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Abstract: Background: Most artificial intelligence (AI) systems are restricted to solving a pre-defined
task, thus limiting their generalizability to unselected datasets. Anomaly detection relieves this
shortfall by flagging all pathologies as deviations from a learned norm. Here, we investigate whether
diagnostic accuracy and reporting times can be improved by an anomaly detection tool for head
computed tomography (CT), tailored to provide patient-level triage and voxel-based highlighting
of pathologies. Methods: Four neuroradiologists with 1–10 years of experience each investigated
a set of 80 routinely acquired head CTs containing 40 normal scans and 40 scans with common
pathologies. In a random order, scans were investigated with and without AI-predictions. A 4-week
wash-out period between runs was included to prevent a reminiscence effect. Performance metrics
for identifying pathologies, reporting times, and subjectively assessed diagnostic confidence were
determined for both runs. Results: AI-support significantly increased the share of correctly classified
scans (normal/pathological) from 309/320 scans to 317/320 scans (p = 0.0045), with a corresponding
sensitivity, specificity, negative- and positive- predictive value of 100%, 98.1%, 98.2% and 100%,
respectively. Further, reporting was significantly accelerated with AI-support, as evidenced by the
15.7% reduction in reporting times (65.1 ± 8.9 s vs. 54.9 ± 7.1 s; p < 0.0001). Diagnostic confidence
was similar in both runs. Conclusion: Our study shows that AI-based triage of CTs can improve the
diagnostic accuracy and accelerate reporting for experienced and inexperienced radiologists alike.
Through ad hoc identification of normal CTs, anomaly detection promises to guide clinicians towards
scans requiring urgent attention.

Keywords: machine learning; neuroradiology; computed tomography; decision support; anomaly
detection; classification

1. Introduction

Advances in machine learning (ML) architectures, coupled with the broader avail-
ability of digitalized data and improvements of computational hardware, have allowed
for artificial intelligence (AI) tools to match and in some cases even surpass human per-
formance [1,2]. Many tasks in radiology, from the acceleration of image acquisition, to
the post hoc reduction of compromising artifacts and detection of various pathologies
can be improved through innovative AI techniques [3–5]. Despite having been validated
in their respective test settings, many AI systems are nonetheless still confronted with
high skepticism as it oftentimes remains unclear if their performance is confined to the
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environments in which they have been tested in or if they can be of true, real-world utility.
In radiology, AI solutions must furthermore be tailored toward a meaningful use-case
where they ideally perform a task that is either time-consuming or error-prone for the
radiologist to do. Analogous to the pilot–autopilot liaison, a human–machine interface
ideally emerges where laborious tasks such as data screening are performed by the AI
while decision-making remains confided to the human expert.

Multislice imaging in particular has recently witnessed the deployment of various
decision-support systems, mainly aimed at flagging emergency findings, such as large-
vessel occlusion in suspected stroke patients, or screening procedures such as CT-based
lung cancer detection [6,7]. While excellent diagnostic performance was reported for these
systems, they mainly consider single-class segmentations and thus remain of limited clinical
utility in an unselected cohort. Multi-class systems, on the other hand, have been proposed
for less data-intensive imaging modalities, such as chest X-ray and hip radiographs, that
are generally readily interpretable by the radiologist [8,9].

Previously, we have reported on the utility of an anomaly detection tool aimed at
identifying pathology in routinely acquired head CTs and providing subsequent triage
based on the lack or presence of a suspected pathology [10,11]. Importantly, this tool
has been designed to detect all types of intracranial pathologies and needs only weak
supervision during its training phase, circumventing the problem that supervised AI tools
require vast amounts of laboriously annotated data and can only detect what they have
previously been trained to “see”. To elucidate the potential role of this anomaly-detection
system in clinical routine, we here investigate the performance of neuroradiologists at
different experience levels asked to screen head CT scans both with and without the
AI support. We were particularly interested to compare the completeness of reports as
well as the reporting times for both approaches, hypothesizing that an efficient AI tool
improves both.

