
then the red dot is y(t∗) = x(t∗ − τ) and the green dot is z(t∗) = x(t∗ − 2τ).
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the noise is sufficiently small. Takens’ method has been applied to many types of experimental data including 
the analysis of blood pressure data (Narayana Dutt and Krishnan 1999), plethysmographic signals (Deloya Vélez 
et al 2014), respiration (Small et al 1999) and EEG time series (Wang et al 2010), to name but a few.

From a practical point of view, the two key choices to be made when using Takens’ delay coordinates to 
reconstruct an attractor are (i) the choice of the embedding dimension n, and (ii) the value of the time delay τ to 
be used. With regard to the embedding dimension, Takens showed that for an m-dimensional manifold, 2m  +  1 
delay coordinates are sufficient to give a diffeomorphic reconstruction, although a lower embedding dimension 
also works in many cases. As discussed previously, the dimension of the model or of the attractor is generally not 
known, and so this theoretically interesting result is of little practical assistance. Various methods have been pro-
posed for determining a minimum dimension for the reconstructed attractor including a singular value analysis 
and the method of false nearest neighbours (Kennel et al 1992, Abarbanel et al 1993, Kennel and Abarbanel 2002).

The other variable to be chosen is the time delay τ. Theoretically, there are no restrictions on τ (except 
that it should be positive). If τ is very small, then there will be only a small difference between the variables, 
and so the trajectory will always lie close to the axis in the phase space given by x1 = x2 = . . . = xn, where 
xi(t) = x(t − (i − 1)τ), i = 1, . . . , n. On the other hand, if τ is chosen to be very large, then there may be little 
correlation between each of the variables. So τ should be chosen in a middle range, avoiding these two extremes. 
A common method for choosing the value of τ is based on minimising mutual information (Fraser and Swinney 
1986, Abarbanel et al 1993).

A continuity statistic has been proposed as a measure to determine both the optimal time delay and embed-
ding dimension simultaneously (Pecora et al 2007).

When Takens’ method is applied to data, the traditional approach is to find the optimal embedding dimen-
sion and time delay using one of the methods described above, and then to generate the reconstructed attractor 
using these optimal parameters. From this attractor, various dynamic invariants are estimated, such as the largest 
Lyapunov exponent, correlation dimension or entropy (Acharya et al 2006, Wang et al 2010, Deloya Vélez et al 
2014).

The motivation for Takens’ method was to reconstruct a faithful attractor in phase space. Our aim is funda-
mentally different from this and so we do not use the standard methods for choosing the embedding dimension 
n and time delay τ. Our aim is to use properties of a reconstructed attractor to provide information regarding key 
features of the data, so that dynamic changes in the data can be detected from dynamic changes in the attractor. 
To keep the method as simple as possible, and to be able to easily visualise the reconstructed attractor, we choose 
an embedding dimension of n  =  3. Given a (continuous) signal x(t), two extra variables y(t) and z(t) are defined 
as in (1). We can then plot the data in a given time window in the three-dimensional (x, y, z) phase space.

A ten second sample of blood pressure data from a healthy, conscious mouse is shown in figure 2 (top). The 
attractor in a three-dimensional reconstructed phase space for τ = 30 ms is also shown (middle). The choice of 
the time delay τ will be discussed in section 2.4.

2.3. Removal of baseline variation
When the blood pressure data are viewed over a long time interval, the individual oscillations can no longer be 
distinguished and the only information that is readily observable is the vertical motion of the average blood 
pressure which will vary depending on whether the animal is resting, active, eating, sleeping, etc. It is this natural 
variation, resulting in a non-stationary signal, which makes it difficult to analyse the frequencies using, for 
example, an FFT (Acharya et al 2006).

Many methods have been proposed in the literature for removing baseline variation, particularly from ECG 
signals. These generally consist of either approximating the baseline, which is then subtracted from the signal, or 
of filtering the data to remove the low frequencies. Meyer et al (1977) determined the baseline in an ECG signal 
by using an averaged point in each PR segment and joining up these points using a cubic spline. Adaptive filtering 
was proposed by Laguna et al (1992) to remove baseline wander while Zhang (2005) used a discrete wavelet trans-
form. A more recent method involves solving a constrained convex optimisation problem based on the quadratic 
variation of the signal (Fasano et al 2011). A variety of methods for removing baseline variation from an ECG 
signal was reviewed by Kaur et al (2011) who concluded that IIR zero phase filtering was the best of the methods 
considered. Heart rate variability (HRV) methods consider cycle lengths derived from the signal (Acharya et al 
2006). These intervals are independent of any vertical motion in the signal and so HRV methods also implicitly 
eliminate baseline variation.

We are using blood pressure as our cardiovascular physiological signal. In order to extract information regard-
ing the waveform shape, it is useful to remove baseline variation. However, we do this in a different way from the 
current methods in the literature. We note that the variables in our reconstructed attractor are all derived from 
the one signal x(t). So if we shift the signal up or down by a constant amount, so that x(t) → x(t) + c  for some 
c ∈ R, then this implies that (x(t), y(t), z(t)) → (x(t), y(t), z(t)) + c(1, 1, 1), as shown in section 2.1. This cor-
responds to a shift in our reconstructed phase space in the direction of the vector (1, 1, 1). In order to remove the 
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vertical variation in the signal, we define a new coordinate system which consists of the vector (1, 1, 1) and two 
further vectors that are orthogonal to this one (and to each other). Normalising these vectors gives an orthonor-
mal basis for our three-dimensional phase space. We then project the trajectory in our three-dimensional phase 
space onto the two-dimensional plane orthogonal to the vector (1, 1, 1) and this has the effect of factoring out the 
vertical variation in the signal.

Physiologically, this approach therefore ignores the magnitude of the maxima and minima of the waveform, 
namely the absolute systolic and diastolic pressures. The projection onto the plane factors out the baseline vari-
ation of the signal which ensures that changes over time in the shape and frequency of the waveform can be 
described. This now provides a unique method to exclusively quantify waveform morphology and variability 
changes which previous studies have shown may contain important diagnostic information (O’Rourke et al 
2016).

We define the line through the origin of the phase space in the direction of the vector (1, 1, 1), namely the line 
on which x  =  y  =  z, as the central axis of the phase space. A unit vector in the direction of the central axis is given 
by v1 = (1, 1, 1)T/

√
3. The remaining two basis vectors must be orthogonal to this one and to each other and 

we choose the (unit) vectors v2 = (1, 1,−2)T/
√

6  and v3 = (1,−1, 0)T/
√

2 . Thus, the matrix M which has col-
umns v1, v2 and v3 is an orthogonal matrix. If we have coordinates (u, v, w) with respect to the new basis vectors, 
then the old and new coordinates are related by
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Figure 2. Top: A 10 s sample of blood pressure data from a healthy, conscious mouse. Middle: A trajectory in the three-dimensional 
reconstructed phase space using τ = 30 ms. Bottom left: A projection of the trajectory onto the plane orthogonal to the x  =  y  =  z 
axis. Bottom right: The trajectory turned into a density. Bottom images © 2014 IEEE. Reprinted, with permission, from Aston et al 
(2014). CC BY 2.5.
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


x

y

z


 = uv1 + vv2 + wv3

or equivalently

x = Mu

where x = (x, y, z)T  and u = (u, v, w)T. Thus, the new coordinates are defined by

u = MT x

since M is an orthogonal matrix, or equivalently

u = vT
1 x =

1√
3
(x + y + z)

v = vT
2 x =

1√
6
(x + y − 2z)

w = vT
3 x =

1√
2
(x − y).

From this, we see that u is almost the mean of the three original variables x, y and z. It is more natural to redefine 
u to be the mean, and so we will work with the three variables u, v and w that we defined earlier in (2). It follows 
from these definitions that

x = u +
1√
6

v +
1√
2

w (3)

and so these new variables can also be considered as a decomposition of the original signal into three component 
parts.

It is easily verified that if x(t) → x(t) + c  for some c ∈ R, then (u(t), v(t), w(t)) → (u(t) + c, v(t), w(t)). 
Thus the new variable u(t) captures the vertical motion of the blood pressure signal, but the other two variables 
v(t) and w(t) are not affected by this motion, and so can be used to derive other information from the signal. This 
is illustrated in figure 3 for the window of data shown in figure 2 (top). The variable u (figure 3 (top)) has clearly 
picked up the trend in the data with little oscillation while v and w (figure 3 (middle, bottom)) show no sign of the 
baseline variation and appear to have approximately zero mean.

Clearly the new variables v and w are the coordinates of a point in the three-dimensional phase space pro-
jected onto the plane orthogonal to the central axis x  =  y  =  z. The trajectory in the three-dimensional phase 
space in figure 2 (middle) projected onto this plane is shown in figure 2 (bottom left), from which it can be seen 
that all the variability in the three-dimensional attractor in the direction of the central axis has been removed.

Using the definition of u given in (2), we also see that there is a close relationship between the means of x and u 
over a given time period. We define the mean of the function x(t) over the time interval [t∗, t∗ + L]  by

x̄ =
1

L

∫ t∗+L

t∗
x(t) dt.

We then have the following result.

