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SUMMARY

Understanding host cell heterogeneity is critical for unraveling disease mecha-
nism. Utilizing large-scale single-cell transcriptomics, we analyzed multiple tissue
specimens from patients with life-threatening COVID-19 pneumonia, compared
with healthy controls.We identified a subtype ofmonocyte-derived alveolarmac-
rophages (MoAMs) where genes associated with severe COVID-19 comorbidities
are significantly upregulated in bronchoalveolar lavage fluid of critical cases.
FCGR3B consistently demarcatedMoAM subset in different samples from severe
COVID-19 cohorts and in CCL3L1-upregulated cells from nasopharyngeal swabs.
In silico findings were validated by upregulation of FCGR3B in nasopharyngeal
swabs of severe ICU COVID-19 cases, particularly in older patients and those
with comorbidities. Additional lines of evidence from transcriptomic data and
in vivo of severe COVID-19 cases suggest that FCGR3B may identify a specific
subtype of MoAM in patients with severe COVID-19 that may present a novel
biomarker for screening and prognosis, as well as a potential therapeutic target.

INTRODUCTION

Although most individuals infected with SARS-CoV-2 remain asymptomatic or develop mild forms of the

disease, a significant proportion (approximately 5%) of infected cases develops severe COVID-19 pneu-

monia and a smaller proportion (0.5%) critical pneumonia (Hu et al., 2020; Uddin et al., 2020). The major

predictor of critical COVID-19 disease is age >60 years, while comorbidities such as obesity, diabetes mel-

litus, hypertension, cardiovascular disease, and chronic pulmonary disease play a modest role (Sanyaolu et

al., 2020). A small fraction (<0.01%) develop an inflammatory syndrome closely resembling Kawasaki dis-

ease, which is now designated as multisystem inflammatory syndrome in children (Kabeerdoss et al.,

2021). Similarly, a multitude of additional factors including sex, blood group, etc. may impact on the clinical

manifestations of COVID-19 following respiratory infection with SARS-CoV-2, thus complicating the iden-

tification and prognosis of a common molecular pathogenic mechanism.

Major international initiatives are underway to unravel the pathogenesis of severe COVID-19. Despite these

efforts, our knowledge of COVID-19 pathophysiology is very limited and has been compounded by the

complex interplay with a range of comorbid conditions. Recently, rare germline mutations impairing

TLR3 and IRF7 dependent type I interferon immunity were found to be causal for a minor subset of patients

with critical COVID-19 (Bastard et al., 2020; Zhang et al., 2020d). At least 10% of critical COVID-19 cases can

be explained by the presence of their autoimmune phenocopy, in the form of neutralizing autoantibodies

to type I IFNs (Bastard et al., 2020; Zhang et al., 2020c, 2020d). From the international COVID-19 Host Ge-

netics Initiative, thirteen loci have been found to be associated with severe COVID-19, with OR < 2, and

were subsequently replicated in other independent population cohorts (Initiative, 2021; Severe Covid
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et al., 2020). Yet, these signals fail to explain the pathophysiology of most of the critical COVID-19 cases

(Hameid et al., 2021), demonstrating that the severity and progression of the disease is largely determined

by acquired regulatory factors impacting the individual patients host response.

The transcriptional signature in severe COVID-19 provides insight into this host response by identification

of differentially expressed genes enriched in specific key pathophysiological pathways. Traditionally,

studies have performed RNA-seq analyses on bulk tissue samples. While this approach yields important

information in homogeneous cell samples, data become increasingly difficult to interpret with complexity

of multicellular organs or samples such as lung or blood. More recently, this limitation has been overcome

by single-cell RNA sequencing which has been successfully utilized to analyze transcriptomic profiles in het-

erogeneous cell samples of patients with severe COVID-19, including blood peripheral mononuclear cells

(PBMCs), bronchoalveolar lavage fluid (BALF), and lung and airway epithelium (Aschenbrenner et al., 2021;

Chua et al., 2020; Schulte-Schrepping et al., 2020). Collectively, these studies identified specific cell types

that are associated with or contribute to the development of critical COVID-19. Identification of specific

cellular signatures not only provides potential insight into the pathogenic mechanisms of severe COVID-19

but also yields important biomarkers for prognostic screening and personalized clinical management, as

early detection of patients at risk and escalation of medical management may help prevent serious com-

plications. Although several biological markers associated with immune response in COVID-19 have

been reported (Caruso et al., 2020; Laing et al., 2020; Malik et al., 2020), there remains a paucity of markers

that would allow the stratification of COVID-19 according to severity. We hypothesize that SARS-CoV-2

infection activates certain ‘‘cell type’’ with identifiable gene regulatory signature that are strongly associ-

ated with severe COVID-19 phenotypes (i.e., age, comorbidities). Our study incorporating single-cell anal-

ysis and clinical data demonstrates the association between specific cell types, modulator genes, and

COVID-19 severity with age and comorbidities.

RESULTS

Single-cell transcriptomics and cell type characterization

To identify cell types associated with severe COVID-19, multiple single-cell transcriptomics data sets were

used. Control data sets 1 and 2 from healthy airways of 10 volunteers and healthy lungs of 4 donors, respec-

tively, were recreated from Deprez et al. (2020) and Madissoon et al. (2019) (Figures 1 and S1). We further

used 14 samples of BALF single-cell data (Liao et al., 2020), segregated them into control, moderate, and

severe COVID-19 samples and generated individual single-cell maps for each group. Using the signature

marker gene list from Liao et al.(2020), these recapitulated clusters from all combined samples were largely

defined as macrophages, myeloid dendritic cells, and T-cells; however, a major part of these clusters re-

mained ambiguous (Figure S2). We re-computed and identified a total of 19, 17, and 18 sets of clusters

for control, moderate, and severe samples consisting of 21,939, 7316, and 37,197 cells, respectively

(Figure 1).

