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ABSTRACT
The prevalence of metabolic syndrome, obesity and insulin resistance has become an epidemic in the world. A strong association
exists between metabolic syndrome and non-alcoholic fatty liver disease (NAFLD), though the etiology of NAFLD is still unclear. This
close association leads to numerous clinical studies to investigate the effects of insulin sensitizers, thiazolidinediones (TZDs), on
hepatic fat accumulation. Thiazolidinediones affect glucose and lipid metabolism in insulin-sensitive tissues, which in turn reduces
the lipid content in the liver by modulating several mediators. In the present review, we discuss key modulators – adiponectin and
sirtulin-adenosine monophosphate activated protein kinase signaling – as the mechanisms responsible for NAFLD related to meta-
bolic syndrome. (J Diabetes Invest, doi: 10.1111/jdi.12107, 2013)
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the most com-
mon cause of chronic liver disease representing fat accumula-
tion in the liver of a non-alcoholic subject. It includes a broad
spectrum of hepatic disorders ranging from simple triglyceride
(TG) accumulation in hepatocytes (hepatic steatosis) to non-
alcoholic steatohepatitis (NASH), which is characterized by the
additional presence of inflammation and injury. Non-alcoholic
steatohepatitis can progress to cirrhosis, decompensated liver
disease and hepatocellular carcinoma1,2. The prevalence of
NAFLD is up to 30% in Western countries3,4 and nearly
5–30% in Asia–Pacific nations5, making NAFLD the most
common cause of elevated liver enzymes and the most com-
mon form of liver disease in the world. There are accumulat-
ing data showing NAFLD is strongly associated with insulin
resistance and other components of metabolic syndrome, such
as central obesity, type 2 diabetes, hypertension and hyperlip-
idemia6,7. Because of this strong relationship, NAFLD is
regarded as the hepatic manifestation of metabolic syndrome,
affecting 30% of the general population4. In addition, a 4-year
retrospective longitudinal study showed that NAFLD is an
independent risk factor of diabetes8. The prevalence of
NAFLD raises 80–90% in obese adults, 30–50% in diabetic
patients and up to 90% in patients with hyperlipidemia. Fur-
thermore, it affects 3–10% of children and up to 40–70% of
obese children9. Given the high prevalence of NAFLD and its
positive correlation with other manifestations of metabolic

syndrome, it is important to recognize and aggressively treat
this condition. However, there is no satisfying therapeutic
strategy for NAFLD. In this perspective, the purpose of the
present review was to highlight the available therapies and key
molecular modulators for NAFLD tightly associated with met-
abolic syndrome, especially insulin resistance.

PATHOGENESIS
Understanding the pathophysiology of NAFLD is still under
investigation to develop therapeutic interventions. The most
accepted hypothesis is the multi-hits model10. The first hit is
the accumulation of free fatty acids (FFAs) and TG in
hepatocytes, mostly as a result of insulin resistance and obes-
ity. The subsequent hits include a combination of oxidative
stress, lipid peroxidation, mitochondrial dysfunction and
release of inflammatory mediators, which lead to the progres-
sion from steatosis to more advanced stages of liver injury
(steatohepatitis and fibrosis). Besides this model, genetic pre-
dispositions together with environment factors and metabolic
syndrome, such as obesity, diabetes, hypertension and dyslipi-
demia, are key risk factors for the development and progres-
sion of NAFLD6,7.

Insulin Resistance
Insulin resistance is a physical condition decreasing insulin
stimulated glucose uptake in insulin-sensitive tissues, such as
muscle and adipose tissue. Furthermore, insulin resistance
increases lipolysis in adipose tissue leading to excessive influx
of FFAs in the circulation, which directly delivers to the liver.
Increased FFAs impair fatty acid oxidation and upregulate
de novo lipogenesis, all of which contribute to hepatic insulin
resistance and fat accumulation11. Therefore, insulin resistance
is a key factor in hepatic fat deposition, not only due to
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hyperinsulinemia, but also due to its association with lipolysis/
lipogenesis.

