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time constraints are highly relevant behaviorally, because in natural 
environments fast responses are often crucial for survival (Moss 
et al., 2006; Ghose et al., 2009). The same is true in sports, where 
both perceptual and motor systems must operate at high speeds 
(Abernethy, 1990; Land and McLeod, 2000; Yarrow et al., 2009).

Recently, we developed a two-alternative forced-choice task 
that realizes this time-limited approach with high accuracy and 
minimal complexity (Stanford et al., 2010). The version that we 
have implemented and which we will discuss here is called the 
 compelled-saccade task, but whether eye movements or other 
motor actions are used is not crucial; the issue at hand is whether 
subjects performing the task can do so with different behavioral 
or cognitive strategies (see Hernández et al., 1997). In neurophysi-
ological terms the question is, what oculomotor choice mechanisms 
could be engaged during task performance?

To appreciate the problem, consider the sequence of events in 
the task (Figure 1). The subject first fixates on the central spot, 
which is either red or green. Then two yellow spots appear, one 
on each side; these are the two possible saccadic choices. Next, 
the disappearance of the fixation point (go) instructs the subject 
to make an eye movement. Crucially, however, because the two 
available spots are still yellow, at this point the identities of the 
target and distracter are not known yet; these are revealed (cue) 
after a delay interval called the gap. Thus, the subject is compelled 
to initiate an eye movement first, before the cue is presented. The 
choice is correct if the eye movement is to the spot that matches 

1 IntroductIon
To pick the tastiest strawberry from a plate, one looks at their colors, 
shapes, sizes, how soft, or hard they are, and so on. In analogy with 
this type of everyday-life situation, to study how choices are made, 
a common strategy is to present a simplified sensory scene and 
investigate how its perceptual analysis leads to one of two or more 
possible motor responses (e.g., Shadlen and Newsome, 2001; Ernst 
and Banks, 2002; de Lafuente and Romo, 2005; Koida and Komatsu, 
2007). In this approach, varying the difficulty of the perceptual 
evaluation is a crucial manipulation, because it helps to dissociate 
the underlying sensory and motor neural processes that contribute 
to the choice. The usual way to do this is to vary the stimuli along 
a relevant sensory dimension; for instance, making all strawberries 
equally red would make the choice much harder.

There is, however, a different way to manipulate the difficulty 
of such a task, which is to limit the amount of time available to 
view the scene (e.g., Bergen and Julesz, 1983; Ratcliff and Rouder, 
2000; Kiani et al., 2008). This approach is much less common, 
perhaps because it is technically more difficult, but it is impor-
tant too because it makes it possible to dissociate the time courses 
of the underlying sensory and motor processes, thus providing 
a separate, complementary way to analyze their interactions and 
their individual participation in the choice process. Furthermore, 
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the color of the fixation point, and the reaction time (RT) is com-
puted in the standard way; that is, it is the interval between the 
go signal and the time at which the eyes first start moving away 
from fixation.

Performance in this task can be understood as follows. When 
the gap is very short (say, zero), the cue is shown early and there 
is ample time to view the two spots, discriminate target from dis-
tracter, and make an informed choice. In contrast, when the gap is 
very long (say, infinite), the cue is unavailable, and so the subject 
must guess and make an uninformed, random choice. Thus, task 
difficulty can be controlled by varying the gap between short values, 
at which ∼100% correct performance is expected, and long values, 
at which ∼50% or chance performance is expected. Gap values vary 
randomly from trial to trial, and so task performance is a mixture 
of guesses and informed discriminations.

This task design has several interesting features which we dis-
cuss below, but there is a basic question that arises often: couldn’t 
the subjects simply wait for the cue? And if they did, how could 
we tell, and what would be the consequences? The answers are 
important because they would strongly constrain the underlying 
neural mechanisms for generating choices during the task and, in 
particular, the ways in which perceptual information guides sub-
sequent motor actions.

To investigate these issues, here we construct computational 
models that simulate performance in the compelled-saccade task 
based on several possible waiting scenarios, and compare the results 
with those of an earlier race-to-threshold model (Stanford et al., 
2010). Mechanistically, the fundamental difference between the 
two types of model is whether an oculomotor plan that is already 
developing can be altered on the fly by the cue information (race 
model) or not (waiting models), in which case the oculomotor 
preparation does not change once it has been set in motion. We find 
that, although it appears intuitive that the subjects performing the 
compelled-saccade task could simply wait for the cue, in fact, the 
most natural implementation of such strategy cannot account for 
the experimental data at all; a good fit can be obtained, but only with 
a more intricate version of the waiting model which, ultimately, is 

also inconsistent with experimental evidence. These results nar-
row considerably the possible neural dynamics of the oculomotor 
circuits at work during the compelled-saccade task.