To assign the corresponding cell type identity to each cluster, we utilized an in-house database (Table S1)

of specific markers of lung tissue cell types that was created using a combination of literature search (Dep-

rez et al., 2020; Grant et al., 2021; Madissoon et al., 2019; Reyfman et al., 2019) and cell marker databases

(Franzen et al., 2019; Zhang et al., 2019). A specific cell type was defined for a particular cluster if it had a

distinct higher normalized expression (by comparison of medians) for the respective signature marker

genes from the database (Figure S3). Overall, the clusters of severe COVID-19 samples were constituted

by basal cells, vascular cells, dendritic cells, ionocytes, monocyte-derived alveolar macrophages, plasma

cells, and alveolar epithelial cells (Figure 2A). Clusters in control and moderate COVID-19 samples were

assigned analogously (Table S2; Figure S4).

Comorbid gene set upregulation in macrophage subtype cluster 11

We have used genes that are associated with severe COVID-19 comorbid conditions to identify specific

activated cell types that are highly regulated in severe COVID-19 phenotypes. The list included encoding

cytokines and cytokine receptors, or associated with rare infectious diseases, rare syndromes, chronic

obstructive pulmonary disease, cardiovascular disease, hypertension, obesity, and diabetes (Table S3).

The enrichment analysis of cluster genes with comorbid gene lists revealed that eight of the nine auxiliary

COVID-19 comorbid condition genes were exclusively upregulated in cluster 11 in severe COVID samples

(Figures 2B and S5). Severe cluster 11 was marked as monocyte-derived alveolar macrophages (MoAMs), as
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indicated by the presence of CCl3L1 (Figure 2A). This particular MoAM subtype was not found in any of the

moderate or control clusters.

Macrophage cell subtype-associated pathways

To further characterize theMoAM cell subtype, the functional enrichment of DE genes in specific biological

pathways was examined using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology

(GO) gene sets (Table S4). These analyses revealed that the identified MoAM cell subtype is involved in

host immune response signaling networks related to TNFa (p < 2.79 3 10�25), cytokine and interferon

gamma responses (p < 1.80 3 10�22), the response to type1 interferon and biotic stimulus (p < 2.75 3

10�17), and innate immune and inflammatory responses (p < 1.09 3 10�16), which were visualized using

Cytoscape (Figure 2C).

FCGR3B-restricted expression in MoAM cell subtype of severe COVID-19 cluster

Since severe cluster 11 (or MoAM cell subtype) was enriched with both COVID-19 comorbid condition

genes and immune response pathways, the signature genes for this specific cell type were analyzed in

detail. Primarily, we selected the top 20 genes from cluster 11 based on significant expression fold change

defining the marked difference of relative expression of genes with respect to other clusters for samples

from control, moderate, and severe patients (Figure S6). We further analyzed the expression of these indi-

vidual genes across all the clusters of control data set 1, control data set 2, control data set 3, moderate and

severe data sets both qualitatively (Figure S7) and quantitatively (Figures S8 and S9). We then selected the

genes that were exclusively enriched in cluster 11 of the severe data set andminimally expressed in all other

clusters of severe, moderate, and control patients. By this approach, we identified the most differentially

regulated gene that demarcated cluster 11 in samples from patients with severe COVID-19, namely

FCGR3B (Figures 3A and 3B). FcRs regulate both adaptive and innate immune responses which are crucial

for the defense against infection and prevention of chronic inflammation or autoimmune diseases.

Upon crosslinking by immune complexes, FcRs mediate important immune responses such as release of

Figure 1. Single-cell transcriptomics data

Construction of cell clusters from single-cell RNA-seq derived from upper (airway epithelium) and lower respiratory tract

(lung) in healthy controls, bronchoalveolar lavage fluid (BALF) within control, moderate and severe COVID-19 donors.

Clustering of single-cell transcriptome data shown is defined by the uniform manifold approximation and projection

(UMAP) plot and each color represents a unique cluster. Tissue region from where samples were collected, number of

donors and number of cells are depicted in the figure.
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cytokines or phagocytosis (Ben Mkaddem et al., 2019). Expression of FcR genes in clusters of control, mod-

erate, and severe data sets were monitored, and we found selective upregulation in severe cluster 11 to be

specific for FCGR3B as compared with other FcR (CD16 encoding) genes (Figure 3C). The expression of

FCGR3B was then validated in another single-cell BALF data set (Grant et al., 2021) in which upregulation

of FCGR3B in severe COVID-19 samples as compared with control was again evident (Figure 3D, p < 1.083

10�143). We then assessed the expression of FCGR3B in bulk PBMC data (Arunachalam et al., 2020) (Fig-

ure 3E, p = 0.02) and found FCGR3B expression to be restricted to non-classical monocytes in multiple

blood single-cell data sets (Can Liu et al., 2021; Schmiedel et al., 2018) (Figures 3F and S10).

We further validated the expression of FCGR3B in a bulk data set from nasopharyngeal swabs and

observed upregulation of FCGR3B in severe COVID-19 samples compared with control (Figure 4A,

p = 0.004). CCL3L1-CCR5 signaling is important in several inflammatory responses, including macrophage

function, and T-cell-dependent immune responses (Menten et al., 2002) andCCL3L1 is a specific marker for

MoAM (Grant et al., 2021). We thus looked at the expression of FCGR3B in severe cases with upregulated

expression ofCCL3L1 in bulk nasopharyngeal data (Figure 4A, p = 7.893 10�5) compared with severe cases

with low CCL3L1 expression. Similar analysis was performed for another candidate gene, FFAR2, exclu-

sively expressed in severe cluster 11 (Figure S11). Additionally, elevated levels of TNF-ɑ have been re-

ported in COVID-19 patient samples (Del Valle et al., 2020; Feldmann et al., 2020) and TNF-a is considered

an indicator of severity in COVID. As TNFAIP6 was also restrictively expressed in severe cluster 11, similar

analysis was performed. Yet, in contrast to FCGR3B, the expression of TNFAIP6 (indicator of COVID-19

Figure 2. Cluster identity and classification

(A) Severe COVID-19 cluster annotated using signature marker gene list.