Incretin Hormone
Several clinical studies have shown that glucagon-like peptide-1
(GLP-1)-based treatments ameliorate hepatic steatosis in parallel
with obesity and diabetes. In response to a meal, the gastroin-
testinal hormone, GLP-1, is released from b-cells resulting in
incretin effects, such as insulin secretion and reduction of glu-
cagon production12. Type 2 diabetes impairs incretin effects,
thereby GLP-1-based therapy has been developed for the treat-
ment of diabetes. Exenatide displays biological properties simi-
lar to human GLP-1, and is resistant to degradation by
dipeptidyl peptidase 4. Recently, both human and obese animal
studies have shown that exenatide administration decreases the
fat content in the liver by modulating fatty acid oxidation, lipo-
genesis, insulin secretion from b-cells and hepatic glucose
metabolism13–15. In our study, we also observed that GLP-1
agonist attenuates high-fat diet-increased hepatic fat levels16.
Decreased fat accumulation in the liver is associated with
exedin 4-mediated glucose and fat metabolism by fatty acid
oxidation, sirtulin-related signaling and increased GLP-1 recep-
tor in the liver17. Given the favorable effects of GLP-1 agonist
on hepatic fat accumulation, the incretin hormone, GLP-1,
might be a potential therapeutic target for NAFLD treatment.

Oxidative Stress/Mitochondrial Dysfunction
Numerous experimental and clinical studies have shown a
strong link between steatosis and oxidative stress. In patients
with NAFLD, there is an increase of oxidative stress-related
parameters18. Oxidative stress leads to the production of
reactive oxygen species, and enhances peroxisomal and
mitochondrial b-oxidation, which are increased in patients with
NAFLD. Peroxisomal b-oxidation induces the generation of
acyl-coenzyme A, which is a major ligand of peroxisome prolif-
erator activator receptor-a (PPAR-a). Highly expressed PPAR-
a in the liver senses excess FFAs, increases fatty acid uptake
and fatty acid oxidation, lipolysis, and the clearance of lipopro-
teins. Hepatic steatosis, dyslipidemia and obesity were devel-
oped in a PPAR-a deleted animal model19. Treatment with
fenofibrate, a PPAR-a agonist, in patients with NAFLD
improves metabolic syndrome and liver function20.

Inflammation/Adipokines
Adipose tissue is not only the main site of TG deposition, but
also a highly dynamic endocrine organ by secreting several
major hormones21. Among active peptides produced from adi-
pose tissue, pro-inflammatory cytokines, such as tumor necrosis
factor-a (TNF-a) and interleukin-6 (IL-6), have a critical role
in hepatic fat deposition. Serum, and hepatic TNF-a and IL-6
have a positive correlation with the severity of steatosis and
fibrosis22,23. Theses mediators are strongly associated with cen-
tral obesity, and have a crucial role in insulin sensitivity, all of
which are important in fat accumulation in the liver.

Immune Response
Specific activation of the immune system has been implicated
in the pathogenesis of NAFLD. Non-alcoholic fatty liver disease
is associated with increased intrahepatic infiltration of natural
killer T (NKT) cells, as well as increased levels of pro-inflam-
matory T helper 1-associated cytokines, TNF-a and IL-624,25.
Elevated pro-inflammatory cytokines and hepatic neutrophil
infiltration contribute to the development of NASH.

Genetic Polymorphism
The most important genetic polymorphism in the incidence of
NAFLD and progression to NASH is patatin-like phospholipase
domain-containing 3/adiponutrin, responsible for the TG
hydrolysis in adipose tissue. Recent studies have shown that the
PNPLA3 genetic variant is strongly associated with hepatic fat
accumulation, and the severity of steatosis and fibrosis26. There
are other reported genetic variants to be correlated with suscep-
tibility of NAFLD, including macrophage migration inhibitory
factor27, adiponectin28, peroxisome proliferator-activated recep-
tor c coactivator-1a (PGC-1a)29 and TNF-a30. However, more
studies to show the conclusive roles of genetic polymorphism
in NAFLD are required.