Lemma 2.1. If x(t) is a continuous function on the interval I = [t∗ − 2τ , t∗ + L] then

|ū − x̄| � (M − m)
(τ

L

)
, |v̄| � 5√

6
(M − m)

(τ
L

)
, |w̄| � 1√

2
(M − m)

(τ
L

)

where

M = max
t∈I

x(t), m = min
t∈I

x(t)

A similar result also holds if the mean of the continuous functions is replaced by the mean of discrete data 
points. We note from the proof (given in the appendix) that this result could also be expressed in terms of the 
maxima and minima of x(t) over the two much smaller intervals [t∗ − 2τ , t∗] and [t∗ + L − 2τ , t∗ + L].

It follows from this result that if the time delay is small compared to the window length (τ � L), then the 
means of x and u are very similar and the variables v and w have mean which is very close to zero.

The basis of the analysis above consisted of removing constant translations in the vertical direction. Baseline 
variation for a physiological signal, on the other hand, does not consist of a vertical translation. However, by 

Physiol. Meas. 39 (2018) 024001 (32pp)



8

P J Aston et al

considering a Fourier transform of the new variables, we can see that the variable u retains the low frequency 
component of the signal, which is reduced in the v and w variables.

2.3.1. Fourier transforms
We now consider the Fourier transforms of the variables u, v and w, and consider how these relate to the Fourier 
transform of the signal x. We recall that if s ∈ L1(R), then the Fourier transform is defined by

ŝ(ξ) = F [s(t)] =

∫ ∞

−∞
s(t)e−2πiξt dt.

Of course our physiological signal is not defined for all t ∈ R  (and if it was, it would not be in L1(R)) and so we 
consider only the signal in a finite window. If x(t) is our continuous blood pressure signal, then we define

X(t) = x(t)rL(t − t0)

where rL(t) is a rectangular window function of height one centred on t  =  0 and of width L. Thus, X(t) is given 
by the signal for t ∈ [t0 − L/2, t0 + L/2] and zero elsewhere. Since x(t) is continuous, then X(t) is a piecewise 
continuous function with two finite discontinuities and compact support and so the Fourier transform exists 
(Bracewell 2000). The convolution theorem for the Fourier transform (Pinsky 2002) implies that

X̂(ξ) = x̂(ξ)r̂L(ξ)

where ̂rL(ξ), the Fourier transform of the rectangular window function, is a sinc function (Smith 1997). Thus, 
taking a finite window of data results in an initial filtering of the spectrum. However, we are interested in the 
spectrum of the new variables u, v and w, derived from the finite data segment X(t), in relation to the Fourier 

transform X̂(ξ) of X(t).

Theorem 2.2. The Fourier transforms of the variables u, v and w are given by

û(ξ) =
1

3

(
1 + e−2πiξτ + e−4πiξτ

)
X̂(ξ)

=
1

3
(1 + 2 cos(2πξτ))e−2πiξτ X̂(ξ)

 
(4)

v̂(ξ) =
1√
6

(
1 + e−2πiξτ − 2e−4πiξτ

)
X̂(ξ) (5)

ŵ(ξ) =
1√
2

(
1 − e−2πiξτ

)
X̂(ξ) (6)

10 10.02 10.04 10.06 10.08 10.1 10.12 10.14 10.16

100

150

200

Time (min)
u

10 10.02 10.04 10.06 10.08 10.1 10.12 10.14 10.16
−50

0

50

Time (min)

v

10 10.02 10.04 10.06 10.08 10.1 10.12 10.14 10.16
−50

0

50

Time (min)

w

Figure 3. Trajectories derived from the blood pressure data shown in figure 2 (top). Plots are shown for the variables u (top), v 
(middle) and w (bottom).

Physiol. Meas. 39 (2018) 024001 (32pp)



9

P J Aston et al

Taking the Fourier transform of (3) and using linearity implies that

X̂(ξ) = û(ξ) +
1√
6

v̂(ξ) +
1√
2

ŵ(ξ) (7)

and so the Fourier transforms of u, v and w also provide a decomposition of the Fourier transform of X. It is easily 
seen that the Fourier transforms given in (4)–(6) satisfy (7).

Taking the modulus squared of (4)–(6) gives

|û(ξ)|2 = 1

9
|1 + 2 cos(2πξτ)|2 |X̂(ξ)|2

 (8)

|v̂(ξ)|2 = 1

3
(5 + 4 cos(2πξτ))(1 − cos(2πξτ))|X̂(ξ)|2 (9)

|ŵ(ξ)|2 = (1 − cos(2πξτ))|X̂(ξ)|2. (10)

From (8)–(10), we can see that u, v and w have the effect of filtering the power spectrum |X̂(ξ)|2 of X. The three 
frequency response functions are given by

fu(ξτ) =
1

9
|1 + 2 cos(2πξτ)|2

fv(ξτ) =
1

3
(5 + 4 cos(2πξτ))(1 − cos(2πξτ))

fw(ξτ) = 1 − cos(2πξτ)

and are shown in figure 4.

Since fu(0)  =  1, clearly u retains the lowest frequencies from X and so includes the low frequency baseline 
variation. However, fv(0) = fw(0) = 0 (and f ′v (0) = f ′w(0) = 0) and so these lowest frequencies have been fil-
tered out from v and w, as we expect.

If the signal is approximately periodic with average cycle length T, then the power spectrum will have peaks 
close to ξ = k/T , k = 0, 1, 2, . . . In section 2.4, we choose τ to be either one third or two thirds of the average 
cycle length. If we choose τ = T/3, then ξτ = k/3. We note that fu(ξτ) = 0 for ξτ = n/3, 2n/3, n = 1, 2, . . . 

Figure 4. The frequency response functions fu (top left), fv (top right) and fw (bottom).
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(which can also be seen from figure 4 (top left)) and so fu filters out many, but not all, of the periodic components 
in the signal in this case. However, fv and fw clearly amplify these peaks and so contain more of the dominant peri-
odic component of the signal. Similar results hold when τ = 2T/3.

Clearly these results are for the power spectrum of the continuous signal. However, data sampled at (equally 
spaced) time points in a time window can be analysed using a discrete Fourier transform (DFT), and similar 
results also apply.

This can be seen in figure 3 (top) where τ was chosen as one third of the average cycle length and we see that 
u essentially picks up the baseline variation in the signal with a small amplitude higher frequency superimposed 
oscillation, whereas v and w have very little baseline variation and are much closer to periodicity than the original 
signal (see figure 3 (middle, bottom)).

2.4. Choice of the time delay
To motivate our choice of the time delay parameter τ > 0, we consider a sine wave with period 1 given by

x(t) = a +
h

2
(1 + sin(2πt))

which is shown in figure 5.
For a periodic signal with period T, we note that if τ = 0 or τ = T  then x(t) = y(t) = z(t) and so the orbit 

simply moves up and down the central axis, which corresponds to the point at the origin of the (v, w) plane. Thus, 
we make the natural assumption that τ ∈ (0, T). We also note that if x is periodic, then the orbit in the three-
dimensional (x, y, z) phase space as well as the orbit in the two-dimensional projection (v, w) must be a closed 
curve. The shape of this closed orbit for varying values of τ is shown as an animation (see supplementary material 
(stacks.iop.org/PM/39/024001/mmedia)). We now describe some of the changes that are seen in this animation.

For the sine wave, our extra phase space variables y and z are

y(t) = a +
h

2
(1 + sin(2π(t − τ)))

z(t) = a +
h

2
(1 + sin(2π(t − 2τ))).

From the definition of our transformed variables v and w given by (2), we then have

v(t) =
h

2
√

6
[sin(2πt) + sin(2π(t − τ))− 2 sin(2π(t − 2τ))]

=
h

2
√

6
[(1 − cos(2πτ))(4 cos(2πτ) + 3) sin(2πt) + sin(2πτ)(4 cos(2πτ)− 1) cos(2πt)]

w(t) =
h

2
√

2
[sin(2πt)− sin(2π(t − τ))]

=
h

2
√

2
[(1 − cos(2πτ)) sin(2πt) + sin(2πτ) cos(2πt)].

0 1
0

a

a+h

t

x

Figure 5. A sinusoidal signal x(t) = a + (h/2)(1 + sin(2πt)).

Physiol. Meas. 39 (2018) 024001 (32pp)

stacks.iop.org/PM/39/024001/mmedia


11

P J Aston et al

The parameter a in the definition of the periodic signal x represents the vertical position of the signal and 
since our new variables v and w are independent of vertical translations, then they must be independent of the 
parameter a, which is of course the case.

Considering sin(2πt) and cos(2πt) as independent variables, we can write these equations as
(

v

w

)
=

(
a b

c d

)(
sin(2πt)

cos(2πt)

)
 (11)

where

a =
h

2
√

6
(1 − cos(2πτ))(4 cos(2πτ) + 3)

b =
h

2
√

6
sin(2πτ)(4 cos(2πτ)− 1)

c =
h

2
√

2
(1 − cos(2πτ))

d =
h

2
√

2
sin(2πτ).

If ad  −  bc  =  0 then the 2 × 2 matrix is singular and eliminating t from these equations gives

v =
a

c
w (12)

which is always well defined since c �= 0 for all τ ∈ (0, 1). In this case, the closed curve in the (v, w) plane must 
occur along the straight line through the origin given by (12). We note that

ad − bc =
h2

2
√

3
sin(2πτ)(1 − cos(2πτ))

and so ad  −  bc  =  0 when either sin(2πτ) = 0 or cos(2πτ) = 1. The only solution of either of these equations for 
τ ∈ (0, 1) is τ = 1/2. In this case, the closed orbit lies on the line v = −w/

√
3.