(B) The mean expression (y axis) of genes that are associated with comorbid diseases with severe COVID-19 (x axis) of

MoAM_CCL3L1 (circled red) cell type within severe COVID-19 bronchoalveolar lavage fluid (BALF) shown in box plot. 99th

percentile expression value from the severe dataset is marked using red dotted lines. Y axis represent the mean of log

normalized expression value for comorbid genes across the cell clusters.

(C) Pathway analysis of MoAM_CCL3L1 cluster drawn using Cytoscape. Color gradient and size of nodes represents

p value and Odds ratio, respectively.
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severity) and CCL3L1 (marker for MoAM) is not restricted to one cluster in all three datasets (Figures S8,

S9 and S12).

FCGR3B upregulation in severe COVID-19 clinical samples

To test whether FCGR3B can be used as a marker for COVID-19 severity, we used clinical samples of severe

COVID-19 patients obtained from Dubai Health Authority. The nasopharyngeal swabs of critical (hospital-

ized in intensive care unit (ICU)) qPCR positive COVID-19 patients (n = 31) and qPCR negative controls

Figure 3. Cell type specific marker characterization

(A) Feature plot showing restricted expression of FCGR3B in severe cluster 11 and not in control.

(B) Boxplot showing higher mean expression (gray) and fold change (blue) of FCGR3B gene in severe cluster 11 compared to control, moderate and other

severe clusters. Y axis represents the mean of log normalized expression value for each gene across the cells.

(C) Dotplot showing expression of the FcR genes (FCGR1A, FCGR1B, FCGR2A, FCGR2B, FCGR3A - Fc Fragment Of IgG Receptor Ia, Ib, IIa, IIb, IIIa

respectively, FCGBP - Fc Fragment Of IgG Binding Protein, FCGRT - Fc Fragment Of IgG Receptor And Transporter) in the control, moderate and severe

clusters.

(D) Validation of expression of FCGR3B in severe COVID-19 (red) and control samples (gray) using single-cell BALF data. The y axis represents the log

normalized expression value calculated using Seurat. Expression counts per cell were divided by the total counts for that cell (sequencing depth) and

multiplied by the 10,000 (scale factor), which was then log transformed.

(E) Validation of expression of FCGR3B in severe COVID-19 (red) and control samples (gray) using bulk PBMC data.

(F) Dotplot showing higher restricted expression of FCGR3B in non-classical monocytes of normal immune cells as extracted from RNAseq of DICE

(Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs) and Epigenomics).
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Figure 4. FCGR3B as a modulator of COVID-19 severity

(A) Validation of expression of FCGR3B in severe COVID-19 (red) and control samples (gray) using bulk nasopharyngeal

data. Expression of FCGR3B in severe COVID-19 samples having CCL3L1 downregulated and upregulated expression.

For the bulk RNA seq data, y axis represents the log transformed count per million expression value computed using

EdgeR package.
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(n = 11) were subjected to RNA isolation and qPCR analysis for FCGR3B and FFAR2. Among patients with

severe COVID-19, 50% had greater than 1.5-fold change of FCGR3B compared with 28.1% in controls (Fig-

ure 4B). Moreover, 57.1% of patients with severe COVID-19 with comorbidity had greater than 1.5-fold

change of FCGR3B compared with 28.1% in controls (Figure 4C, p = 0.01, Figure S13; Table S5). Further,

among patients with COVID-19, the frequency of cases with fold change of FCGR3B greater than 1.5

was significantly higher among patients older than 60 years compared with younger patients (20–40 years)

(Figure 4D, p = 0.04). Similar analysis was performed for FFAR2 gene (Figure S14), which did not however

show any significant association with COVID-19 severity.

In vitro upregulation of FCGR3B in spike protein stimulated obese subjects

Since severity of COVID-19 is associated with obesity (Stefan et al., 2021), we performed in vitro experi-

ments on tissue samples from obese patients. Normal human primary bronchial epithelial (NHBE) cells

were obtained from non-obese and obese subjects and stimulated with 1 mg/mL of SARS-CoV-2 spike pro-

tein. Conditionedmedia were harvested, added to culturedmonocytes, and incubated overnight. The cells

were pelleted for RNA extraction, subjected to reverse transcription, andmRNAexpression of FCGR3B and

GAPDH (as housekeeping gene) was measured. The expression of FCGR3B in monocytes treated with

conditioned medium from spike protein stimulated NHBE of obese subjects was significantly higher

than in non-obese subjects (p = 0.006), suggesting FCGR3B as a potential modulator of COVID-19 severity

in patients with obesity (Figure S15, Tables S6, S7, S8).

DISCUSSION

Severe COVID-19 manifests primarily as a respiratory disease but may involve multiple systemic organs as

the disease progresses. Specific cell types and major regulatory genes that confer progression to critical

illness in some patients following SARS-CoV-2 infection are, however, poorly understood. SARS-CoV-2 pri-

marily infects the respiratory epithelium, and although the presence of viral components in blood or

systemic organs has occasionally been documented, it seems that disease progression in both lungs

and systemic organs is largely governed by a dysregulation of inflammatory and pro-coagulatory responses

rather than viral infection of the respective organ per se. Previous single-cell transcriptome analyses

(Aschenbrenner et al., 2021; Chua et al., 2020; Schulte-Schrepping et al., 2020) reported differentially regu-

lated cell types that lacks the connection of severe COVID-19 phenotypic indicators (i.e., age, comorbid-

ities). In this study, we have identified a subtype of macrophage where regulatory genes are associated with

severe COVID-19 phenotypic indicators.