DIAGNOSIS
Early diagnosis and intervention of NAFLD are important due
to long-term morbidity and its association with metabolic syn-
drome. By careful clinical evaluation, it is necessary to rule out
personal and family medical history, physical examination and
laboratory tests, alcohol consumption, and viral, genetic and
autoimmune causes of liver disease before diagnosis31. The ini-
tial detection of NAFLD is usually based on hepatomegaly and
elevated liver transaminases, such as alanine transaminase
(ALT) and aspartate transaminase (AST). However, 50%
patients show normal liver enzymes, indicating the measure-
ment of liver enzymes are not sensitive for NAFLD diagnosis32.
Liver biopsy still remains the gold standard to distinguish
between simple steatosis and fibrosis, despite the high cost, risk
of bleeding, sampling errors and the absence of consensus on
pathological interpretation33. To overcome biopsy limitation,
non-invasive diagnostic assessments, such as computed tomog-
raphy, magnetic nuclear resonance imaging and proton mag-
netic resonance spectroscopy, have been developed. These
imaging techniques are more sensitive to detection of hepatic
steatosis, but are insufficient to determine the stages of dis-
ease34. Ultrasound-based transient elastography and algorithm-
based assays, such as FibroTest, score which combines three
variables of body mass index, AST/ALT ratio and the presence
of diabetes, NAFLD fibrosis score, and NASH test in combina-
tion with clinical and laboratory tests, can be useful for diagno-
sis31.

NAFLD MANAGEMENT
The first therapeutic strategy is diet and lifestyle modification.
Weight loss, calorie restricted diet, and regular physical exercise
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result in a decrease in the incidence of metabolic syndrome
and concomitant improvement of hepatic steatosis35. However,
there is a paucity of data, such as lacking information of
long-term outcome, low compliance and frequent regain of
bodyweight at follow up, limiting the production of diet and
exercise-based guidelines for NAFLD patients. Currently, there
is no approved pharmacological treatment for NAFLD. There
are possible drug treatments: insulin sensitizers, weight loss
medication (rimonabant, inhibitor of cannabinoid [CB1] recep-
tor), lipid-lowering agents (statins, fibrates) and hepatoprotec-
tive anti-oxidants (vitamin E, ursodeoxycholic acid, betaine,
lipoic acid).
In the association between the endocannabinoid system and

appetite, the selective CB1 blocker, rimonabant, was developed
and introduced to the market. Indeed, rimonabant results in
weight loss by regulating food consumption, lipogenesis and
insulin sensitivity36,37. In addition to rimonabant mediated
weight reduction, CB1 receptor is found in the liver. Therefore,
the use of CB1 antagonist improves NAFLD38. Statins are well
known as lipid lowering drugs by inhibiting 3-hydroxy-
3-methyl-glutaryl-CoA reductase. In addition to their mediated
cholesterol synthesis in the liver, statins improve hepatic steato-
sis, and prevent the development of NAFLD or NASH by their
anti-inflammatory and antifibrinogenic actions39,40. Another
lipid-lowering agent, fibrates, ameliorate NAFLD and improve
insulin sensitivity by activating PPAR-a20. Among anti-oxidant
drugs, vitamin E is the most studied. Vitamin E supplement
decreases lipid peroxidation and oxidative stress, which contrib-