Thus, for all τ ∈ (0, 1)\{ 1
2}, we have ad − bc �= 0 and so equation (11) can be solved uniquely for sin(2πt) 

and cos(2πt). Substituting the solution into the trigonometric identity cos2(2πt) + sin2(2πt) = 1 gives the 
quadratic form

(c2 + d2)x2 − 2(ac + bd)xy + (a2 + b2)y2 − (ad − bc)2 = 0.

This equation defines one of the conic sections and it is easily verified that this is generally an ellipse, except in the 
special case when

ac + bd = 0 and c2 + d2 = a2 + b2

in which case the solution is a circle. Expressing these two equations in terms of τ and simplifying gives the same 
equation in both cases, namely

(2 cos(2πτ) + 1)(cos(2πτ)− 1) = 0.

The solutions of this equation with τ ∈ (0, 1) are τ = 1/3, 2/3.
Our approach to choosing the time delay τ is to make the projected attractor in the (v, w) plane ‘as uniform as 

possible’. The reason for this geometric criterion is to make any changes from the uniform case more visible and 
hence easier to detect and quantify. For this simple example, the requirement for the attractor to be as uniform as 
possible suggests that we should choose one of the two τ values that result in a circular orbit in the (v, w) plane, 
namely τ = 1/3 or τ = 2/3.

To complete this example, we note that when τ = 1/3, we have

v(t) =

√
3h

2
√

2
cos

(
5π

6
− 2πt

)
, w(t) =

√
3h

2
√

2
sin

(
5π

6
− 2πt

)

and so the circular orbit in the (v, w) plane has radius r =
√

3h/
(
2
√

2
)
, which is proportional to the wave 

amplitude h, and the motion is uniform in a clockwise direction. When τ = 2/3, the circular orbit has the same 
radius but the motion is uniform in an anticlockwise direction. Moreover, in both cases, u(t) = a + h/2 is 
constant and is the mean of the signal.

Of course, we have so far only considered the most trivial periodic example. We next retain the assumptions 
that the signal x(t) is continuous and has period 1, but make no additional assumptions. In this case, some 
aspects of the above example carry over. In particular the values of τ = 1/3, τ = 1/2 and τ = 2/3 are significant 
in this case also, as is shown in the following result.
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Theorem 2.3. Assume that x(t) is continuous and periodic with period 1.

 (i) If τ = 1/3, then the closed trajectory in the (v, w) plane has Z3 symmetry generated by a rotation of 2π/3 
about the origin and the trajectory goes in a clockwise direction. In addition, u(t) has period 1/3.

 (ii) If τ = 1/2, then the trajectory in the (v, w) plane lies on the line v = −w/
√

3.
 (iii) If τ = 2/3, then the trajectory in the (v, w) plane also has Z3 symmetry generated by a rotation of 2π/3 about 

the origin and is obtained from the trajectory with τ = 1/3 by reflecting it in the v axis (w → −w). The tra-
jectory goes in an anticlockwise direction. In addition, u(t) is the same as for τ = 1/3 and so again has period 
1/3.

We note that the orbit in the (v, w) plane collapses onto a line when τ = 1/2 for any periodic signal. With 
our criterion for choosing τ that the attractor should be as uniform as possible, this is clearly the worst possible 
choice. For τ = 1/3 and τ = 2/3, the sine wave signal gives rise to a circular orbit in the (v, w) plane which has 
arbitrary rotational symmetry as well as a reflectional symmetry (i.e. O(2) symmetry). For a more general peri-
odic signal, the reflectional symmetry is lost and only a Z3 rotational symmetry is retained. However, this rota-
tional symmetry still gives some structure and a degree of uniformity to the orbit, and so the best choices of τ are 
clearly τ = 1/3 or τ = 2/3 for a signal with period one.

Returning to our blood pressure signal, this of course is not strictly periodic, but could be described as 
‘approximately periodic’ due to the cyclic nature of the heartbeats. Thus, for a given time window of data, we 
determine an average cycle length for that window of data and choose τ to be either one third or two thirds of 
that quantity. This will result in an attractor in the (v, w) plane with approximate threefold rotational symmetry. 
We will usually choose the ‘short range’ τ as one third of the average cycle length, which gives the three points 
quite close together. For the ‘long range’ τ of two thirds of the average cycle length, the three points will always be 
sampling from two different cycles since the first and last points are four thirds of the average cycle length apart.

A common approach for finding the dominant frequency in a time series is to use an FFT. However, the blood 
pressure data are a non-stationary time series which often results in poor resolution of the various frequencies 
in the data (Ivanov et al 2004). It can be seen from the FFTs of blood pressure data in Christie et al (2013) that the 
peaks in the frequency spectrum are very broad, which causes problems when trying to accurately estimate the 
dominant frequency.

One standard method of finding an average cycle length from approximately periodic data is autocorrelation 
(Oppenheim 2010). For discrete data y1, . . . , yn, if ȳ is the sample mean then we define

r(T) =
1

n

n∑
i=T+1

(yi−T − ȳ)(yi − ȳ)

which is often normalised by the sample variance r(0). Thus, values of the function

R(T) =
r(T)

r(0)

are evaluated for a range of T values. Clearly R(0) = 1 and so the value of T  >  0 corresponding to the highest 
local maximum is considered to be the average cycle length.

Restricting to the time window t ∈ [t∗, t∗ + L], an alternative approach, which we will use, is to find the aver-
age cycle length T by minimising ‖x(t)− x(t − T)‖ for some appropriate norm, where the norm is evaluated for 
t ∈ [t∗ + T, t∗ + L]. Clearly if x(t) is periodic with period T*, then the norm will be zero for T  =  T* (or any mul-
tiple of T*). The norm is also clearly zero when T  =  0 and increases for increasing T. For approximately periodic 
data, we define the average cycle length to be the value of T  >  0 corresponding to the first local minimum.

In order to remove the scale of the data, and any dependence on the window length, we instead minimise

f (T) =
‖x(t)− x(t − T)‖

‖x̄1‖
=

‖x(t)− x(t − T)‖
x̄‖1‖ (13)

where 1 is a vector with all entries having the value 1, and the same length as the number of data points in the 
window of data, and x̄ > 0 is some fixed estimated value of the mean blood pressure. Having found the average 
cycle length T* by minimising f (T), we then choose our delay parameter to be either τ = T∗/3 or τ = 2T∗/3.

In practice, we work with uniformly sampled data in which case T has to be chosen as a multiple of the 
timestep and the norm is a vector norm of the data in a time window. We also restrict the range of possible T 
values based on a known physiological range of cycle length. For a healthy mouse, the heart rate is typically in the 
range of 450–750 bpm (Starr et al 2014) so we choose a slightly larger range of 400–800 bpm which corresponds 
to a cycle length in the range 75–150 ms.

For the data shown in figure 2 (top), a plot of f (T) is shown in figure 6. This has a minimum of 0.058399 at 
T  =  T*  =  90 ms and so this is the average cycle length that we use. Taking τ = T∗/3 = 30 ms, we then obtain the 
plot in the (v, w) plane shown in figure 2 (bottom left). We note that a cycle length of 90 ms corresponds to 111 

Physiol. Meas. 39 (2018) 024001 (32pp)



13

P J Aston et al

cycles in a 10 s window. The number of peaks in the data in figure 2 (top) is 110 and so we have got an accurate 
estimate of the average cycle length. The autocorrelation function also has a peak at T  =  90 ms, and so the same 
value is obtained using both methods in this case. We are therefore able to accurately extract the average cycle 
length (and hence the average heart rate) from a noisy and non-stationary signal.

2.5. Construction of the density
A long trajectory plotted in the (v, w) plane very quickly gives a messy result and so for the third step of our 
method, we turn the trajectory in the (v, w) plane into a density since this shows the regions that the trajectory 
often returns to and other regions that are only visited infrequently. This provides information about the 
variability of the waveform shape in each cycle, which may relate to how the cardiovascular system is changing 
or adapting to pathophysiological or physiological changes. It can also indicate the speed of motion at various 
regions of the attractor, since greater speed corresponds to a lower density and vice versa.

We generate the density on a square grid of boxes in the plane and normalise the volume to be one. Some nice 
examples of density plots for the Lorenz attractor in three-dimensions are given in Bürkle et al (1999). The den-
sity corresponding to the attractor in figure 2 (bottom left) is shown in figure 2 (bottom right). In this case, a grid 
of 100 × 100 boxes was used to generate the density.

2.6. Generation of the time traces
The final step of our approach is to extract key features of the density and trace them out as a time window is 
moved through the data. In some cases, the features of the density may relate directly to features of the signal (see 
section 4 for some examples), but this is not a necessary condition and we can also extract features of the density 
that do not have any obvious association with any particular aspect of the signal.

Initially, there are three obvious features of the density that we can always determine.

 1. The first step in this approach is always to find the average cycle length for each window of data, and so 
this is the first measure that we extract. For blood pressure data, the cycle length is the time between heart 
beats. A related and more commonly used quantity is the heart rate and so we could plot this quantity 
rather than the average cycle length.

 2. We find the average cycle length by minimising f (T) given by (13). The second obvious quantity to follow 
is f (Tmin), where Tmin is the average cycle length that minimises f. This quantity gets closer to zero as the 
data become closer to periodic, so this can be regarded as a measure of how close the data in the time 
window are to being periodic.