BALF has been widely used for diagnosis and study of lower respiratory airway infections (Kahn and Jones,

1987) including SARS-CoV-2 (Liao et al., 2020), due to its limited invasiveness and ability to reflect patho-

physiological processes in the distal airspaces. We thus analyzed cell type maps of BALF and lung at single-

cell resolution to account for the dynamic nature of cellular responses by numerous cell types and identify

modulators specific and potentially critical for the development from SARS-CoV-2 infection to severe

COVID-19. Host immune response is our primary defense against acute COVID-19 infection, yet if dysre-

gulated may also lead to simultaneous injury of host organs and tissues. Tissue injury because of an uncon-

trolled inflammatory response is the main driver for lung injury in patients with severe COVID-19, which

often develops and persists long after the virus has already been eliminated, and determines disease

severity, progression, and outcome (Zhang et al., 2020b). Since the onset of the COVID-19 pandemic,

various adaptive and innate immune cells have been implicated in this dysregulated immune response

including T cells, B cells, neutrophils, as well as MoAMs (Hosseini et al., 2020; Zhou et al., 2020a). Impor-

tantly, recruitment of MoAM into the lungs has recently been documented in African green monkeys

infected with SARS-CoV-2 (Hartman et al., 2020). Besides, it was also demonstrated that SARS-CoV2 abor-

tively infects the monocyte-derived macrophages and dendritic cells causing cytokine and chemokine

storm and type I IFN–mediated cell death (Zheng et al., 2021). In the present study, we identified a FCGR3B

upregulated alveolar macrophage subtype that was derived from recruited monocytes. We have identified

an abundance of this FCGR3B upregulated monocyte-derived alveolar macrophage cell population

Figure 4. Continued

(B) Fraction of samples with fold change of FCGR3B greater than 1.5 in severe COVID-19 patients and control.

(C) Fraction of samples with fold change of FCGR3B greater than 1.5 in severe COVID-19 patients with comorbidity and

control.

(D) Fraction of samples with fold change of FCGR3B greater than 1.5 across different age group.
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(cluster 11 marked by CCL3L1) in multiple tissue data sets of respiratory samples from severe COVID-19

single-cell and bulk transcriptomes, while this cell population was absent in moderate COVID-19 and con-

trol samples (Figure S4). The expression level per cluster for CCL3L1 and FCGR3B marker in severe, mod-

erate and control single-cell transcriptome data clearly reveals a distinct pattern of FCGR3B and restrictive

expression for MoAM (cluster 11) in severe COVID-19 cases (Figure S7; Tables S10–S12).

We have adopted an in silico analysis comprising of all genes known to be associated with severe

COVID-19 comorbid conditions to identify this disease associated cell types. Underlying comorbidities

of patients with COVID-19 including pre-existing cardiovascular conditions (Guan et al., 2020), diabetes

(Bhatti et al., 2020; Zhu et al., 2020), chronic obstructive pulmonary disease (Zhao et al., 2020), and others

only weakly contribute (OR <2) to the severity of infection (Wang et al., 2020). We utilized all genes asso-

ciated with the aforementioned comorbidities to hone into cell types in multiple tissues. We identified a

subtype of MoAM where these severe COVID-19 comorbid associated genes are highly expressed (Fig-

ure 2B). Using different transcriptomic and genomic techniques, we validated the specificity of this subtype

of macrophages that is characterized by FCGR3B gene for severe COVD-19. Moreover, our pathway anal-

ysis revealed enrichment of the identified MoAM subtype cell population genes in inflammatory signaling

networks including TNFa, cytokine and interferon gamma response, response to type1 interferon and bi-

otic stimulus, innate immune and inflammatory response (Figure 2C). This association is particularly note-

worthy since type I IFN signaling is suggested to be a key player in COVID-19, given that IFNs type I and III

inhibit SARS-CoV-2 in a dose-dependent manner (Felgenhauer et al., 2020).

The restricted expression of FCGR3B in a comorbid gene set enriched severe COVID-19 cell type (Fig-

ure 3A) makes FCGR3B an interesting candidate marker gene for severe COVID-19, a notion that is further

supported by the finding that FCGR3B was selectively expressed in severe cluster 11 compared with other

FcR family genes (Figure 3C). The FCGR3B gene is unique amongst the FcR genes in that it encodes a GPI-

anchored receptor, FcgRIIIb (CD16b). Although this receptor is typically known to be expressed on the

surface of neutrophils and basophils (Simmons and Seed, 1988), recent single-cell transcriptome data sug-

gests FCGR3B gene expression is significantly high in non-classical monocytes (Can Liu et al., 2021;

Schmiedel et al., 2018). In the data sets analyzed in our present study, FCGR3B showed severe COVID-

19 specific expression that was restricted to a subtype of monocyte-derived macrophages which also

showed upregulation of CCL3L1, a known inflammatory marker for MoAMs (Tables S10–S12). This restric-

tive expression of FCGR3B was not observed in any of the control or moderate clusters (Figure S16) con-

firming the selective upregulation in MoAM_CCL3L1 (severe cluster 11). MoAMs are alveolar macrophages

differentiated fromperipheral bloodmonocytes (Evren et al., 2021) that are recruited to the lungs upon viral

exposure. Upregulation of FCGR3B might shed insight into the recruitment of such monocyte as part of

host response. In contrast, it has also been suggested that decreased FCGR3B copy number will lead to

reduced immune complex clearance (Qureshi et al., 2017). Among the three monocyte subtypes, the

non-classical population with low LPS co-receptor CD14 and high FCgIII receptor CD16 surface expression

is found to be predominant (Sanchez-Cerrillo et al., 2020; Zhang et al., 2020a). As a result, the differentiated

macrophages possess inflammatory and antigen presentation characteristics, thereby orchestrating anti-

viral and fibrotic responses within the lungs. Based on the abundance of FCGR3B upregulated MoAMs,

it is possible that dysregulated macrophage response to SARS-CoV-2 infections may promote injury to

the host tissue due to macrophage activation syndrome (Merad and Martin, 2020) or serve as a Trojan

horse, enabling specific viral anchoring to the pulmonary parenchyma (Abassi et al., 2020).