2. Materials and Methods
2.1. Study Dataset

For analysis, 80 head CT scans (1 scan/patient) acquired in the neuroradiology depart-
ment of a university hospital in March 2021 were included. The same hardware (Philips
Ingenuity 5000, Philips Medical Systems, Best, The Netherlands) was used in all patients
with local postprocessing according to a manufacturer-specific iterative model reconstruc-
tion (IMR3). Clinical reports, co-signed by at least two neuroradiologists, were used as
ground truth to define pathology labels and were additionally validated (using all available
information, including follow-up examinations) by the study coordinator (T.F.), not taking
part in the study-specific readings. In order to provide a representative case mix, the study
dataset consisted of 40 normal scans and 40 scans with various pathological findings. In
patients showing pathology, all pathology classes were documented, i.e., if a patient had an
intraparenchymal hemorrhage with accompanying intraventricular hemorrhage and mid-
line shift, the intraparenchymal hemorrhage was noted as main finding and intraventricular
hemorrhage as well as midline shift were noted as additional findings.

In decreasing order, the most common main findings in pathological scans were:
tumor (n = 10), subacute stroke (n = 7), intraparenchymal hemorrhage (n = 6), subarachnoid
hemorrhage (n = 5), late stroke (n = 4), acute subdural hematoma (n = 3), cavernoma (n = 2),
acute stroke (n = 2) and atrophy (n = 1).

As some scans had multiclass pathology labels, the mean number of findings per
pathological scan was 2.2.

2.2. Anomaly Detection Tool

The herein investigated anomaly detection tool was trained using a weakly supervised
machine learning strategy that only requires a globally annotated dataset, as more elab-
orately explained in [10]. In short, the network was trained with a dataset of 191 normal
head CT scans. In the training stage, all images were registered to an internal template
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to establish voxel-wise correspondence and define an internal reference atlas. Per-voxel
Gaussian density distributions were fitted across the training dataset. Next, an internal
reference atlas of a normal brain was defined by calculating the upper and lower bounds
for the density distributions mentioned above. ANTs (Advanced Normalization Tools)
framework was utilized for the multi-stage registration of images from the study set to the
template image of the internal atlas [12].

Outlier voxels were identified by comparing regions in the study set against the voxel-
wise upper and lower bounds of the confidence interval from the training step. The ratio of
outlier voxels to the entire brain volume was used to determine the patient level anomaly
score, ranging from 0 to 1. Based on this anomaly score, patients were categorized into
three classes (“normal”, “inconclusive”, “pathological”) via thresholding. These thresholds
were scanner-specific and have previously been calibrated on an independent validation set
(not included in this study) of 61 CT scans (globally labelled as “normal” or “pathological”)
from the local CT scanner to minimize the false positive rate under the constraint of a
false omission rate of 0, as explained in [10]. If the anomaly score was higher than the
pre-determined upper threshold (s > T-upper), the scan was labelled as “pathological” and
anomalous voxels were added to the heatmap. Anomaly scores below the pre-determined
lower threshold (s < T-lower), on the other hand, translated into “normal” labels for the
scan, while anomaly scores between T-upper and T-lower led to an “inconclusive” label.

Finally, a worklist with all patients of the study set was presented to the radiologist.
AI-support provided patient-level predictions into (a) normal (marked in green), (b) in-
conclusive (marked in white), (c) pathological (marked in red) as well as anomaly maps
with the outlier voxels to provide image-based guidance towards an underlying pathology
(Figure 1).
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level predictions “normal” (green), “inconclusive” (white) or “pathological” (red), as highlighted by
(1). Furthermore, pixel-wise segmentations of suspected pathology (3), as well as the distribution of
anomalous pixels within the stack of CT images (2) were available.

2.3. Study Setting

Between June 2021 and September 2021, four board-certified neuroradiologists with
varying levels of experience (R1: 10 years of experience; R2: 7 years of experience; R3:
2 years of experience; R4: 1 year of experience) rated the 80 CT scans from the study
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set. Experienced (R1 and R2) and inexperienced (R3 and R4) readers were pooled for
analysis. The four neuroradiologists independently rated the scans on the same workstation
in two runs, with and without the support of the AI tool. The reporting interface for
both runs is shown in Figure 1. Aside from the color-based patient-level predictions
into “normal”/“inconclusive”/“pathological” as well as the voxel-based anomaly maps
that were overlaid to the DICOM images, all parameters in the software interface were
chosen identical irrespective if AI-support was provided or not. To best standardize
the reporting process, the readers were asked to attribute labels from a predefined list
containing all pathologies contained in the study set or a “normal” label. Reporting times
were documented in-app and defined as the time (in seconds) between the opening of a CT
study and the submission of the report. Readers were made aware of this time-tracking
method in order to prevent interruptions during the reporting task.