2 MaterIals and Methods
2.1 BehavIor and electrophysIology
The output of the computational models is compared to the behav-
ioral data from two monkeys trained to perform the compelled-
saccade task. These benchmark data are the same that were reported 
previously (Stanford et al., 2010).

All experimental protocols complied with the National Institutes 
of Health Guide for the Care and Use of Laboratory Animals, USDA 
regulations, and the policies set forth by the Wake Forest University 
School of Medicine Animal Care and Use Committee (ACUC). 
For each monkey, before behavioral training, an MRI-compatible 
titanium post was attached to the skull under general anesthe-
sia. During subsequent training and data-collection sessions, the 
post served to restrain the monkey’s head. Eye movements were 
monitored either with an implanted eye coil (monkeys S), which 
provided an analog signal of eye position at a rate of 500 Hz, or with 
an EyeLink1000 (SR Research) infrared tracking device (monkey 
G) with a sampling rate of 1000 Hz.

Stimuli were colored spots presented through an array of light-
emitting diodes (LEDs) placed at a viewing distance of 145 cm from 
the monkey’s chair. Adjacent LEDs were separated by about 1° or 
2° of visual angle. Pairs of saccade targets were placed at various 
positions and orientations around the central fixation spot, and 
were separated by 10–20° of visual angle. Gap values varied between 
25 and 250 ms. RT was measured as the amount of time from the 
go signal until the velocity of the saccade reached a cutoff value of 
50°/s. To make the appearance of the go signal unpredictable, the 
delay between the onset of the yellow choice targets and the go was 
either 500, 750, or 1000 ms, selected randomly in each trial. After 
the go signal, monkeys had up to 600 ms to initiate a response; 
responses that took longer caused the trial to be aborted. Correct 
saccades were rewarded with a drop of water. Red and green targets 
were presented with equal probability at all target locations.

The neural recording techniques and population of cells chosen 
for analysis were the same as reported earlier (Stanford et al., 2010).

2.2 data analysIs
The raw processing time (rPT) is defined as

 rPT RT gap= − ,  
(1)

where the RT and gap values are for a given, individual trial. The 
rPT is the maximum amount of time that was potentially available 
for processing the sensory cue in a trial. The effective processing 
time (ePT) is

 ePT rPT RT gap= − = − −T TND ND  
(2)

where the constant T
ND

 is the total non-decision time. In the models 
discussed here, T

ND
 represents the sum of the afferent and efferent 

delays, averaged across trials, of the circuit that generates a saccadic 
choice (see below). The tachometric curve is the percentage of cor-
rect responses plotted as a function of either rPT or ePT. The choice 
of rPT or ePT is a matter of convenience: because T

ND
 is a constant, 

the shape of the resulting curve is the same, and the only difference 
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Figure 1 | Schematic of the compelled-saccade task. In each trial, the 
subject must make an eye movement to the peripheral spot that matches the 
color of the fixation point (red, in this example). Crucially, the disappearance of 
the fixation point (Go), which instructs the subject to make a saccade, occurs 
first, before the identities of the target and distracter are revealed (Cue). Task 
difficulty is controlled by adjusting the time gap between the go and the cue 
(50–250 ms). In each trial, the reaction time (RT) is the interval between the go 
signal and saccade onset, and the maximum stimulus viewing time is the raw 
processing time (rPT), as shown.
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where rL
0 and rR

0 are the initial build-up rates. If one of the vari-
ables reaches threshold during this stage, the outcome is a coin 
toss, because the build-up rates were drawn randomly from a sym-
metric distribution. Otherwise, x

L
 and x

R
 continue developing as 

prescribed by the equations above until the cue information reaches 
the model circuit. This happens at t = gap + T

A
, because the cue is 

revealed at t = gap. Once the cue information is available, the two 
variables start accelerating depending on the locations of the target 
and distracter. If the target is on the right side, then the build-up 
rate of x

R
 approaches a large, positive value r

T
 and the build-up 

rate of x
L
 approaches a small or negative value r

D
. In this case, the 

corresponding equations are
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where τ is a time constant that determines how long it takes for 
the rates to reach their new target values. Note that, in the last two 
equations, the right sides do not change with time; this corresponds 
to the assumption that the cue-related acceleration is constant. 
Importantly, however, once the build-up rates reach their new target 
values, that is, once r

L
 = r

D
 and r

R
 = r

T
, they stop changing. Thus, r

T
 

is the maximum possible build-up rate for the variable that gener-
ates a movement toward the target.