Upregulation of FCGR3B in severe COVID-19 was validated in datasets frommultiple tissue types including

single-cell BALF, bulk PBMC and bulk nasopharyngeal data (Figures 3D, 3E, and 4A). As CCL3L1 is a known

marker for MoAM (Grant et al., 2021) with important roles in macrophage function (Menten et al., 2002), we

demonstrated in silico that FCGR3B is highly expressed in nasopharyngeal swabs within CCL3L1 high cells

compared to CCL3L1 low cells. In addition to validating our initial findings, this transition of analysis from

BALF to nasopharyngeal swabs is of potential clinical relevance given that the latter are the most available

tissue type with the prospect for mass screening in the future. A cohort of severe COVID-19 patients from

Dubai also exhibited a significantly higher fraction of severe patients with upregulated FCGR3B compared

with controls (Figure 4B). This association was evenmore evident for severe patients with a higher burden of

comorbid conditions or age (Figures 4C and 4D). Our identification of high FCGR3B expression in severe

COVID-19 patients suggest a potential role of the corresponding protein product, FcgRIIIb, in the recruit-

ment and activation of other immune cells to the infection site. The resulting cytokine storm may in turn
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promote lung injury and disseminate the course of the pathological events to other organs via systemic cir-

culation (Quan et al., 2020). Furthermore, genomic variants, copy number variations, and single-nucleotide

polymorphisms within FCGR3B have been shown to be significantly associated with several autoimmune

diseases (Bournazos et al., 2011; McKinney andMerriman, 2012). However, conditional FCGR3B expression

in CCL3L1 positive isolated cells in the nasopharyngeal swabs would have precisely defined the correlation

among MoAM, FCGR3B, and COVID-19 severity. The direct functional role of FCGR3B in dysregulated im-

munity in general, and COVID-19 specifically remains to be elucidated.

In summary, FCGR3B is upregulated in a macrophage subtype (MoAM_CCL3L1) that is only observed in

severe COVID-19 cases, hence differential regulation due to comorbidities or genetic mutations that

impair FCGR3B are predicted to contribute to the severe course of COVID-19. The integrated, multidimen-

sional approach in our study lays the foundation for understanding the role of the FCGR3B gene positive

subtype of MoAM in COVID-19 severity, which may pave the way for novel immune-targeted therapies. It

will be valuable to investigate whether MoAM cells or FCGR3B gene could be used in adoptive cellular

therapies to curb COVID-19-associated symptoms.

Limitations of the study

The small sample size of this cohort is a limitation (31 patients with severe COVID-19 and 11 healthy con-

trols). Although we did qPCR validation for FCGR3B using nasopharyngeal swabs (due to availability), the

ideal validation sample would be flow cytometry-sorted macrophages from BALF region.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

SARS-CoV-2 spike protein (S1+S2) Sino Biological Inc Cat# 40591-V08H, 40590-V08B

Biological Samples

Nasopharyngeal swab

d Covid19 severe patients

d Control

Dubai Health Authority DSREC-04/2020_02

Chemicals, Peptides, and Recombinant Proteins

RiboZol RNA extraction reagent VWR Cat# DFU-N580

Critical Commercial Assays

QIAamp Viral RNA Mini or the EZ1 DSP Virus

Kits

Qiagen Cat# 955134

RNeasy 96 QIAcube HT Kit Qiagen Cat# 74171

High-Capacity cDNA Kit Applied Biosystems Cat# 4368814

Taqman Fast advanced master mix ThermoFisher Scientific Cat# 4444557

AccuRT Genomic DNA Removal Kit Applied Biological Materials Cat# G488

All-In-One Reverse Transcriptase Mastermix Applied Biological Materials Cat# G592

EvaGreen qPCR Mastermix Applied Biological Materials Cat# Mastermix-S

Deposited Data

Healthy control airway scRNAseq Deprez et al., 2020 https://www.genomique.eu/cellbrowser/

HCA/HCA_airway_epithelium/exprMatrix.tsv.

gz

Healthy control lung scRNAseq Madissoon et al., 2019 https://cellgeni.cog.sanger.ac.uk/tissue-

stability/lung.cellxgene.h5ad

COVID-19 Patient BALF scRNAseq Liao et al., 2020 GEO: GSE145926

COVID-19 Patient bulk PBMC RNAseq Arunachalam et al., 2020 GSE152418

COVID-19 Patient bulk nasopharyngeal

RNAseq

GSE152075

COVID-19 Patient BALF scRNAseq Grant et al., 2021 GSE155249

Experimental Models: Cell Lines

Normal human primary bronchial epithelial

(NHBE) cells from non-obese and obese

subjects

MatTek and ATCC or obtained from the

Biobank of the Quebec Respiratory Health

Research Network at the Meakins-Christie

Laboratories, Research Institute of the McGill

University Health Center (GLEN site)

NA

Oligonucleotides

FCGR3B qPCR probe Applied Biosystems Hs04334165_m1

FFAR2 qPCR probe Applied Biosystems Hs00271142_s1

glyceraldehyde-3-phosphate dehydrogenase

qPCR probe

Applied Biosystems Hs02786624_g1

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the corresponding author, Mohammed Uddin (mohammed.uddin@mbru.ac.ae).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Multi-donor datasets from three separate studies were used in this work and these can be found under the

following accession numbers: GEO: GSE145926 (Liao et al., 2020), https://www.genomique.eu/

cellbrowser/HCA/HCA_airway_epithelium/exprMatrix.tsv.gz (Deprez et al., 2020), https://cellgeni.cog.

sanger.ac.uk/tissue-stability/lung.cellxgene.h5ad (Madissoon et al., 2019). Additional Supplemental Items

are available fromMendeley Data at https://data.mendeley.com/datasets/mkz6jfywmd/1, https://doi.org/

10.17632/4fg7c8t568.1.