 3. From the density, the simplest quantity that can be extracted is the maximum value and so this measure 
can be traced with the moving window. The maximum value may depend on a few features of the density. 
Since the volume of the density is normalised to one, if the attractor gets larger, then the maximum is likely 
to decrease. Similarly, if the trajectory is close to periodic, then the attractor will be quite narrow and so 
will have a higher density.

An example of some blood pressure data together with a plot of these three traces is shown in section 5 (see 
figures 12 and 14).

T (ms)
0 50 100 150

f(
T

)

0

0.05

0.1

0.15

0.2

Figure 6. Plot of the function f (T) given by (13) for the data in figure 2 (top).
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2.7. Diagnosis
The aim of this approach is to be able to diagnose various conditions by monitoring the blood pressure data, 
and to describe pathological changes in the signal over time. The final step in this process, having extracted 
various measures over time from the density, is to determine the aspects of these measures that are associated 
with particular diseases. This process will involve classification methods based on machine learning. See Lyle 
et al (2017) for a simple example of this classification process. By generating traces for multiple measures 
derived from the density, we anticipate that there will be a unique ‘signature’ in the derived traces for a variety of 
physiological conditions which will allow early detection of the underlying changes in the cardiovascular system 
control mechanisms. We anticipate that our approach will detect changes earlier than the macrophysiological 
changes observed using conventional analysis, which can commonly be subject to over or underinterpretation 
due to baseline variation, averaging and data exclusion.

3. Idealised blood pressure signal

We would like to relate particular properties of the attractor with features of the blood pressure signal in order to 
give physiological interpretation to some of the measures that we extract from the attractor. To help understand 
this relationship, we consider an idealised blood pressure signal that is piecewise polynomial and periodic. We do 
of course recognise that a blood pressure signal is not exactly periodic, but studying an idealised periodic signal 
can help provide insight into various properties of the attractor.

In this section, we assume that x(t) is continuous and periodic with period 1. As noted in section 2.4, the 
trajectory in the three-dimensional phase space and its projection onto the two-dimensional (v, w) plane corre-
sponding to a periodic signal are both closed orbits. We will also restrict attention to the two optimal values of τ, 
namely τ = 1/3 and τ = 2/3 (see section 2.4).

3.1. Piecewise linear signal
We first consider the simple case where the signal x(t) is piecewise linear. The blood pressure increases during 
systole and decreases during diastole. The ratio of these two phases varies with heart rate. For the human heart, 
systole typically lasts for approximately 34% of the cycle at a heart rate of 75 beats/minute and this increases to 
53% of the cycle when the heart rate increases to 200 beats/minute (Barrett et al 2010, table 31-1, p 512). For 
comparison with the ratio for the slower heart rate, we consider the idealised case where the signal consists of two 
linear segments with the break between them occurring at t  =  1/3, as shown in figure 7 (top left). The function 
x(t) in this case is given by

x(t) =




a + 3ht, 0 � t � 1
3

a + 3h
2 (1 − t), 1

3 � t � 1.
 (14)

For this function, we have the following result.

Lemma 3.1. Let x(t) be the piecewise linear function defined in (14) and shown in figure 7 (top left).

 (i) If τ = 1/3 then the trajectory in the (v, w) plane, as shown in figure 7 (bottom left), is an equilateral triangle 
centred on the origin with one edge given by

w = − h

2
√

2
, v ∈

[
−
√

3h

2
√

2
,

√
3h

2
√

2

]
.

  The trajectory cycles in a clockwise direction with uniform speed. Moreover, u(t) = a + h/2, which is the 
midpoint of the range of the cycle (see figure 7 (top right)).

 (ii) If τ = 2/3 then the trajectory in the (v, w) plane, as shown in figure 7 (bottom right), is an equilateral trian-
gle centred on the origin with one edge given by

w =
h

2
√

2
, v ∈

[
−
√

3h

2
√

2
,

√
3h

2
√

2

]
.

  This triangle is the reflection in the v axis of the one for τ = 1/3. The trajectory cycles in an anticlockwise 
direction with uniform speed. Again, u(t) = a + h/2, which is the midpoint of the range of the cycle (see 
figure 7 (top right)).

We note in this case, as with the sinusoidal orbit considered in section 2.4, that the size of the orbit in the (v, w) 
plane is proportional to the amplitude of the signal.

We proved in theorem 2.3 that the orbit in the (v, w) plane will have Z3 symmetry if the signal is periodic and 
τ = 1/3. However, when x is the piecewise linear signal that we have just considered, the orbit has D3 symmetry, 
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not just Z3 symmetry, since it is an equilateral triangle. The conditions that must hold more generally on x for the 
extra reflectional symmetry to be present can be derived, but they are not particularly enlightening and so we do 
not include them here.

3.2. Piecewise quadratic signal
When processing mouse blood pressure data, we have observed two key differences in the attractor from the 
equilateral triangle described above. In some cases, a triangular attractor is rotated clockwise in the (v, w) plane 
by a small amount. Also, the motion around the attractor is often not uniform, since the density along the edges 
is not constant. Along the bottom edge of the attractor, it is frequently observed that the density is higher at the 
left than at the right. This suggests that the motion along the bottom edge (from right to left) is initially fast and 
gradually slows down. The other two edges show a similar pattern. We therefore now consider what changes to 
the idealised piecewise linear signal have to be made to introduce these effects.

In the discussion below, the shape of the waveform in terms of its convexity or concavity is central. However, 
there are two conflicting definitions of these terms, so we will now clarify the definition that we will use. In math-
ematics, a convex function is convex downward, which means that for any point z between two points x and y, the 
point (x, f (z)) lies below the straight line joining the points (x, f (x)) and (y, f (y)). A simple example of a convex 
function is f(x)  =  x2. However, the common definition of convexity refers to something that curves outwards, 
such as a convex lens that bulges in the middle. Consider the simple example of the downstroke of a blood pres-
sure signal being a decaying exponential function. In this case, the downstroke is a convex function. However, in 
the context of the blood pressure signal, it appears visually to be curving inwards, and hence could be described as 
concave. We will fix on the latter, more intuitive, definition rather than the strict mathematical definition, and so 
will describe such a curve as concave.

3.2.1. A rotated triangle
We first consider the type of signal that gives a rotated equilateral triangle as the orbit in the (v, w) plane with 
uniform motion.

0 1/3 2/3 1
0

a

a+h

t

x

0 1/3 2/3 1
0
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a+h/2

a+h

t

u

Figure 7. Top left: A piecewise linear periodic signal. Top right: Plot of u(t) for τ = 1/3, 2/3. Bottom left: Plot of v against w for 
τ = 1/3. Bottom right: Plot of v against w for τ = 2/3.
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Lemma 3.2. Let τ = 1/3 and β ∈ R. We define the piecewise quadratic signal

x(t) =




a + 3ht
2

(
2 +

√
3β(3t − 1)

)
, 0 � t � 1

3

a + 3h
2 (1 − t)

(
1 −

√
3β(3t − 1)

)
, 1

3 � t � 1
 (15)

which is shown in figure 8 (left). In the (v, w) plane, the orbit is a rotated equilateral triangle which is traversed 
with uniform speed with the bottom edge given by

w = −βv − h

2
√

2
(1 + β2), v ∈

[
− (

√
3 + β)h

2
√

2
,
(
√

3 − β)h

2
√

2

]

as shown in figure 8 (right). The length of the sides of the triangle is
√

3h√
2

√
1 + β2.

If the bottom edge of the triangle is rotated by θ from the horizontal in a clockwise direction, then β = tan θ  and 

so 
√

1 + β2 = sec θ provided that 0 � θ < π/2.

The quadratic function x(t) on the interval t ∈ [0, 1/3] is monotonically increasing provided that |β| < 2/
√

3 
(or equivalently, |θ| < 0.8571 rad, 49.11◦) and the quadratic function x(t) on the interval t ∈ [1/3, 1] is mono-
tonically decreasing provided that |β| < 1/(2

√
3) (or equivalently, |θ| < 0.2810 rad, 16.10◦).

Clearly, setting β = 0 in lemma 3.2, we revert to the piecewise linear function which was considered in lemma 
3.1 which results in an equilateral triangle with horizontal base in the (v, w) plane.

The piecewise quadratic function defined by (15) solves the problem of finding the signal corresponding to 
a rotated attractor with uniform motion. However, it is composed of two concave functions when β > 0 (see 
figure 8). It is more common in the blood pressure signal to see a convex function as the blood pressure rises, 
followed by a concave function as it falls. Thus, we now consider the general case of two piecewise quadratic func-
tions with one convex and the other concave. In particular, we define the piecewise quadratic signal

x(t) =

{
x1(t), 0 � t � 1

3

x2(t),
1
3 � t � 1

 (16)

where

x1(t) = a1t2 + b1t + c1, x2(t) = a2t2 + b2t + c2.

We impose the consistency relations x1(0) = x2(1) = a  and x1(1/3) = x2(1/3) = a + h which can be solved 
for b1, c1, b2 and c2 giving

b1 = −1

3
a1 + 3h, c1 = a, b2 = −4

3
a2 −

3

2
h, c2 =

1

3
a2 + a +

3

2
h. (17)

Clearly this leaves a1 and a2 as free parameters.