Now, if the target is on the left side instead, the roles of x
R
 and 

x
L
 are reversed: r

L
 approaches r

T
 and r

R
 approaches r

D
 with the same 

dynamics as before, so
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in this case. This integration process continues until x
R
 or x

L
 reaches 

threshold, and a saccade is assumed to occur a short efferent delay 
T

E
 after that. The outcome (saccade direction) and RT are then 

recorded for the trial.
In addition to this basic scheme, there are three important 

modifications to consider. The third one is implemented slightly 
differently than in our original report (Stanford et al., 2010), and 

is the value of the origin of the x axis. Here we consider tacho-
metric curves as functions of rPT only, but these are  equivalent 
to those published earlier in terms of ePT (Stanford et al., 2010). 
Tachometric curves were constructed by calculating the percentage 
of correct responses for all the trials within an rPT bin, where the 
bin size was 20 ms and bin centers were spaced every 2 ms.

2.3 ModelIng
All model simulations were run in Matlab (The Mathworks). For 
each model, the free parameters were optimized to minimize the 
mean absolute error between the simulated and the experimental 
data for each animal. Thus, for each model, the error function 
had the form

 

E
e m

n N
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=
−

∑
,  

(3)

where e and m are experimental and model values, respectively; the 
index i = 1,2,…6 identifies each of six psychophysical data sets (or 
curves) derived from each experiment: psychometric, chronomet-
ric (mean and SD) and tachometric curves, and rPT distributions 
for correct and error trials; the index j runs through each point 
in a curve; the factor n

i
 is the number of points in curve i; and N

i
 

normalizes the contribution of each curve according to its range 
of values. So, for instance, if curve 1 consists of 9 points and these 
vary between 0.6 and 1.0, then n

1
 = 9 and N

1
 = 0.4. Best-fitting 

parameter values were found by exhaustive search.

2.3.1 The accelerated race-to-threshold model
The race model is nearly identical to the one reported earlier 
(Stanford et al., 2010; see below). It represents the activity of a 
motor/premotor neural circuit in which sensory information 
modifies a developing motor plan for generating an impending 
eye movement. The model consists of two competing variables, 
x

L
 and x

R
, that represent the mean activity of neurons that trigger 

eye movements to the left and to the right, respectively. One race 
corresponds to one behavioral trial. In each race, both variables 
start at 0 and the winner is the first one to reach 1000 units. The 
outcome of the race is taken as a movement to the left if x

L
 wins, 

or a movement to the right if x
R
 wins.

Each race has two parts, one (before the cue information arrives) 
during which the build-up rates of x

L
 and x

R
 are constant, and another 

(after the cue information arrives) during which the build-up rates 
themselves change at constant rates. The key idea is that, once the 
cue information becomes available to the circuit, it speeds up the 
ongoing oculomotor plan toward the target side and slows down the 
ongoing plan toward the distracter side. Specifically, if the target is on 
the right side, then x

R
 accelerates and x

L
 decelerates; and vice versa, if 

the target is on the left, then x
L
 accelerates and x

R
 decelerates.

Each simulated trial proceeds as follows. The go signal occurs 
at t = 0, and the race starts after an afferent delay T

A
. The initial 

build-up rates for x
L
 and x

R
 are drawn from a two-dimensional 

Gaussian distribution with mean r
G
 (same for both variables), SD 

σ
G
 (same for both variables) and correlation coefficient ρ

G
. When 

ρ
G
 is negative, as was the case for all data fits, the initial build-up 

rates are anticorrelated. This means that when x
L
 starts increasing at 

a high rate, x
R
 increases at a much lower rate or may even decrease, 

and vice versa. During this stage x
L
 and x

R
 change according to
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revealed before starting to prepare an eye movement to indicate 
his choice. That is, the subject does not initiate a response unless 
target and distracter have been perceptually disambiguated – so 
after such waiting the choice is always correct. Importantly, if in a 
particular trial this idealized subject does not wait, then the direc-
tion of the resulting eye movement is random, because the choice 
was made without any guidance from the cue. The developing ocu-
lomotor plan in these models is again represented by a variable (y) 
that rises toward a threshold, but the plan is always unambiguous, 
in the sense that it does not change (i.e., accelerate or decelerate) 
once it has been initiated.