Analyses were conducted in R and Python; all codes for analyses have been deposited at Github and is

available online at https://github.com/MBRULab/2021_Nassir-etal.

Any additional information required to reanalyze the data reported in this paper is available through

personnel contact with the corresponding author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects and ethics approval

Sociodemographic and clinical data were extracted from the electronic medical records of the patients

with laboratory confirmed SARS-CoV-2 from 20 April to 06 May 2020 using the WHO case report form.

Cases were categorized into two groups based on disease severity: severe/critical cases with advanced dis-

ease and pneumonia requiring admission to intensive care units and specialized life-support treatment

(e.g., mechanical ventilation) and control (SARS-CoV-2 negative). This study was approved by the Dubai

Scientific Research Ethics Committee-Dubai Health Authority (approval number #DSREC-04/2020_02).

The requirement for informed consent was waived as this study was part of a public health surveillance

and outbreak investigation in the UAE. Nonetheless, all patients treated at a healthcare facility in the

UAE provide written consent for their deidentified data to be used for research and this study was per-

formed in accordance with the relevant laws and regulations that govern research in the UAE. The age

and sex data for the cohort is included in Table S5.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Scanpy (version:1.7.0) https://scanpy.readthedocs.io/en/stable/

Seurat (version: 3.2) https://satijalab.org/seurat/

Custom Source Code Github Folder:

MBRULab/2021_Nassir-etal

https://github.com/MBRULab/2021_Nassir-

etal

Other

PanglaoDB Franzen et al., 2019 https://panglaodb.se/

CellMarker Zhang et al., 2019 http://biocc.hrbmu.edu.cn/CellMarker/

Immunology Database and Analysis Portal Bhattacharya et al., 2018 https://www.immport.org/

Cytoscape https://cytoscape.org/

Sfari https://gene.sfari.org/

GWAS catalog https://www.ebi.ac.uk/gwas/
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METHOD DETAILS

Single-cell transcriptome datasets and clustering

The single-cell RNA-seq data for control and COVID-19 patients were obtained from three different

studies. The first control dataset was assembled using the expression matrix and the metadata for the hu-

man healthy airway downloaded from Deprez et al. (2020). This study involved 35 samples collected from 4

distinct locations of 10 healthy volunteers: the nose (lower turbinate), the trachea/carina, intermediate

bronchi, and distal bronchi. The sampling methods used were (superficial/luminal) brushings and (deep)

biopsies. 77,969 cells were collected in total (having the largest cell size present within the nasal region)

with 1,892 expressed genes detected per cell. The second control dataset was retrieved using the healthy

lung’s H5AD file consisting of 57,020 cells from 4 donors (Madissoon et al., 2019). In this case, spleen,

esophagus, and lung samples were collected from deceased donors and placed in HypoThermosol FRS

solution for 12 to 72 hours (stored at 4�C), and the quality of collected samples was monitored at regular

time intervals. The third dataset was retrieved from bronchoalveolar lavage fluid (BALF) single cell (Liao

et al., 2020). BALF was collected from 3 healthy controls (control dataset 3) and 9 hospitalized COVID-19

patients, 3 of which had a moderate infection (Moderate COVID-19 dataset) and the rest had a severe dis-

ease course (Severe COVID-19 dataset).

The clusters for all the datasets were reproduced mostly using the standard analysis steps (Deprez et al.,

2020; Liao et al., 2020; Madissoon et al., 2019; Tambi et al., 2021) as mentioned in their respective research

articles to recapitulate the basic cluster topology. Scanpy (version:1.7.0) was used for processing the con-

trol dataset 1 and 2. Single-cell object was constructed from the expressionmatrix and themetadata down-

loaded for the control dataset1. PCAs were computed and the highly variable 12 PCs were selected from

the elbow plot for calculating the neighbors. Furthermore, PhenoGraph which employs unsupervised

k-nearest neighbor (KNN) technique was used to detect the clusters and the cluster connectivities were

calculated using the partition-based graph abstraction (PAGA) method which is an additional step used

in our analysis (not used by Deprez et al.) to help precisely mark the clusters of large single-cell datasets.

Finally, UMAP was used for visualizing the clusters in a reduced dimensional space and the reproduced

clusters were topologically compared with the UMAP from Deprez et al. The availability of H5AD object

for the control dataset 2, facilitated the replication of the clusters. In case of the BALF dataset (Liao

et al), we processed the healthy control, moderate and severe samples separately. The batch corrected sin-

gle cell transcriptomematrix (h5seurat object) was used for downstream analysis in our study. Batch correc-

tion includes canonical correlation analysis (CCA) to find the correlations across datasets, following which

the mutual nearest neighbors aiding as ‘anchors’ are computed in the CCA subspace to correct the data.