To prevent a reminiscence effect, a wash-out period of 4 weeks between both runs was
included. For randomization purposes, R2 and R3 first reported with AI-support, while R1
and R4 first reported without AI-Support. The study workflow is shown in Figure 2.
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 Figure 2. Study workflow. The test set consisted of 80 head CTs (40 normal scans and 40 scans showing
common intracranial pathologies, as elaborated in the methods section). All readers completed a
run with and without AI-support, in a randomized and alternating order. Analyzed endpoints were
(i) the diagnostic accuracy to discriminate between normal and pathology-showing CT, (ii) reporting
times and (iii) the subjectively assessed diagnostic confidence in patient-level labels.

2.4. Statistical Analysis

Sensitivities, specificities, positive predictive values (PPV) and negative predictive
values (NPV) were calculated based on the ratings given by the readers with/without
AI-support and the underlying ground truth labels. Reporting times for the overall study
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dataset as well as discriminated for normal/pathological scans were calculated as a function
of AI-support.

Subjective diagnostic confidence to provide correct patient-level classification into
“normal” or “pathological” was assessed through a 5-point Likert scale (1 = very low;
2 = low; 3 = neutral; 4 = high; 5 = very high). Finally, diagnostic completeness, i.e., the
ability to identify all pathology classes mentioned in the reference radiological report was
compared between runs.

Continuous variables were reported as mean ± SD, while discrete variables were given
as median with their respective 25% and 75% percentiles. Differences in diagnostic accuracy,
and diagnostic confidence were compared with a Wilcoxon signed rank test. Differences
in reporting times were compared with a paired Student’s t test. Statistical analysis was
performed using Graphpad Prism Version 8.4.3. for Mac OS (GraphPad Software, San
Diego, CA, USA). p values below 0.05 were considered statistically significant.

3. Results
3.1. System Performance

The AI tool provided definite ratings into “normal” or “pathological” in 60/80 scans,
leading to a test yield of 75%. Specifically, definite ratings were given in 20/40 (50%) normal
scans and 40/40 (100%) scans showing pathology. Accordingly, all inconclusively labelled
scans were normal on ground truth. System predictions in the 60 conclusively labelled
scans all corresponded to ground truth. In detail, there was no false-positive label (normal
scan erroneously labelled as “pathological”) and no false-negative label (pathological scan
erroneously labelled as “normal”).

3.2. Diagnostic Accuracy

For the 320 evaluated scans (80 scans/reader), misclassification into “normal” or
“pathological” occurred in 11/320 cases (10 false-positive classifications and 1 false-negative
classification) without AI support and 3/320 cases (all false-positive classifications) with
AI support (p for difference: 0.0045). In detail, experienced radiologists reduced their
error counts from 4/160 scans to 0/160 scans if supporting predictions were given, while
inexperienced readers reduced their error counts from 7/160 to 3/160 with AI support.
This translated to a sensitivity, specificity, positive predictive value and negative predictive
value of 99.4%, 93.8%, 94.1% and 99.3% if no AI-support was given and 100%, 98.1%, 98.2%
and 100% if support by the anomaly detection tool was available. Figure 3 illustrates the
classification completeness for both runs.

Of all 14 scans (11 scans and 3 scans, respectively, in both runs) that were erroneously
labelled, 13 were normal on ground truth. Only one pathological scan showing acute
ischemia as main finding was misclassified as “normal” by an inexperienced reader in the
run without AI-support.

Beyond the patient-level labels, diagnostic completeness regarding all relevant under-
lying pathologies was investigated. In total, 89 pathologies were present in the 40 CT scans
showing pathology (mean of 2.2 pathology classes per scan), translating to 356 (4 × 89)
pathology labels that could potentially be depicted by the four neuroradiologists. A total of
30/356 pathological findings were missed without AI support, while 17/356 were missed
with AI support (p = 0.0005). In decreasing order, missed pathologies were: subarachnoid
hemorrhage (n = 8), late stroke (n = 7), skull fracture (n = 4), tumor (n = 3), acute stroke
(n = 3), acute subdural hematoma (n = 2), intraparenchymal bleed (n = 2) and atrophy
(n = 1).

Both, inexperienced (20/356 vs. 11/356, p = 0.0015) and experienced (10/356 vs. 6/356,
p = 0.045) readers experienced significant gains in diagnostic completeness when provided
with the anomaly maps and patient labels.
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Patient-level misclassification into “normal” or “pathological” could be significantly reduced from
11/320 cases to 3/320 cases (p < 0.0001) once AI support was available. The lower panel gives the
mean (± standard deviation) reporting time per scan with (54.9 ± 7.1 s) and without (65.1 ± 8.9 s) AI
support (p < 0.0001).