In the Section “Results” we discuss several possible waiting 
scenarios because performance depends on how exactly the wait-
ing is characterized. One alternative is to ask, in each trial, how 
likely is it that the subject will wait? This leads to the all-or-none 
waiting model, which is the most intuitive. In this case there is 
a probability p

W
 of waiting successfully. If the circuit does wait, 

target and distracter are located, and a correct, directed saccade is 
produced, whereas if the circuit does not wait, a random saccade 
is produced. Another option is to ask, again in each trial, how 
long can the subject wait? This leads to the stochastic-waiting-
model. In this case the subject can wait upto T

W
 ms before initiating 

the oculomotor plan. If T
W

 is long enough, the cue is seen and a 
directed saccade is produced, whereas if T

W
 is too short, a random 

saccade is produced.
In terms of model implementations, the all-or-none version 

is a special case of the stochastic waiting model, but conceptually 
they correspond to different cognitive strategies. This is another 
reason why we present them as separate models. The more general, 
stochastic waiting model is described in the next section; specific 
differences between the stochastic and all-or-none waiting models 
are mentioned at the end.

2.3.3 The stochastic waiting model
In the stochastic waiting model, the subject can wait up to a 
certain amount of time, but this amount varies randomly across 
trials. This represents a situation in which the subject tries to 
wait for the cue but may not be able to control exactly how long. 
The oculomotor circuit produces either a random saccade to 
one of the two possible choice locations, or a directed saccade 
to the target. The first option occurs when the waiting time is 
too short, and so the eye movement is made without guidance 
from the cue; the second option occurs when the waiting time 
is long enough for the target and distracter to be discriminated 
before the saccadic choice is initiated, and so the resulting eye 
movement is to the correct location. Different outcomes are 
produced because the maximum waiting time varies stochasti-
cally across trials.

produces  marginally better fits. First, we observed that the monkeys 
 occasionally made mistakes even when they had enough time to 
make an accurate color discrimination. To account for such errors 
at long rPTs, in each simulated trial there is a small probability p

e
 of 

making an incorrect assignment; that is, of associating the target and 
distracter rates r

T
 and r

D
 with the wrong (i.e., reversed) locations. This 

amounts to exchanging Eqs. 5 and 6 with a probability p
e
. Second, the 

afferent delay is assumed to vary across trials and independently for 
the go and cue signals. This variability is Gaussian with a SD σ

A
, but 

such that negative delays are not allowed. Third, the rise to threshold 
is interrupted between t = I

1
 and t = I

2
. During this brief lapse nei-

ther x
L
 nor x

R
 (nor their build-up rates) change. This interruption is 

included to account for a dip that is seen in the rPT distributions of 
the monkeys; it has a relatively minor effect on the rest of the curves. 
The onset and offset times I

1
 and I

2
 are constant and are given with 

respect to the point in time when the cue information arrives at the 
circuit. For example, if I

1
 = −10 and I

2
 = 5, the interruption starts 

10 ms before the cue information arrives and lasts 15 ms.
The way this interruption was implemented accounted better for 

the data than other schemes that were tested. However, it may seem 
puzzling that the interruption can occur before the cue information 
arrives to the circuit. There are two explanations to this paradox, 
which are not mutually exclusive. First, the interruption could be 
effected by other circuits that receive that information earlier than 
the oculomotor circuit where the race takes place. Second, whereas 
the cue information that is relevant for the model is specific for 
color, this is not necessarily the case for the interruption. That is, 
the interruption may be due to the detection of the cue (“some-
thing changed in the sensory environment”) occurring before its 
content (“red or green”) is determined. This is consistent with the 
general finding that RTs for detection are generally shorter than 
for discrimination (Luce, 1986; Sanders, 1998).

In all, the race model has 11 free parameters that were adjusted to 
match each monkey’s data (Table 1). The model does not distinguish 
between the afferent and efferent delays; it is only their sum, the 
total non-decision time, that matters. The total non-decision time 
varies across trials because it inherits the variability of T

A
. The single 

parameter T
ND

 represents the mean value of the total non-decision 
time, averaged across trials. The model produces different outcomes 
and RTs from one trial to another primarily because different initial 
build-up rates r rL R

0 0,( ) are drawn for each trial; the variability of T
A
, 

which is the only other independent quantity that also changes in 
every trial, has a more modest influence on the results.