We used Seurat (version: 3.2) to analyze 21939, 7316, 37197 cells for the control, moderate and severe sam-

ples, respectively. The cells were filtered based on quality control metrics which involved filtering the cells

which had less than 200 feature counts and features expressed in less than 3 cells. The filtered data were

normalized (log(expression/total*10000)) using the ‘LogNormalize’ function, the data were scaled, prin-

cipal components were calculated and using the top PCs showing maximum variance, clusters were

computed using ‘FindClusters’ which were visualized using UMAP. Different single cell transcriptome

data were analyzed separately. Hence, each data do not impact the other and downstream analyses has

negligible batch effect after the standard corrections. Eventually, the differentially expressed genes

(DEG) were identified for each computed cluster using three statistical tests: Wilcoxon-ranked sum test,

t-test, t-test overestimated variance (Table S9). DEGs were considered if all three tests showed significance.

DEGs were computed using the ‘FindMarker’ function of Seurat and the probability value were estimated

with respect to all other clusters within each dataset.

Cluster identity analysis

An in-house database consisting of canonical markers for cells associated to human lung region was con-

structed using a combination of literature search (Deprez et al., 2020; Grant et al., 2021; Madissoon et al.,

2019; Reyfman et al., 2019), PanglaoDB (Franzen et al., 2019), and CellMarker (Zhang et al., 2019) databases.

This dataset was curated by merging the recurring cell type and duplicate genes were removed. Our final

marker database consisted of 38 cell types represented by a total of 966 unique marker genes (Table S1).

The cell type specific genes were mapped onto the clusters. Box plots were used to analyze their expres-

sion and the cell type identity was assigned based on the highest normalized median expression value for

each cluster (Table S2).
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COVID-19 comorbid genes

A list of COVID-19 associated genes (Table S3) was collated to analyze and compare their expression

among control, moderate and severe COVID-19 clusters. Since COVID-19 is supplemented by an enor-

mous release of pro-inflammatory cytokines, the list consisted of cytokine and cytokine receptor genes,

in addition to the rare infection and syndromic genes accounting for the genetic predisposition, lung chan-

nel genes, differentially expressed genes from COVID-19’s BALF transcriptome (Zhou et al., 2020b) and

genes associated with key comorbid conditions such as chronic obstructive pulmonary disorder, cardiovas-

cular disease, hypertension and diabetes. The list of cytokine and cytokine-receptor genes were retrieved

from the immunology Database and Analysis Portal (Bhattacharya et al., 2018). The monogenic infection

gene list was retrieved (Casanova, 2015). Syndromic genes (category S) were collected from the Simons

Foundation Autism Research Initiative (https://gene.sfari.org/). Primary comorbid disease genes associ-

ated with Covid-19 were extracted from GWAS catalog (https://www.ebi.ac.uk/gwas/), where the selected

genes had a probability < 10-7. The single cell dataset was annotated for these 10 gene lists. The normal-

ized expression of these genes was plotted for all the clusters of the control, moderate and severe datasets.

Pathway analysis

Gene enrichment analysis using R (Gene Overlap package) and Cytoscape was used to analyze the path-

ways specifically for severe cluster 11. The enriched set of genes along with their gene set (GMT) file (con-

sisting of KEGG andGOpathways) were uploaded in the Cytoscape. Theminimum number of gene overlap

was set to 5 and the false decision rate and p-value cut off was 0.01 and 0.001, respectively. Then, the

network was built using the enrichment map and the auto annotate plugin in Cytoscape application.

The node color (red-white gradient) and size (low to high) was set based on increasing p-value and

odd’s ratio, respectively.

Gene expression dataset for validation

We selected the top 20 genes upregulated in cluster 11 based on their fold change values and further

segregated the cluster 11 restrictive marker genes by examining their expression patterns in feature plots,

dot plots and box plots. Three RNAseq dataset were used to analyze the expression of the cluster specific

marker genes. Two bulk transcriptomic dataset (GSE152418 and GSE152075) and one single cell data

(GSE155249) were downloaded from the NCBI Gene Expression Omnibus (GEO) database. GSE152418

consisted of peripheral blood mononuclear cells (PBMC) RNAseq data from 17 COVID-19 and 17 healthy

subjects. The expression matrix consisted of raw counts for 60,683 genes. GSE152075 consisted of naso-

pharyngeal RNAseq data from 430 COVID-19 subjects and 54 negative controls. The expression matrix

consisted of raw counts for 35,785 genes. We used ‘cpm’ from edgeR package to generate counts per

million values. It was used to generate the ‘DGEList’ object and we finally calculated the ‘log’ of the

cpm values which were used in further analysis. Further, we used BALF single cell data GSE155249 to

analyze the marker gene expression. This dataset consisted of samples from five severe COVID-19 patients

and one control from a patient with bacterial pneumonia. The expression matrix consisted of 11,217 and

28,114 cells of the control and COVID-19 samples, respectively, for 20,128 genes. The expression data

was normalized using ‘‘LogNormalize’’ method which divides the individual gene expression for a cell by

the total expression, multiplies it by a scale factor of 10,000 (default), and log-transforms the product.

The gene expression between the control and COVID-19 samples were compared and plotted using the

top 5% data.