Inexperienced radiologists missed relevantly more pathologies both, with (11/356 vs.
6/356, p = 0.025) and without (20/356 vs. 10/356, p = 0.0009) AI support compared to
experienced readers. Table 1 provides information on classification completeness for all
runs and experience levels.

Table 1. Classification completeness for experienced and inexperienced readers with/without AI-support.

No AI-Support AI-Support

Patient-level misclassifications
All 11/320 3/320

Experienced 4/160 0/160
Inexperienced 7/160 3/160

Number of pathologies missed
All 30/356 17/356

Experienced 10/356 6/356
Inexperienced 20/356 11/356

3.3. Diagnostic Confidence

In both experienced and inexperienced readers, subjectively assessed diagnostic con-
fidence to provide patient-level labels was similar with and without support of the AI
tool. In detail, inexperienced readers reported diagnostic confidence levels of 4.30 ± 0.84
vs. 4.35 ± 0.79 (p = 0.71), while experienced readers reported similarly high levels of
4.58 ± 0.74 vs. 4.61 ± 0.72 (p = 0.60).

3.4. Reporting Speed

Support of the anomaly detection tool allowed for accelerated reporting with a mean
reduction in reporting times from 65.1 ± 8.9 s to 54.9 ± 7.1 s (p = 0.0001). Of note, the
time gains were more pronounced in scans that were normal on ground truth (59.6 ± 7.8 s
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vs. 46.3 ± 5.0 s, p = 0.0001) compared to pathological scans (70.3 ± 10.3 s vs. 63.3 ± 8.6 s,
p = 0.016). Improvements in reporting speed were comparable between experienced and
inexperienced radiologists at rates of 17.0% and 13.9%, respectively. Interestingly, the
cohort that benefitted most from the availability of patient-level predictions and pixel-
wise anomaly maps were inexperienced radiologists confronted with normal CT scans
(62.3 ± 8.4 s vs. 46.3 ± 2.7 s, p = 0.0001). There was no subgroup of experience-level and
ground truth label where reporting times increased in the run with AI support.

Specific analysis of the scans that were inconclusively labelled revealed comparable
reporting times in the runs with (55.5 ± 3.2 s) and without (56.3 ± 2.5 s) AI-support
(p = 0.76). In scans that were conclusively (“normal”/“pathological”) labelled by the
algorithm, reporting times were significantly lower with AI-support (68.3 ± 4.3 s vs.
54.6 ± 3.1 s, p = 0.01). Detailed metrics on reporting times are provided in Table 2. Figure 1
furthermore illustrates how overall reporting times benefitted from AI-support.

Table 2. Reporting times (mean ± standard deviation) in seconds for experienced/inexperienced
readers, as well as subgroups according to experience levels and ground truths. GT: ground truth, RT:
reporting time.

Subgroups No AI Support (s) AI Support (s) D RT p

All 65.1 ± 8.9 54.9 ± 7.1 15.7% 0.0001
All—GT Normal 59.6 ± 7.8 46.3 ± 5.0 22.3% 0.0001
All—GT Pathological 70.3 ± 10.3 63.3 ± 8.6 10.0% 0.016
Experienced 66.6 ± 11.2 55.3 ± 8.7 17.0% 0.0065
Experienced—GT Normal 56.9 ± 7.2 46.2 ± 7.3 18.2% 0.0071
Experienced—GT Pathological 76.2 ± 13.9 64.3 ± 10.2 15.6% 0.021
Inexperienced 63.4 ± 7.5 54.4 ± 5.5 13.9% 0.017
Inexperienced—GT Normal 62.3 ± 8.4 46.3 ± 2.7 25.7% 0.0001
Inexperienced—GT Pathological 64.4 ± 6.7 62.3 ± 7.1 3.0% 0.29

4. Discussion

The purpose of this study was to investigate the clinical utility of an anomaly-detection
system aimed at flagging pathology in head CT and providing patient-level triage into
“normal” or “pathological”. We found that (i) diagnostic accuracy could be improved,
(ii) reporting times were faster and (iii) the subjective confidence levels remained high but
unchanged if AI support was provided to neuroradiologists at varying levels of experience.