2.3.2 All-or-none waiting
In contrast to the accelerated-race model just described, in which 
the cue information alters the ongoing oculomotor plan, in the 
waiting models the subject is assumed to wait until the cue is 

Table 1 | Best-fitting parameter values for the race-to-threshold model.

Monkey rG σ2

G ρG rT rD τ TND σA I1 I2 pe

S 3.8 20 −0.6 43 −23 190 116 8 −5 0 0

G 4.5 17 −0.8 340 −220 1600 139 20 −40 −10 0.02

Times are in ms.
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In all, the stochastic waiting model has 10 free parameters that 
were adjusted to match each monkey’s data (Table 2). Like the 
race model, this model does not distinguish between the afferent 
and efferent delays, so again the single parameter T

ND
 represents 

the mean of their sum. In Table 2, the discrimination time (T
D
) 

is also listed as a model parameter, but it is not independent; that 
is, changing T

D
 is exactly equivalent to changing a combination 

of other parameters. However, T
D
 is listed separately because it is 

useful conceptually, and makes one of the hypothetical experiments 
discussed below easy to implement. The model produces differ-
ent outcomes across trials primarily because a different maximum 
waiting time is drawn in each one. In contrast, the variability in 
RTs depends both on the different T

W
 values and on the variability 

in the build-up rates (σ
1
 and σ

2
). Here again, the variability in the 

afferent delay also influences outcomes and RTs, but has a modest 
influence on both.

To reproduce the experimental rPT distributions more accu-
rately (particularly in the case of monkey G), the accelerated 
race model includes two parameters, I

1
 and I

2
, that model a short 

interruption in the development of the saccadic plan. A similar 
mechanism could have been included in the stochastic waiting 
model too, but we opted not to do so for the sake of simplicity and 
to maintain the total number of parameters manageable. Such a 
mechanism may have produced slightly better fits to the data, as 
it did in the race model, but this would not have changed any of 
the conclusions.

In the all-or-none version of the model, the subject simply 
decides whether to wait or not, and if he does, the wait can be as 
long as necessary. Therefore, the distribution of maximum waiting 
times in that case is binary: T

W
 is either infinite (with probability 

p
W

) or 0 (with probability 1 − p
W

). The probability p
W

 replaces the 
distribution parameters T

peak
, σ

S
, and σ

L
. The saccade-generation 

mechanisms and the rest of the parameters are exactly as described 
for the stochastic waiting model.

3 results
3.1 psychophysIcal perforMance In the coMpelled-saccade 
task
As reported earlier (Stanford et al., 2010), the behavior of two 
monkeys trained to perform the compelled-saccade task was 
characterized through five psychophysical curves (Figure 2). 
First, the psychometric curve plots the percentage of cor-
rect responses as a function of the control parameter, the gap 
(Figure 2A). As expected from the task’s design, performance 
is close to 100% correct at short gaps, when the cue is revealed 
shortly after the go signal, and is close to chance, or 50% correct, 
at long gaps, when the eye movement is often executed before 
the cue is revealed.

Each simulated trial proceeds as follows. The go signal occurs at 
t = 0, but it reaches the model circuit after an afferent delay T

A
. The 

build-up of activity, however, does not start immediately. Its exact 
onset time depends on the maximum waiting time T

W
 for the current 

trial, which is drawn from a unimodal, skewed distribution. Given 
T

W
, the latest point in time at which the circuit can start the rise to 

threshold is t
rise

 = T
A
 + T

W
. On the other hand, the target location 

becomes known to the circuit at t
cue

 = gap + T
A
 + T

D
, where T

D
 is the 

additional time that upstream sensory circuits consume in order to 
discriminate target from distracter. Therefore, there are two options. 
First, if t

rise
 < t

cue
, then the wait was not sufficient for the cue infor-

mation to arrive; a random saccade is produced, with the build-up 
starting at t = t

rise
. Second, if t

rise
 ≥ t

cue
, then the wait was successful; 

a directed saccade to the target is produced in this case, with the 
build-up starting at t = t

cue
. In each case, once the choice location is 

determined, the variable y starts increasing linearly, and a saccade is 
produced T

E
 ms after y reaches a threshold of 1000 arbitrary units.