Figure 8. A piecewise quadratic signal with β = 0.2 that gives a rotated equilateral triangle in the (v, w) plane with uniform motion. 
Left: The piecewise quadratic signal x(t). Right: A plot of the trajectory in the (v, w) plane with τ = 1/3.
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Lemma 3.3. Consider the periodic, piecewise quadratic signal given by (16) with constraints given by (17) and 
let τ = 1/3. Then

v = Aw2 + Bw + C for
2

3
� t � 1

where

A =
3
√

3√
2

(
a2 − a1

a2
2

)
.

If x1 is convex (a1  <  0) or linear (a1  =  0) and x2 is concave (a2  >  0), then A  >  0 and so this edge bows outwards. 
Also, w(1)− w(2/3) =

√
2a2/9 and so if x2 is concave (a2  >  0), then the straight line joining the two ends of this 

curve in the (v, w) plane has negative slope which is given by −2a2/(9
√

3h). 
The two remaining sides of the closed orbit can be obtained by rotation of this quadratic function by 2π/3 and 

4π/3 about the origin.
We note from this result that the clockwise rotation of the corner points of the attractor is due only to the sec-

ond quadratic function x2 being concave. Conversely, any signal for which the decline is convex would of course 
give rise to an anticlockwise rotation of the attractor. Also, if a2 < a1, then the edges of the orbit will bow inwards 
rather than outwards.

An example with linear upstroke but quadratic downstroke is shown in figure 9. The curve on the edges of 
the triangle is hardly visible. Theoretically, the motion along each edge of the triangle is not uniform, but for this 
example, it is very close to being uniform. Thus, a linear upstroke with a quadratic downstroke gives a rotated 
triangle with edges that are almost straight and which has almost uniform motion.

This example assumes a very specific form of the signal. More generally, assuming that the downstroke is 
approximately two thirds of the cycle length, the corner point of the attractor with v  >  0, w  <  0 occurs when the 
point y is at the peak of the signal and x is halfway down the downstroke. The corresponding value of w (see (2)) 
is related to the difference in height between these two points. The next corner, with v,w  <  0, occurs when x is at 
the minimum and y is halfway along the downstroke and again the value of w is related to the difference in height 
of these two points. Moving from the first corner to the second, the magnitude of w will decrease, resulting in a 
clockwise rotation of the corner points, provided that the difference in height between the midpoint of the down-
stroke and the minimum point is smaller than the difference of the maximum point and the midpoint of the 
downstroke. This occurs provided that the midpoint is below a straight line joining the maximum and minimum 
points. Clearly this holds if the downstroke is concave, as discussed above, but will also hold in many other cases 
where the downstroke is more variable.

Biologically, a concave downstroke, corresponding to the clockwise rotation of the triangle in figure 9, has been 
observed in mammals and may arise from peripheral wave reflections. Quantification of dynamic changes may 
therefore provide information about changes in the resistance or compliance of the vascular network which in 
turn may provide additional information which may predict patient decompensation or differential responses to 
drug treatment (London and Pannier 2010, Thiele and Durieux 2011, Alastruey et al 2014).

Figure 9. A periodic signal with linear upstroke (a1  =  0) and quadratic concave downstroke (a2  >  0) that gives a rotated (slightly 
curved) triangle in the (v, w) plane. Left: The piecewise signal x(t). Right: A plot of the orbit in the (v, w) plane.
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Figure 10. A periodic signal with quadratic convex upstroke (a1  <  0) and linear downstroke (a2  =  0) that gives an equilateral 
triangle with horizontal base in the (v, w) plane but with non-uniform motion. Top left: The piecewise signal x(t). Top right: A plot 
of the trajectory in the (v, w) plane. Bottom: A plot of dv/dt  shows that the velocity along the edge gradually slows.

3.2.2. Non-uniform motion
We now consider what changes have to be made to the piecewise linear signal in order to generate an orbit that is 
an equilateral triangle with a horizontal base but with non-uniform motion along the edges.

We can understand this case from the previous example by taking the signal given in (16) (with the con-
straints in (17)) but setting a2  =  0 so that the downstroke is a linear function. In this case, it is easily verified that 

along the bottom edge, w(t) = −h/
(
2
√

2
)
 is constant and so the orbit in the (v, w) plane is again an equilateral 

triangle with horizontal bottom edge. However, in this case, the function v is given by

v(t) = −
√

2

3
a1t2 +

1

3
√

6
(10a1 − 27h)t +

1

6
√

6
(45h − 8a1), t ∈ [2/3, 1].

Differentiating gives

v′(t) = −2
√

2√
3

a1t +
1

3
√

6
(10a1 − 27h).

Now v′(t) < 0 for all t ∈ [2/3, 1] since the orbit moves from right to left along the bottom edge. Thus, the velocity 
along this edge will go from fast to slow if v′(t) has positive slope and this occurs provided that a1  <  0.

Thus, we conclude that if the upstroke is quadratic and convex (a1  <  0) and the downstroke is linear (a2  =  0), 
then the orbit is an equilateral triangle with horizontal bottom edge but with non-uniform motion where, along 
each edge, the motion is initially fast but gradually slows down. This is illustrated in figure 10.

These last two examples show that a clockwise rotation of the attractor is associated with the downstroke 
of the idealised signal becoming concave, while a triangular attractor without any rotation but with non-uni-
form motion, which can be observed from changes in the density along the edge, is associated with the upstroke 
becoming convex. Typical blood pressure signals contain both these features.

These examples show how particular features of the signal are reflected in properties of the attractor in the 
(v, w) plane and provide candidates for measures derived from the attractor for monitoring specific features of 
the signal.
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4. Attractor measures

The relationship between the waveform morphology and the resultant attractor means that numerous scalar 
measures that describe the attractor features must by definition relate to aspects of the waveform shape. It is likely 
that different pathologies and physiological states will generate a signature of corresponding attractor features 
and we anticipate that this would enable identification and discrimination between different pathologies.

In the previous section, we related various features of a periodic, idealised signal to properties of the recon-
structed attractor. We now use these results as the basis for deriving further measures of the attractor density gen-
erated by blood pressure data that can be monitored with a moving time window. Note that in practice, we often 
refer to the ‘attractor density’ as simply the ‘attractor’.

4.1. Pulse pressure measures
For the piecewise linear signal defined by (14), we showed in lemma 3.1(i) that the trajectory in the (v, w) plane 

is an equilateral triangle with horizontal bottom edge at w = −h/
(
2
√

2
)
. The size of the triangle is therefore 

determined by the pulse pressure (amplitude) of the signal. Thus, for an attractor generated by a blood pressure 
signal, we can monitor the size of the triangle and derive from this a measure of the pulse pressure. The thickness 
of the triangular band also varies and so measures related to this thickness will provide information regarding 
variability in the shape of the waveform.

To derive measures related to this band thickness, we want to include contributions from all three sides of the 
attractor. To achieve this, if D(τ) is the density on a square grid with delay parameter τ, then we define

Ds(τ) =
1

3
(D1(τ) + D2(τ) + D3(τ))

where D1(τ) = D(τ) and D2(τ) and D3(τ) are density matrices derived from the data rotated in the (v, w) plane 
by 2π/3 and 4π/3 respectively. (We note that it is more accurate to generate a new density matrix from rotated 
data than to perform a rotation of the density matrix since rotation of a square grid by 2π/3 does not readily map 
onto the original grid.) The matrix Ds(τ) is the density (on a square grid) of an attractor that has Z3 symmetry by 
construction. Clearly, one edge of Ds(τ) contains information from all three edges of D(τ). Thus, it is sufficient 
to consider one third of it, as shown by the dark blue region in figure 11, since this contains an average of the 
three sides of the original density D(τ). We take this section and sum the entries in the density matrix along 

the v direction to give a new density function d̃(w) which depends only on (negative values of) w. Since the 
magnitude of w along this edge is related to the pulse pressure (amplitude) h, then we define h = −2

√
2w and 

express the density in terms of this quantity as d(h) = d̃(−h/(2
√

2)). This gives a density function which shows 

v

w

Figure 11. The dark blue region of the attractor Ds(τ1) is summed in the v direction (green arrows) to give a density in w.
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the distribution of the pulse pressures in the signal. From the density function d(h) we can derive a number of 
scalar measures such as

 1. the first, second (median) and third quartiles;
 2. the maximum and minimum of h where the density is non-zero; 
 3. a threshold maximum and minimum, which are the maximum and minimum values of h such that the 

density is greater than a specified threshold value.

This combination of values gives a good indication of the shape and spread of the density d(h). We note that if the 
data contain occasional irregular events, then this would appear in the attractor as brief excursions away from the 
triangle and so would result in a large difference between the maximum/minimum and the threshold maximum/
minimum. Thus, a large difference in these quantities is an indicator of rare irregular events occurring in the 
window of data. This difference will persist as long as the rare event is in the time window, and so will occur in the 
time traces for a time approximately the same as the window length.

A further measure that we derive is the maximum value of the density d(h). While a narrow density will give 
rise to a high maximum value, when the density is wider, there may or may not be a large peak in the density, and 
so this measure does not directly correlate with the width measures described above.

Physiologically, changes in pulse pressure are known to correlate with a number of cardiovascular disorders, 
including septic shock. Accurate quantification of this parameter is therefore important for clinical diagnosis. 
Whether the extraction of pulse pressure using this novel method is superior to currently used methods from 
noisy, non-stationary data remains to be determined.

4.2. Rotation
As discussed in section 3.2.1, the triangular attractor is sometimes rotated in a clockwise direction by a small 
amount. We showed in lemma 3.3 that this arises due to curvature in the downstroke of the waveform. Another 
measure that we consider therefore is the angle of rotation of the triangle since this provides information 
regarding this aspect of the waveform. We consider two methods for finding this angle.