There is general agreement that ML will contribute greatly to future developments in
medical research [13,14]. Although algorithms meant to support radiologists in various
tasks have been presented in the past, many of them fail to gain traction in daily use [15,16].
Oftentimes, the reason for this is a lacking “know-the-user” approach where the specific
use-case of an ML software remains opaque and seamless integration into the clinical
workflow is therefore unrealistic. Contrary to many other tasks in medicine where a target
metric can only be approximated, radiological reporting can be elegantly subdivided into
the key components of (a) detecting or excluding pathology and (b) doing so in a time-
efficient manner, making it a very suitable domain to assess the performance of an AI tool
trying to improve both steps.

Our results show that using an anomaly-detection tool aimed at detecting pathologies
in raw CT data and providing patient-level labels (“normal” or “pathological”) as well as
voxel-level segmentations significantly improved the diagnostic accuracy of both, inexperi-
enced and experienced neuroradiologists. Near perfect positive and negative predictive
values of 98.2% and 100% thus became achievable. Importantly, no false-positive or false-
negative predictions were made by the algorithm, weakening the argument that a human
reader might be biased towards error by inadequate performance of AI tools. While these
findings will need to be validated in more extensive, multicenter datasets, our analysis
confirms that medical imaging might benefit from the wider implementation of anomaly
detection as rates of missed findings as high as 30% have consistently been reported [17].
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Interestingly, the here-investigated tool was especially helpful for correctly identifying
normal-appearing scans, as the false-positive rate was cut by two-thirds once predictions
were given. This seems intuitive as it is known that junior radiologists in particular have
the tendency to oversensitively read image data, with potential therapeutic consequences
or unnecessary follow-up imaging [18]. Anomaly detection could alleviate this weak point
as our tool has been trained to internalize common physiological variances and hence
does not flag them as pathology. Even if concrete numbers vary, up to 80% of all routinely
acquired head CT scans are normal-appearing [19]. In light of this, the reduction of false-
positive ratings by 2/3 with AI support is of particular interest and could prospectively
improve the diagnostic accuracy in routine imaging. It should be noted that the here-
investigated anomaly detection tool provided definite predictions in only 75% of cases.
Through innovative approaches, such as reinforcement learning, the diagnostic yield and
hence clinical utility of such systems could be further augmented in the future.

The here-presented AI tool does not provide semantic information, i.e., it does not
classify pathologies into different entities (as in ischemia, bleeds, tumor, . . . ). This could
help explain why the availability of predictions did not augment diagnostic confidence
levels, given that the overlooking of relevant findings remains the main cause for misre-
porting but is logically not suspected by the radiologist. This observation further builds
the case for implementing anomaly detection in radiology as lowering the rate of missed
findings should be a natural priority for reducing medical errors and costly litigation cases.

The ongoing technologization in medicine explains why imaging continues to become
an even more integral part in clinical decision-making, with the number of imaging exams
worldwide inching up to 109/year [20,21]. In addition to the heightened complexity of
multislice methods, as in CT and MRI, tackling the disparity between the limited number
of radiologists and rising workload is becoming a growing concern in patient care and
workplace satisfaction. Thus, solidifying the radiologist’s expert role by supplying triaged
exams and segmentations of potential findings seems a promising approach. In many areas,
from route proposition by plane autopilots to automated wildfire detection on satellite
images, ML can reliably compute laborious tasks in the background without undercutting
the decision-making role of the human operator [22]. In comparison, it becomes evident
that radiology has to catch up if streamlined integration of software solutions into patient
care truly is one of the objectives for the intermediate future. Our results confirm that AI
support can lead to significant productivity gains, as reporting could be accelerated by up
to 25% in our study set. Coupled with the fact that accelerated pathology detection allows
the radiologist to focus more on the intellectually stimulating interpretation task, such
advances might hold one of the keys to counteract on deteriorating working conditions that
threaten the physical and psychological well-being of healthcare workers [23,24]. Beyond
the obvious socioeconomic benefits that could arise from a more time-efficient use of highly
paid physicians, the ability of radiologists to focus on the scans requiring urgent and
extensive attention could be of obvious value for patient care.

5. Conclusions

In conclusion this study validates the clinical utility of an anomaly detection tool for
head CTs. By providing a combination of patient-level triage and pixel-wise segmentations
of underlying pathology, diagnostic accuracy and reporting times can be significantly
improved, in experienced and inexperienced radiologists alike.
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