In each trial, the maximum waiting time T
W

 is drawn from a uni-
modal but asymmetric distribution composed of two half-Gaussian 
functions with a common peak (see Hinkle and Connor, 2005). 
Three model parameters are used to specify this distribution: T

peak
, 

which is the peak waiting time (i.e., the most common waiting 
time), σ

S
, which is the SD for waiting times smaller than T

peak
 (left 

side of the distribution), and σ
L
, which is the SD for waiting times 

longer than T
peak

 (right side of the distribution).
In addition, four more parameters are used to described the 

latencies of random and directed saccades. During random sac-
cades, left and right choices have equal probability, and regardless 
of saccade direction, the build-up rate for the oculomotor variable 
y is drawn from a Gaussian distribution with mean μ

1
 and SD σ

1
. 

During directed saccades, the choice is always to the target, and 
thus always correct, and again regardless of saccade direction, the 
build-up rate of y is drawn from a Gaussian distribution with mean 
μ

2
 and SD σ

2
. Here, we use the linear rise to threshold with a rate 

drawn from a Gaussian distribution as a heuristic mechanism for 
saccade generation; this is because it is a simple process that is 
known to produce realistic saccadic latency distributions under a 
wide variety of conditions (Carpenter and Williams, 1995; Reddi 
and Carpenter, 2000; Brown and Heathcote, 2007).

Finally, there are two important additional components of the 
stochastic waiting model that are the same as in the race model. First, 
a separate mechanism is used to account for mistakes that occur when 
the waiting time is long: in each trial in which a directed saccade is 
generated, there is a small probability p

e
 of making the saccade to the 

wrong location. Second, the afferent delay is assumed to vary across 
trials and independently for the go and cue signals. Therefore, for each 
signal (in each trial), the afferent delay is equal to a mean plus a vari-
able part that is drawn from a Gaussian distribution with a SD σ

A
.

Table 2 | Best-fitting parameter values for the stochastic waiting model.

Monkey Tpeak σS σL μ1 σ1 μ2 σ2 TND σA pe *TD

S 80 11 105 15 2.0 8.5 1.2 61 23 0 5

G 95 7 80 15 2.5 7.5 0.15 72 28 0.028 5

Times are in ms. * indicates a parameter that is not independent.
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slower, informed discriminations (∼100% correct) during the 
task. The range in which the distributions overlap corresponds 
to the guesses.

Finally, the fifth psychophysical curve shows the percentage of 
correct responses as a function of rPT (Figure 2D). We call this 
curve the tachometric curve (Stanford et al., 2010). In judging 
the tachometric curve, it is useful to keep in mind that negative 
rPTs correspond to trials in which the eye movement was initiated 
before the cue was revealed. In these cases the RT is short, smaller 
than the gap, and so the difference RT − gap (=rPT) is negative. 
Performance for negative rPTs is expected to be squarely at chance. 
The slope of the tachometric curve is a direct indication of how 
much cue exposure time a subject needs in order to perform the 
task at a particular level above chance. For instance, the curves for 
monkeys S and G go from chance (50% correct) to 75% correct in 
only 26 ± 2 and 42 ± 2 ms, respectively (±1 SE; Stanford et al., 2010). 

Second, the chronometric curve plots the mean RT ± 1 SD as a 
function of gap (Figure 2B). This curve is markedly different from 
what is typically seen in other choice tasks, where RTs may vary 
several fold as the difficulty of the task changes (e.g., Roitman and 
Shadlen, 2002; Palmer et al., 2005). Here, it is approximately flat; 
the mean RT stays relatively constant while performance varies 
between chance and near perfect.

The third and fourth curves are the distributions of rPT val-
ues for correct and error trials (Figure 2C). The rPT is the key 
quantity that can be extracted in the task; it is the maximum 
amount of time that the subject has for viewing the cue in any 
given trial (Eq. 1), so performance is expected to change sharply 
as a function of rPT. For each monkey, the rPT distribution 
from error trials overlaps very tightly with the left side of the 
distribution from correct trials. This is consistent with the idea 
that the subjects make either fast guesses (∼50% correct) or 
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Figure 2 | Psychophysical performance of monkeys S and g in the 
compelled-saccade task. In all panels, experimental data are in blue and 
magenta, and simulation results from the accelerated race model are in black. 
For each monkey, the same model parameters were used in all panels (Table 1). 
(A) Percentage of correct responses as a function of gap (psychometric curve). 
Each data point includes 568 ≤ n ≤ 598 trials for monkey S and 702 ≤ n ≤ 777 
trials for monkey G. (B) Reaction time as a function of gap (chronometric curve). 
Data points are mean values, which include both correct and incorrect trials at 