ute to decreasing the progression for NAFLD to NASH in
patients with or without diabetes41,42. The mechanisms by which
ursodeoxycholic acid, hydrophilic bile acid delays the progression
to liver fibrosis and cirrhosis are related to its anti-apoptotic and
immunomodulatory effects43,44. Betaine, a metabolite of choline,
acts as a methyl donor in the homocysteine–methionine cycle
and a substitute for S-adenosylmethionine for the direct methyl-
ation to phosphatidylcholine45. The inhibitory effects of betaine
on lipid deposition/infiltration in the liver and liver injury result
from its associated phosphatidylcholine production, lipoprotein
metabolism and cholesterol transport in the liver45,46. A natu-
rally-occurring thiol anti-oxidant, alpha lipoic acid (ALA) acts as
an essential cofactor in the citric acid cycle, and is a potent free-
radical scavenger. In addition, ALA activates adenosine mono-
phosphate-activated protein kinase (AMPK), and suppresses glu-
cose levels, lipogenesis, insulin resistance and oxidative stress,
which in turn decrease liver fat accumulation47.
Given the close association between metabolic disorder and

pathogenesis of NAFLD, pharmacological insulin sensitizing
agents are the most promising treatments for NAFLD. Among
several insulin sensitizers, the mechanisms, efficacy and useful-
ness of thiazolidinediones (TZDs) will be extensively discussed
in the next paragraph.

Clinical Studies with TZDs
Insulin sensitizers are a potent treatment for NAFLD. Metfor-
min is a widely used first-line drug for type 2 diabetic mellitus.
Metformin activates AMPK, leading to a decrease in liver glu-
coneogenesis, and an increase in muscle glucose uptake and
fatty acid oxidation in the adipose tissue48. Recently, several
research teams49,50 found that metformin increases blood GLP-
1 level, which is involved in insulin secretion and the reduction
of glucagon production12. As a result, metformin improves
peripheral insulin sensitivity. There is another well-known insu-
lin sensitizer, known as TZD. In comparison with metformin,
both TZDs (rosiglitazone and pioglitazone) increase peripheral
glucose disposal and improve whole-body insulin sensitivity
during hyperinsulinemic euglycemic clamp in patients with type
2 diabetes51,52. In addition to the favorable effects of TZDs on
glycemic control, TZDs decrease fasting FFA concentration and
hepatic fat accumulation53,54. Table 1 describes the effects of
TZDs on hepatic fat accumulation in type 2 diabetic patients.
The change of liver fat content was calculated before and after
treatment. Therefore, there is no distinct reduction of liver fat
level by TZDs in a dose- or time-dependent manner. The
decreased rate of hepatic fat accumulation in 4 mg rosiglitaz-
one-treated patients is by 38%55, and 8 mg treatment is by
30%56 or 51%51; 8 mg rosiglitazone treatment for 4, 6 or
8 months attenuates liver fat content by 30%56 or 51%51,
15%57, or 46%53, respectively. Pioglitazone treatment (45 mg/
day) also ameliorates hepatic fat content in parallel with the
increase of insulin sensitivity52,54,58,59. Thiazolidinediones-medi-
ated reduction of hepatic fat accumulation has occurred despite
weight gain52–54,56,59. In addition, several clinical trials have

Table 1 | Studies testing beneficial the effects of thiazolidinediones on
liver fat accumulation in type 2 diabetic patients

Study Treatment Participants
(n)

Length
(months)

Liver
fat
content

Hepatic
insulin
sensitivity

Mayerson
et al.55

Rosiglitazone 9 3 -38% ND

Carey
et al.56

Rosiglitazone 33 4 -30% ND

Bajaj
et al.52

Pioglitazone 14 4 -47% "

Sutinen
et al.57

Rosiglitazone 30 6 -15% ND

Bajaj
et al.54

Pioglitazone 11 4 -48% "

Tiikkainen
et al.51

Rosiglitazone 20 4 -51% "

Teranishi
et al.58

Pioglitazone 41 6 -30% ND

Bajaj
et al.59

Pioglitazone 15 3 -50% "

Juurinen
et al.53

Rosiglitazone 14 8 -46% "

", Significant increase after thiazolidinediones treatment; ND, no data.
Modified from Current Opinion in Lipidology. 2009; 20: 477–83 (66).
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shown that TZDs treatment prevents subsequent events, such
as an increase in oxidative stress, lipid peroxidation and pro-
inflammatory cytokines that contribute to the development of
NAFLD to NASH. Table 2 shows that the treatment of TZDs
for NASH improves metabolic and histological predictors.
Rosiglitazone60–62 and pioglitazone63–65 treatments reduce liver
transaminotransferase levels, hepatic fat content and histological
features mostly in regard to steatosis, ballooning and liver
injury. From table 1 and 266, we summarize that TZDs treat-
ment attenuates not only liver fat content, but also histological
lesions. Still, larger extended trials to determine long-term
TZDs treatment prevents liver injury and the progression to
NASH are required.