In the first method, for a given angle θ, we rotate the data in the (v, w) plane in an anticlockwise direction by θ 
and find the density function d(h) described above. We then define a function f (θ) as the width of the band which 
is found as the difference between the maximum and minimum values of h that have a non-zero value for the den-
sity. The angle of rotation of the attractor is then found by minimising f (θ). This method is equivalent to drawing 
the largest possible equilateral triangle that fits inside the attractor together with the smallest possible equilateral 
triangle that fits outside the attractor, both rotated clockwise by θ, and then finding the width of the gap between 
the two triangles. This width will generally be a minimum when the correct angle of rotation of the attractor is 
used. However, one drawback with this method is that it is influenced by rare irregular events that push out the 
maximum and minimum boundaries of the attractor and, in some cases, this can lead to the wrong value of θ being 
obtained. An alternative would be to use the threshold maximum and minimum boundaries instead.

An alternative method is to again rotate the data in an anticlockwise direction by θ and construct the density 
function d(h) as above. We then define the function g(θ) = maxh d(h) and maximise this function to find the 
optimal value of θ. This method works since the density function d(h) will be at its narrowest, and hence have the 
greatest maximum, when the bottom edge of the rotated triangle is horizontal. If the wrong angle is used, then 
the bottom edge of the triangle will not be horizontal and so summing the density in the v direction will result in 
a more widely spread density function. The advantage of this method is that the optimal angle is determined by 
the dominant behaviour in the signal, not by the rare events as in the first method. Thus, we use this method to 
determine the angle of rotation of the attractor.

Having found the angle of rotation θ, we then note that if the triangular orbit shown in figure 8 (bottom) is 
rotated in an anticlockwise direction by θ then, from the results in lemma 3.2, we find that the base of the triangle 
is defined by w = −h sec θ/(2

√
2). Thus, for the triangular attractor derived from data, we find the value of θ 

and then derive the pulse pressure distribution by defining d(h) = d̃(−h sec θ/(2
√

2)), which is well-defined 
provided that θ ∈ [0,π/2).

5. Analysis of blood pressure data

As a practical example of the method described above, we have applied it to blood pressure data sampled at  
1000 Hz that have been collected from a healthy, conscious mouse using an implanted radiotelemetry device 
coupled to the Data Sciences International A.R.T. acquisition system (DSI Dataquest ART System 2015, Starr 
et al 2014). This current gold standard technique allows high quality physiological data with very little artefactual 
noise to be collected remotely from unrestrained animals left undisturbed in their home cages, minimising the 
confounding effects of stress and thereby maximising the physiological relevance of the data (Nandi et al 2012, 
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Starr et al 2014). These data show cyclic behaviour due to the regular heartbeat but the signal is certainly not 
periodic due to the many other physiological factors that result in variation in this signal over time (see figures 1 
and 12). The beat-to-beat interval is approximately 100 ms, corresponding to a heart rate of 600 beats per minute, 
and so there are around 100 data points per cycle. The sample rate of 1000 Hz is high for these blood pressure 
data (but may be required to accurately capture the R-wave in an ECG signal). Our approach works equally well 
with a lower sampling frequency for these data. More generally the important criterion is to have sufficient data 
points per cycle to accurately represent all the features of the waveform. For these blood pressure data, a sampling 
frequency of 500 Hz or 250 Hz would result in approximately 50 or 25 points per cycle respectively, which should 
still be sufficient to define the waveform and hence generate a clear attractor. Clearly, fewer data points per cycle 
will result in a less precise attractor, which could affect some properties such as the maximum density. However, 
other large scale features, such as the rotation, should still be clearly discernible.

The only preprocessing that we perform on the data is the simple removal of any obvious outliers that are 
outside a specified range. These typically arise from electrical interference which results in spikes in the data. This 
is in contrast to the preparation of data for HRV analysis in which the heart beats have to be identified in the data 
in order to find the beat-to-beat (RR) intervals. These interval lengths are then further refined, for example by 
excluding an interval that differs from the previous one by more than 20% (Cam et al 1996), to give the normal 
beat-to-beat (NN) intervals. The 1996 HRV task force review (Cam et al 1996) recommended that ‘manual edit-
ing of the RR data should be performed to a very high standard’, and that automatic filtering of the RR intervals 
to give the NN intervals ‘should not replace manual editing’ as it can ‘have undesirable effects leading potentially 
to errors’. However, the large quantity of data that is now collected means that manual detection and filtering 
becomes impractical. Hence it is essential to have computational approaches that will not only handle these large 
data sets but that will also minimise human error and/or bias introduction.

We have applied our method to 15 min of blood pressure data from a healthy mouse which is shown in 
 figure 12. A moving window of length 10 s, which contains approximately 100 cycles, is used. The first step is to 
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Figure 12. Top: 15 s of blood pressure data. Bottom: The mean of the RR intervals extracted from the BP data (blue) and the average 
cycle length found by minimising f (T) (red) using a moving 10 s window.
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determine the average cycle length in the window of data, as discussed in section 2.4. For this example, we find the 
mean of the RR intervals (peak to peak distances) and we also find the average cycle length using our approach of 
minimising the function f (T) given by (13). Both of these are shown in figure 12 and it can be seen that they are 
in good agreement. The advantage of minimising f (T) is that it is not necessary to identify individual points on 
the signal. The time delay parameter τ for each window is taken to be one third of the average cycle length. Clearly 
the average heart rate can be derived from this average cycle length. We note that the average cycle length fluctu-
ates around 100 ms for the first 12 min and then gradually increases to around 125 ms over the last 8 min interval, 
which clearly corresponds to a gradually decreasing heart rate.

Our aim is to compare some of the many HRV measures with our attractor reconstruction (AR)  measures. 
For the HRV measures, we have chosen three quantities that are derived from a Poincaré plot of succes-
sive pairs of interval lengths, namely SD1, SD2 and the ratio SD12 = SD1/SD2. It has been shown that SD1 
is a scaled version of SDSD, the standard deviation of successive differences of the interval lengths, and that 
SD22 = 2SDRR2 − SD12, where SDRR is the standard deviation of the interval lengths (Brennan et al 2001). It is 
also known that SD1 is related to short term interval variation while SD2 is related to long term interval variation. 
Thus, the ratio SD12 gives the ratio of short term to long term variability (Acharya et al 2006). The peak-to-peak 
interval lengths were extracted for each window of data and these three quantities evaluated. The plot as the 
time window moves through the data is shown in figure 13. For this example, SD1 is smaller than SDRR and so 
SD2 �

√
2SDRR.

For the attractor reconstruction (AR) measures, we find the measure of periodicity f (Tmin) (see (13)), the 
maximum density of the attractor, the pulse pressure measures and the angle of the attractor. These are all shown 
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Figure 14. Attractor reconstruction measures derived using all of the BP data shown in figure 12 with a moving 10 s window. Top: The 
function f (T) defined by (13) with x̄ = 100 evaluated at the average cycle length Tmin. Second: The maximum density. Third: Pulse 
pressure measures (red: maximum, minimum; green: maximum and minimum above the threshold; blue: first, second (median) and 
third quartiles). Fourth: Angle of the attractor. Bottom: The attractors at time t  =  8 min and t  =  16 min.
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in figure 14. Two attractors at times t  =  8 min and t  =  16 min are also shown in figure 14 and it is obvious visually 
that these are very different in many respects. The attractor at t  =  8 min is much larger than the one at t  =  16 min 
and the sides of the attractor at t  =  8 min are quite broad, compared with the narrow sides at t  =  16 min. Since 
the total density is normalised to one, both these effects result in the maximum density at t  =  8 min being much 
lower than the maximum density at t  =  16 min. The densities d(h) for the two attractors are shown in figure 15, 
and the pulse pressure measures are derived from these densities. The sides of the t  =  8 min attractor are much 
broader than the sides of the t  =  16 min attractor, and this is reflected in the different width of the two densities. 
We also note that the angle of rotation for the t  =  8 min attractor is greater than that for the t  =  16 min attractor.

For these data, we note that the HRV measures are noisy but show little change over the 15 min interval. There 
is a slight reduction in SD2 over the last 5 min, which gives a corresponding slight increase in the ratio SD12, but 
these are very small variations. So while there is a gradual reduction in heart rate, there is very little change in its 
variability.

In contrast, all of the AR measures show a sharp and significant change at time around 13.5 min. The perio-
dicity measure decreases significantly indicating that the data change from quite variable to being much more 
periodic. This change is evident from the two attractors that are shown at the bottom of figure 14. The attrac-
tor at time t  =  8 min is a thick band indicating that the data contain a lot of variability, while the attractor at 
time t  =  16 min is much thinner, which shows that the data are much closer to being periodic. This change also 
explains the sudden jump in the maximum density as the thin attractor has a much more concentrated density 
than the earlier thicker attractor. The pulse pressure measures, derived from the thickness of the sides of the 
attractor, also show a dramatic change at the same time point in two regards. Firstly, there is a reduction in the 
median pulse pressure from around 50 mmHg to about 25 mmHg, and secondly, the variability is drastically 
reduced as can be seen from the reduction in the spread of the various lines plotted.