Extraction of total human RNA from nasopharyngeal swabs

The nasopharyngeal swabs of severe hospitalized and in ICU COVID-19 patients tested positive (n=31) for

SARS-CoV-2 by RT-qPCR following the QIAamp Viral RNA Mini or the EZ1 DSP Virus Kits (Qiagen, Hilden,

Germany) and the control (qPCR negative) swabs (n=11) were used in the study. Human RNA was extracted

from nasopharyngeal swabs using RNeasy 96 QIAcube HT Kit (Qiagen USA) as per the manufacturer’s in-

structions. 2 ml of Universal Transfer Medium (UTM) was transferred to a clean, sterile Eppendorf tube and

centrifuged at 4000 rpm for 3 min. 1650 ml of supernatant was carefully removed without disturbing the

pelleted squamous and respiratory epithelial cells. Pellet was resuspended with the remaining 350 ml of

Universal Transfer Medium (UTM) and transferred to S Block (RNeasy 96 QIAcube HT Kit, Qiagen USA).
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Quality and quantity of the extracted RNA was determined using NanoDrop� 8000 Spectrophotometer

(ThermoFisher Scientific, USA) and reverse transcribed to cDNA using a High-Capacity cDNA Kit (Applied

Biosystems, Foster City, CA) according to the manufacturer’s protocol.

qPCR of FCGR3B and FFAR2 in severe COVID-19 patients

Quantitative real-time RT-PCR was performed using the Quantstudio 5 Real-time PCR detector with the

following probes from Applied Biosystems (Foster City, CA): FCGR3B (Hs04334165_m1), FFAR2

(Hs00271142_s1), and glyceraldehyde-3-phosphate dehydrogenase (Hs02786624_g1) using Taqman Fast

advanced master mix (ThermoFisher Scientific, USA). Hs04334165_m1 design was chosen avoiding homol-

ogy of other FCR gene family transcripts. Samples were prepared in a 96-well plate format in triplicates

along with no template control. The cycling conditions consisted of an initial incubation at 50�C for

2 min, polymerase activation at 95�C for 5 min, followed by 40 amplification cycles at 95�C for 1 s, 60�C
for 20 s. Relative levels of mRNA gene expression were calculated using the 2�DDCT method and fold

change was plotted.

Lung epithelial cell culture

Normal human primary bronchial epithelial (NHBE) cells from non-obese and obese subjects were pur-

chased from a commercial source (MatTek, MA, USA and ATCC, VA, USA) or obtained from the Biobank

of the Quebec Respiratory Health Research Network at the Meakins-Christie Laboratories, Research Insti-

tute of the McGill University Health Centre (GLEN site). Table S6 shows the data from the non-obese and

obese subjects. NHBE cells were cultured in BEGM media (Lonza, MD, USA) supplemented with 1% anti-

biotic antimycotic solution (Wisent, QC, CA) in tissue culture 12 well plates coated with Type 1 Rat tail

collagen (Sigma-Aldrich, Ontario, Canada). Cells were grown to 90% confluency and starved using

BEBM Basal Medium (Lonza, MD, USA) supplemented with 1% antibiotic antimycotic solution (Wisent,

QC, CA) over night. The next day cells were stimulated with 1ug/ml of SARS-CoV-2 spike protein

(S1+S2) (Sino Biological Inc., Beijing, China) for 3h. Culture media was collected in microtubes, centrifuged

5000g for 5 min. Supernatants were aliquoted into fresh microtubes and frozen at -80�C.

Monocyte isolation and culture

PBMCs from a healthy donor were isolated from 40ml of blood using SepMate-50 tubes (StemCell, BC, CA),

following manufactures protocol. PBMCs were re-suspended in RPMI 1640 supplemented with 1%

Penicillin/Streptomycin, Glutamax and 10% FBS (Wisent, QC, CA) (Gibco, MD, USA) (Wisent, QC, CA). A

differential cell count was performed on the PBMC cell suspension using the Beckman Coulter AC-T

DIFF cell counter and monocytes concentration was obtained. Calculated volume of PBMCs cell suspen-

sion was added to a 48 well plate to obtain 1x10^5 monocytes per well. Cell suspension was incubated

at 37�C, 5% CO2 for 3 h. Media from wells was removed and washed twice with PBS. Fresh complete

RPMI media with 0.5% FBS was added to each well and attached monocytes were incubated overnight.

The following day an aliquot of conditioned media from stimulated NHBE cells was thawed on ice and vor-

texed. 100ul of media was removed from wells and 100ul of NHBE conditioned media was added to

attached monocytes and incubated for 24 h. Media was then removed from cells and cell pellets were

used for RNA extraction.

RNA extraction and quantitative reverse transcription polymerase chain reaction (qPCR)

Extraction of total RNA from monocytes was preformed using phenol-chloroform extraction (RiboZol RNA

extraction reagent, VWR, Leicestershire, UK), as directed in the manufacturer’s instructions. Contaminated

DNA was removed from 500 ng of total RNA using the AccuRT Genomic DNA Removal Kit (Applied Bio-

logical Materials, Richmond, BC, Canada), following the manufacturer’s protocol. Reverse transcription

was preformed using the 5X All-In-One Reverse Transcriptase Mastermix (ABM). mRNA expression of

FCGR3B andGAPDH (housekeeping gene) were measured using EvaGreen qPCR Mastermix (ABM). Table

S7 shows forward and reverse primers used. The reaction was as follows: 5 ml of EvaGreenMastermix, 2 ml of

diluted cDNA (1/5), 0.6 ml of forward and reverse primers (10 mM) and 2.4 ml of nuclease free H2O. Each sam-

ple was tested in duplicates and the qPCR amplification was performed using CFX96 thermal cycler

(BioRad, Hercules, 130 CA, USA) and cycler conditions were set according to the manufacturer’s protocol.

The DCT method was used to measure gene expression: amount of target = CT ref /DCT.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Differential gene expression was analyzed using three tests, Wilcoxon-ranked sum test, t-test and t-test

overestimated variance. DEGs were computed using the ‘FindMarker’ function of Seurat and the probabil-

ity value were estimated with respect to all other clusters within each dataset. Pathway enrichment was

analyzed using GSEA method in the ‘‘fgsea’’ package. Statistical significance of normalized enrichment

scores was qualified, with a significance threshold of false decision rate and p-value cut off at 0.01 and

0.001, respectively. To quantify statistical significance, we have used R package and applied t-test and

Fisher’s exact test (qPCR).
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