Adverse Effects of TZDs in Clinical Practice
Several unfavorable effects of TZDs have been observed. The
first-introduced TZD, troglitazone, was associated with severe
hepatotoxic side-effects, leading to withdrawal from the mar-
ket67. However, other agents in the same class of glitazones,
rosiglitazone and pioglitazone, did not induce any symptoms of
hepatic dysfunction68,69. Edema is one of the most frequent
side-effects of TZDs. From a meta-analysis study, Berlie et al.70

found the positive association between TZDs and development
of edema. Thiazolidinediones increased edema results from
renal excretion of sodium and intestinal ion transport, which
raise plasma volume/fluid retention71,72. However, the severity
of edema by TZDs is usually trivial, and TZDs-induced edema

Table 2 | Studies investigating the role of thiazolidinediones in non-alcoholic steatohepatitis

Study Treatment Participants
(n)

Length
(months)

Steatosis Ballooning/Injury Inflammation Fibrosis

Neuschwander-Tetri et al.60 Rosiglitazone 30 12 ; ; NS NS
Promrat et al.63 Pioglitazone 18 12 ; ; ; ;
Belfort et al.64 Pioglitazone 55 6 ; ; ; NS
Lutchman et al.65 Pioglitazone 18 12 ; ; ; ;
Ratziu et al.61 Rosiglitazone 63 13 ; NS NS NS
Aithal et al.62 Rosiglitazone 74 12 ; ; NS NS

;, Significant decrease after thiazolidinediones treatment; NS, no significance. Modified from Current Opinion in Lipidology. 2009; 20: 477–83 (66).

TZDs

<Hepatocytes>

Adiponectin

NAD/NADH p-AMPK

p-LKB1

PGC1-α / p-Foxo1

Fatty acid oxidation

TG synthesis

Hepatic fat accumulation

Sirtulin

Figure 1 | Proposed potential mechanisms by which the treatment of thiazolidinediones (TZDs) improves hepatic steatosis. In the liver, TZDs
upregulate adiponectin and/or sirtulin, which consequently alter hepatic regulators, leading to an increase in fatty acid oxidation and decrease in
fat accumulation. AMPK, adenosine monophosphate-activated protein kinase; Foxo1, forkhead box O1; LKB1, liver kinase B1 also known as serine/
threonine kinase 11; NAD, nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; PGC-1a, peroxisome proliferator-
activated receptor gamma coactivtor-1a.
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might be prevented with the use of diuretics. There is a strong
positive association between TZDs and heart failure. From
teleo-analysis, the use of TZDs for 2.2 years will develop one
incidence of heart failure in every 50 patients73. Based on this
correlation, the American Heart Association and American
Diabetes Association made a statement that TZDs should not
be prescribed to patients with a high risk of heart disease74.
Furthermore, TZDs treatment decreases bone density and
increases the risk of fractures by increasing adipogenesis in
bone marrow and weight gain75,76. Increased bodyweight is a
risk factor of diabetes; however, TZDs-induced weight gain is
not correlated with decreased insulin sensitivity77. This increase
of weight is accompanied by desirable fat distribution and accu-
mulation in subcutaneous adipose tissue78,79.