While the changes in the above measures are all somewhat related to the same reduction in variability in the 
data, the angle property of the attractor is not related to this change in variability, but is associated with a change 
in the concavity of the downstroke. This angle also shows a significant change at around the same time point, and 
the reduction in angle can also be seen in the two attractors in figure 14.

In summary, when looking at the condensed raw blood pressure signal, it can be seen clearly by eye that pulse 
pressure changes, as does the variability of the waveform shape. The heart rate measure also shows a gradual 
decrease. In the clinical setting however, data would not be viewed in this way and thus the subtleties of this vari-
ation could be missed. Interestingly, the standard HRV measures are unable to detect robust changes, suggesting 
that beat to beat variability may be preserved. In contrast, our attractor reconstruction method demonstrates 
that the ‘waveform shape variability’ is altered significantly and rapidly as quantified by all of our derived meas-
ures, and so we are able to detect quantifiable measures of change above and beyond traditional approaches.

6. Artificial signal with variability

As a final example, we return to an artificial, piecewise linear signal, similar to the one which we considered in 
section 3.1. We again have a signal that consists of a linear upstroke and a linear downstroke with fixed peak-
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Figure 15. The densities d(h) for the two attractors shown in figure 14 at times t  =  8 min (red) and t  =  16 min (blue). The threshold 
is shown in green.
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to-peak (and trough-to-trough) intervals. The time interval for the upstroke will again be half that of the 
downstroke. However, we now consider two different scenarios:

 1. The slope of the downstroke is fixed, while the slope of the upstroke is varied randomly. 
 2. The slope of the upstroke is fixed, while the slope of the downstroke is varied randomly.

Thus, in the first case, there is variability only in the upstroke whereas in the second case, there is variability only 
in the downstroke. Plots of the artificial data and the corresponding trajectories in the (v, w) plane are shown in 
figures 16 and 17.

For this example, we have a fixed cycle length and so a fixed heart rate which implies that there is no heart 
rate variability at all. However, the two signals that we consider have quite distinct characteristics and these are 
reflected in the different types of attractor that are generated. We note that the attractor at t  =  8 min in figure 14 is 
quite similar to the attractor in figure 17 and we have included a density in figure 16 (which comes from the data 
shown in figure 12 at t  =  19.68 min) which is similar to the attractor generated by the artificial data.

The ability to model changes using a piecewise linear signal and then compare them to physiological data 
proves to be a powerful approach. Indeed, the changes observed in figure 16 are observed in healthy human data 
and we believe that they relate to variability in cardiac contractility in the healthy state.

Clearly, there are many more ways that an artificial piecewise linear signal could be generated, but exploring 
more possibilities is beyond the scope of this work.

7. Application to other signals

The attractor reconstruction analysis of blood pressure waveforms that we have described is a robust method that 
can be applied to any continuous, approximately periodic waveform. A sample of human blood pressure data, 
obtained by FINApress fingertip plethysmography (Kasprowicz et al 2010), together with the corresponding 
attractor is shown in figure 18. It can also be applied to other signals such as PPG (Charlton et al 2015) and ECG 
(Lyle et al 2017).

8. Discussion and conclusions

We have described a new approach, based on attractor reconstruction, for extracting a variety of features from a 
blood pressure signal. The key aspects of this new approach are as follows:

 • We use all of the available waveform data; 
 • Changes in the shape and variability of the waveform can be quantified; 

Time
B

P

v

w

v

w

Figure 16. Top: Piecewise linear signal with randomly varying slope of the upstroke and fixed slope of the downstroke. Bottom left: 
The corresponding attractor in the (v, w) plane. Bottom right: A similar attractor derived from the data shown in figure 12 (top) at 
time t  =  19.68 min.
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 • No individual points on the waveform have to be identified, which makes it more robust when dealing with 
noisy data; 

 • The only preprocessing of the data that is required is to remove any obvious outliers.

Since our approach uses all of the waveform data, this means that we can detect changes in the shape of the 
waveform that is not possible with any HRV method.

We note that HRV methods first extract features from the signal, most notably the beat-to-beat intervals, and 
then analyse these in a multitude of ways. Similarly, analysis of ECG signals typically involves identifying par-
ticular points on the signal and deriving various lengths or intervals from these points which are then averaged. 
An inherent problem with this approach is that it can be difficult to accurately and reliably locate the points of 
interest in a complex, noisy and variable signal. However, our approach does not require the identification of any 

Time
B

P

v

w

Figure 17. Top: Piecewise linear signal with fixed slope of the upstroke and randomly varying slope of the downstroke. Bottom: The 
corresponding attractor in the (v, w) plane.
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Figure 18. Top: A sample of human blood pressure data. Bottom: The corresponding attractor in the (v, w) plane.
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individual points on the signal. We first construct an attractor in which each cycle of the data corresponds to one 
loop around the attractor, which is effectively an averaging process, and we then extract features from this attrac-
tor. Identifying features of the attractor, which is obtained from many cycles of the data, is much more robust 
than trying to identify particular points on the original signal.

We have shown that specific changes in the blood pressure waveform result in particular changes in the corre-
sponding attractor. In table 1 we have summarised the various changes in blood pressure waveform that we have 
considered in this paper and the corresponding changes in the attractor for ease of reference. We have also shown 
how the use of artificial data can be helpful in determining the relationship between features of the signal and corre-
sponding properties of the attractor. Of course there are many other approaches in the literature for analysing wave-
form data, including Fourier transforms and wavelets to mention only two. It would be interesting to compare our 

approach with results obtained from various other methods, but this is beyond the scope of this paper.
The next step, which we will describe elsewhere, is to use this method to identify changes in blood pressure 

waveform data associated with various diseases by detecting changes in the traces generated. By generating traces 
for multiple measures derived from the attractor, we anticipate that there will be a unique ‘signature’ in the 
derived traces for a variety of physiological conditions which will allow early detection of the underlying changes 
in the cardiovascular system control mechanisms. It is well established that for many cardiovascular diseases, ear-
lier detection, diagnosis and more rapid clinical intervention correlates with improved patient outcome.

It has been noted for HRV methods that ‘their success in developing new clinical tools . . . has been so far 
rather limited’ (Sassi et al 2015). The approach that we have described above has the potential for extracting a 
wealth of diagnostic information from a physiological signal. However, this information will only be of benefit 
if it is used and applied in a clinical context. Thus, it is important moving forward to work with clinicians and 
health technology providers to ensure that this approach goes beyond the academic literature. Moreover, any 
diagnostic tool should provide outputs that are easy to interpret by clinical staff, thereby facilitating clinical deci-
sion making.

We have concentrated on analysing the reconstructed attractor after projection onto the (v, w) plane, which 
factors out movement in the data in the vertical direction (as discussed in section 2.3). However, in any diagnostic 
situation, the vertical motion may also be of relevance and so further measures of baseline variation may also 
be useful. These could be derived from the third of our variables u. Our method could also be used in conjunc-
tion with the standard analysis of blood pressure signals which takes into account the vertical dimension and 
describes the maximum (systolic) and minimum (diastolic) pressure in each cycle, together with the reciprocal 
of the beat to beat interval (heart rate).
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downstroke

Clockwise rotation of the attractor Section 3.2.1 Decreased resistance and 
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upstroke

Non-uniform density along the 

edges

Section 3.2.2 Increased force of cardiac 

contraction

Downstroke variability Attractor consists of a thick band Figure 17 Variability in resistance and 

compliance of peripheral 

vasculature

Upstroke variability Variability in right hand side of 

attractor

Figure 16 Variability in cardiac con-

traction

Waveform almost periodic Very thin sides of the attractor Section 3 Heart rhythm almost 

periodic

Consistent increase/

decrease in systolic and 

diastolic BP

No change in the attractor but 

change observed in the u variable
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blood pressure
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Appendix. Proofs

Proof of lemma 2.1. From the definition of the variable u in (2), we have

ū =
1

3L

∫ t∗+L

t∗
x(t) + y(t) + z(t) dt

=
1

3L

∫ t∗+L

t∗
x(t) + x(t − τ) + x(t − 2τ) dt

=
1

3L

(∫ t∗+L

t∗
x(t) dt +

∫ t∗+L−τ

t∗−τ

x(t) dt +

∫ t∗+L−2τ

t∗−2τ
x(t) dt

)

= x̄ +
1

3L

(∫ t∗

t∗−τ

x(t) dt +

∫ t∗

t∗−2τ
x(t) dt −

∫ t∗+L

t∗+L−τ

x(t) dt −
∫ t∗+L

t∗+L−2τ
x(t) dt

)
.

It is a standard result from analysis that a continuous function on a compact interval is bounded (Wade 2007), 
and so the maximum M and minimum m of x(t) over the interval I exist. We then have that

ū − x̄ =
1

3L

(∫ t∗

t∗−τ

x(t) dt +

∫ t∗

t∗−2τ
x(t) dt −

∫ t∗+L

t∗+L−τ

x(t) dt −
∫ t∗+L

t∗+L−2τ
x(t) dt

)

�
1

3L
(τM + 2τM − τm − 2τm)

= (M − m)
τ

L
.

It can similarly be shown that

ū − x̄ � (m − M)
τ

L
.

Combining these two inequalities gives the stated result for ū.

The results for v̄ and w̄ are proved in a similar way. □ 

Proof of theorem 2.2. It is a standard property of the Fourier transform (Pinsky 2002) that 

F(X(t − τ)) = e−2πiξτ X̂(ξ). Using this result and linearity of the Fourier transform gives

û(ξ) = F
(

1

3
(X(t) + X(t − τ) + X(t − 2τ))

)

=
1

3
(F(X(t)) + F(X(t − τ)) + F(X(t − 2τ)))

=
1

3

(
X̂(ξ) + e−2πiξτ X̂(ξ) + e−4πiξτ X̂(ξ)

)

=
1

3

(
1 + e−2πiξτ + e−4πiξτ

)
X̂(ξ)

=
1

3
(1 + 2 cos(2πξτ))e−2πiξτ X̂(ξ).

The stated results for v̂(ξ) and ŵ(ξ) are proved similarly. □ 

Proof of theorem 2.3. 

 (i) We define the vectors x = (x, y, z)T  and u = (u, v, w)T which are related by

u = Ax

  where the matrix A is defined by
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A =




1
3

1
3

1
3

1√
6

1√
6

− 2√
6

1√
2

− 1√
2

0


 . (A.1)

  We note that a translation in time by one third of the period results in a permutation of the points x, y 
and z, since the signal is periodic. We now consider what effect this has on the variables u, v and w. Thus, 
we define new variables by translating backward in time by one third of the period given by

x̃(t) = x(t + 1/3), ũ(t) = u(t + 1/3)

  and then clearly ũ = Ax̃  also. Since x(t) has period 1 and τ = 1/3, we see that

x̃(t) = x(t + 1/3) = x(t − 2/3) = z(t)

ỹ(t) = y(t + 1/3) = x(t)

z̃(t) = z(t + 1/3) = x(t − 1/3) = y(t)

  and so x̃ = Cx where the circulant matrix C is defined by

C =




0 0 1

1 0 0

0 1 0




  and satisfies C3  =  I.
  There is a corresponding transformation in the new variables which we denote by

ũ = Ru (A.2)

  for some (invertible) matrix R. Combining the above results, we also see that

ũ = ACA−1u 

  Thus, we see that the transformation matrix R is given by

R = ACA−1 =




1 0 0

0 cos 2π
3 sin 2π

3

0 − sin 2π
3 cos 2π

3


 .

  We note that the action of the matrix R corresponds to a clockwise rotation in the (v, w) plane by 2π/3, 
while leaving u unchanged.

  Thus, moving time forwards by 1/3 corresponds to the elements of x  cycling backwards by one position 
and also corresponds to a clockwise rotation in the (v, w) plane by 2π/3. The closed loop trajectory in the 
reconstructed phase space can be expressed in three parts as x(t) ∪ x(t + 1/3) ∪ x(t + 2/3) for 0 � t � 1/3. 
Transforming to the new coordinates and using (A.2) gives the closed loop u(t) ∪ Ru(t) ∪ R2u(t) for 
0 � t � 1/3. In the (v, w) plane, R acts by a clockwise rotation of 2π/3 and so the closed orbit in this 
plane has Z3 symmetry as claimed. Clearly, the trajectory must move in the same direction as R, namely 
clockwise.

  From (A.2), it also follows from the first component that

u(t + 1/3) = ũ(t) = u(t)

and so u(t) has period 1/3 as claimed.
 (ii) If τ = 1/2, then

y(t) = x(t − 1/2), z(t) = x(t − 1) = x(t)

since x has period 1. Thus, the transformed variables are given by

v(t) =
1√
6
(x(t) + x(t − 1/2)− 2x(t − 1))

=
1√
6
(x(t − 1/2)− x(t))

w(t) =
1√
2
(x(t)− x(t − 1/2))
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from which it can be seen that v = −w/
√

3  for all t.
 (iii) If τ = 2/3, then we have

y(t) = x(t − 2/3)

z(t) = x(t − 4/3) = x(t − 1/3).

Let xτ be the vector obtained using a time delay τ. Then we see that

x2/3 = S1x1/3 (A.3)

where

S1 =




1 0 0

0 0 1

0 1 0




which satisfies S2
1 = I . As in the proof of (i), we can then define a corresponding transformation S2 on u 

which satisfies u2/3 = S2u1/3 by

S2 = AS1A−1 =




1 0 0

0 − 1
2

√
3

2

0
√

3
2

1
2


 (A.4)

where A is given by (A.1), which also satisfies S2
2 = I .

  Considering the first component, clearly this gives u2/3 = u1/3 and so the transformation 
τ = 1/3 → τ = 2/3 has no effect on u. Since u1/3(t) has period 1/3, then u2/3(t) must also have period 1/3.

  In the (v, w) plane, the transformation can be expressed as

(
− 1

2

√
3

2√
3

2
1
2

)
=

(
1 0

0 −1

)(
cos 2π

3 sin 2π
3

− sin 2π
3 cos 2π

3

)
.

Thus, the transformation τ = 1/3 → τ = 2/3 corresponds to a clockwise rotation by 2π/3 followed by 
a reflection w → −w in the (v, w) plane. It can be shown that this is also equivalent to a reflection in the 
line w = −

√
3v . The Z3 symmetric closed loop in the (v, w) plane using τ = 1/3 therefore gets reflected 

in the v axis (since it is invariant under rotation by 2π/3) to give a Z3 symmetric closed loop in the (v, w) 
plane obtained using τ = 2/3. Consequently, the direction of the trajectory around this loop must also 
change, and so is anticlockwise for τ = 2/3.

Proof of lemma 3.1. 

 (i) We first consider x(t) for t ∈ [2/3, 1]. In this case, using the function (14) and taking τ = 1/3 gives

x(t) = a +
3h

2
(1 − t)

y(t) = a +
3h

2

(
4

3
− t

)

z(t) = a + 3h

(
t − 2

3

)
.

If x and y lie on a straight line, it is easily verified that w is constant, which is the case here, and we find 
that w is given by

w(t) = − h

2
√

2
.

From the definition of v, we also have

v(t) =

√
3h

2
√

2
(5 − 6t).
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We then see that v(2/3) =
√

3h/
(
2
√

2
)
 and v(1) = −

√
3h/

(
2
√

2
)
. In the (v, w) plane, this corresponds 

to a horizontal line which is bisected by the w axis. As in the proof of theorem 2.3(i), we can construct 
the whole of the closed orbit in the (v, w) plane by rotating this line by 2π/3 and by 4π/3, and this con-
struction gives an equilateral triangle centred on the origin with sides of length 

√
3h/

√
2 . The trajectory 

follows the horizontal line given above from right to left with uniform speed dv/dt = −3
√

3h/
√

2, and 
so the trajectory traverses the equilateral triangle at uniform speed in a clockwise direction.

  It is easily verified from the definitions of x, y and z given above that u(t) = a + h/2 and so is constant for 
t ∈ [2/3, 1]. Since u has period 1/3 by theorem 2.3(i), then clearly u(t) = a + h/2 for all t ∈ [0, 1].

 (ii) If τ = 2/3 then we know from theorem 2.3(iii) that the orbit in the (v, w) plane can be obtained by taking 
the orbit for τ = 1/3 and transforming w → −w. This reflects the above equilateral triangle in the v axis, 
and the trajectory also goes in the opposite direction, i.e. anticlockwise, again at uniform speed. Also, u is 
unchanged and so we again have u(t) = a + h/2.

Proof of lemma 3.2. Since τ = 1/3, for t ∈ [2/3, 1], x and y are both traversing the second component of x 
while z moves along the first component. It is a matter of calculation to show that the variables v and w on this 
time interval are given by

v(t) = − βh
2
√

2
+

√
3h

2
√

2
(5 − 6t), 2

3 � t � 1

w(t) = − h
2
√

2
−

√
3βh

2
√

2
(5 − 6t), 2

3 � t � 1.

Eliminating t from the equations for v and w gives the stated straight line in the (v, w) plane. Since v and w are 
linear functions of t, the motion along this edge occurs at uniform speed. The length of the side of the triangle 
is then easily calculated.

The range of values of β for which the first quadratic function in x is monotonic can be found by assuming 
that the turning point of the quadratic occurs at either t  =  0 or t  =  1/3. A similar approach can be used for 
the second quadratic function in x, where it is assumed that the turning point occurs at either t  =  1/3 or t  =  1. 
When β = 0, the two functions are linear and hence have no turning point, and so the range of values between 
the two calculated values is the range for which there are no turning points in the interval of interest, resulting 
in a monotonic function. □ 

Proof of lemma 3.3. Using the definitions of v and w, we find in this case that v is a quadratic function and w 
a linear function of t for 2/3 � t � 1. Solving for t in terms of w and substituting into v gives v as a quadratic 
function of w with the stated quadratic coefficient A.

If x1 is convex or linear and x2 is concave, then a1 � 0 and a2  >  0 and so A  >  0 as claimed.
It can also be shown that w(1)− w(2/3) =

√
2a2/9 and v(1)− v(2/3) = −

√
3h/

√
2 . If x2 is concave, then 

a2  >  0 and so w(1) > w(2/3), so that the straight line joining these corner points has a negative slope, which 
again corresponds to a clockwise rotation of the corner points of the attractor. The slope of the straight line be-
tween the two end points of this quadratic curve has slope (w(1)− w(2/3))/(v(1)− v(2/3)) = −2a2/(9

√
3h) 

as claimed.
Since τ = 1/3, by theorem 2.3(i) the closed trajectory in the (v, w) plane has Z3 symmetry and so the re-

maining two edges of the closed orbit can be obtained by rotations by 2π/3 and 4π/3 about the origin. □ 
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