Mechanisms of TZDs Action
Peroxisome proliferator-activated receptor c (PPARc) agonists,
TZDs, have beneficial effects on insulin sensitivity by regulating
the transcription of several genes in glucose and lipid metabo-
lism80,81. Thiazolidinediones decrease lipolysis, promote fatty
acid uptake and storage in adipose tissue, leading to an increase
in adipose tissue mass55,82. Thiazolidinediones-induced fatty
acid uptake and storage in adipose tissue prevent other insulin-
sensitive tissues, especially the liver, from deleterious metabolic
effects of FFA. In addition, TZDs administration affects the
production of adipokines. Thiazolidinediones decrease pro-
inflammatory cytokine, TNF-a, which is positively associated
with the degree of steatosis and fibrosis22,23,83. An anti-inflam-
matory adipokine, adiponectin, is also increased by TZDs in
both type 2 diabetic animals and humans84,85. Adiponectin
stimulates fatty acid oxidation by activating AMPK, and inhib-
its lipid accumulation by modulating acetyl coenzyme A car-
boxylase and PGC-1a86,87. Therefore, there is a possibility that
adiponectin is one of the key mediators in TZDs-decreased
hepatic fat accumulation.
Our group suggests sirtulin as a crucial candidate of TZDs-

decreased NAFLD. The mammalian sirtuins (silent information
regulator 2 proteins) are a family of nicotinamide adenine
dinucleotide-dependent deacetylases and adenosine diphos-
phate-ribosyltransferase88. Recent studies have shown that sirtu-
lin 6 (SIRT6) plays an important role in glucose and lipid
metabolism. Liver-specific ablation of SIRT6 in mice regulates
gene expression, which consequently increases glycolysis, TG
synthesis and decreases fatty acid oxidation. Thereby, liver-spe-
cific SIRT6 deletion results in fatty liver formation89. Further-
more, SIRT6 prevents the progression to NASH by regulating
pro-inflammatory cytokines, such as IL-6 and TNF-a90. In our
study91, we highlight the role of TZDs-induced SIRT6 in hepa-
tic fat deposition. Rosiglitazone administration decreases hepatic
TG accumulation, and concomitantly enhances gene expression
of adiponectin and SIRT6, together with changes in key media-
tors of fatty acid oxidation, such as PGC-1a, forkhead box O1
(Foxo1), phosphorylation of AMPK and liver kinase B1 (LKB-1).
Consistent with previous studies, SIRT6 deletion by ribonu-

cleic acid interference-mediated gene silencing in hepatocytes
leads to hepatocyte fat accumulation accompanied by altera-
tions in messenger ribonucleic acid and protein expression of
PGC-1a and Foxo1 and phosphorylation levels of LKB1 and
AMPK, which are closely related to fatty acid oxidation.
Therefore, we propose the possible mechanisms by which
TZDs ameliorate fat accumulation in the liver are involved
in TZDs-induced adiponectin and/or SIRT6 (Figure 1). SIRT6
might serve as a therapeutic target for NAFLD92.

CONCLUSIONS
Hepatic steatosis is a result of complex interplay between diet, the
metabolic system and major tissues, such as adipose tissue and
the liver, but a full understanding of its pathogenesis has not yet
been determined. Thereby, no drug is available as a specific treat-
ment for NAFLD. Given the association between metabolic syn-
drome and hepatic fat accumulation, a well-known insulin
sensitizer, TZDs, has been of interest to researchers looking for a
potential treatment. Indeed, TZDs play a crucial role in metabolic
alterations associated with NAFLD by targeting several different
genes, including adiponectin and sirtulin, in the liver. In regard
to TZDs-induced safety concerns and efficacy, several options
can be considered to improve the benefit-to-risk ratio of
PPARc-modulating drugs. Selective PPARc modulators, such as
MBX-102 and INT131, have a high affinity interaction with
PPARc. A new synthetic PPARc, SR1664, blocks cyclin-depen-
dent kinase 5-mediated phosphorylation of PPARc without tran-
scriptional change. Notably, translating the novel therapeutic
potential observed in animal studies to humans, and long-term
effects, will remain challenging.
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