each gap. Error bars indicate ±1 SD. (C) Distributions of rPT values for correct 
(top) and incorrect (bottom) trials. Bin size is 20 ms. A value of 1 corresponds to 
the maximum number of observations in correct trials. Data are from a total of 
5231 and 6676 trials for monkeys S and G, respectively. (D) Percentage of 
correct responses as a function of rPT (tachometric curve). (e) Reaction time 
distributions in correct and incorrect trials at specific gaps. Gap values are 
indicated on upper left corners. Bin size is 40 ms. Experimental data are as 
reported earlier (Stanford et al., 2010).
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two variables start increasing with initial build-up rates that vary 
randomly from one trial to another, and (2) once the cue informa-
tion reaches the model circuit, after the gap has elapsed, the variable 
representing the oculomotor plan toward the target accelerates, and 
the variable representing the plan toward the distracter decelerates. 
Thus, depending on the initial build-up rates and on the gap in 
each particular trial (Figure 3A), the model can produce either 
informed discriminations (Figure 3B) or fast guesses (Figure 3C). 
For the purpose of contrasting this model with the waiting models 
discussed below, the key here is that the oculomotor plans are set 
in motion immediately after the go signal is received – without 
waiting – and that the arrival of the cue information modulates the 
build-up rates of those plans while they are ongoing; the saccadic 
choice is adjusted on the fly.

The accelerated race-to-threshold model not only fits the five 
psychophysical curves discussed in the previous section, but also 
predicts the shapes of the RT distributions for error and correct tri-
als obtained for each individual gap (Figure 2E). These  distributions 

This curve, which characterizes the discrimination  capacity of a 
subject, is the key piece of information provided by the compelled-
response design.

In the rest of the paper we explore two types of neural mecha-
nisms or circuit dynamics for generating saccadic choices that may 
explain these experimental data.

3.2 the accelerated race Model
The psychophysical curves just described can be replicated quite 
closely by a simple model in which two variables representing ocu-
lomotor activity in favor of rightward and leftward saccades, x

R
 

and x
L
, race to a threshold (Stanford et al., 2010; Figure 2, black 

traces). In each trial, the winner determines the direction of the 
resulting eye movement, and the RT is equal to the time taken 
to reach threshold. A detailed description of the model and its 
parameters is given in the Section “Materials and Methods,” but 
in essence, the model has two main features: (1) once the go signal 
reaches the model circuit, which depends on an afferent delay, the 
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Figure 3 | Two types of models for generating oculomotor choices in the 
compelled-saccade task. (A) Schematic of the accelerated race-to-threshold 
model. The arrow shows the timeline of the three key events in each trial (Go, 
Cue, and Saccade). The boxes above indicate events that occur within the 
oculomotor circuit, and their timing. TA and TE indicate afferent and efferent 
delays, respectively. (B) A trial of the accelerated race model in which the cue 
information arrives in time to alter the ongoing oculomotor plans, producing a 
correct response. Red and green traces correspond to neural responses favoring 
rightward and leftward saccades, respectively. The cue information becomes 
available at the end of the gray shade, when the acceleration starts. (C) A trial of 

the accelerated race model in which a saccade is triggered before the cue 
information arrives, resulting in a wrong guess. (D) Schematic of the stochastic 
waiting model when the waiting time TW is long, and so the saccadic response is 
toward the known target location. (e) Model neuronal activity in one trial of the 
type schematized in (D). (F) Schematic of the stochastic waiting model when 
the waiting time TW is short, and so the saccadic response is random. (g) Model 
neuronal activity in one trial of the type schematized in (F). In all examples, the 
target is assumed to be located to the right of fixation, so trials in which the red 
trace (xR) crosses threshold (dotted lines) first are correct and trials in which the 
green trace (xL) crosses threshold first are errors.
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for directed saccades (yes wait) are triggered shortly after the cue 
information reaches the model circuit, under the assumption that 
the actual color discrimination takes an additional, fixed amount 
of time (T

D
). In either case, the motor plans never accelerate or 

change otherwise once the build-up has started (see Materials and 
Methods for details). The choice in this model is very simple: to 
wait or not to wait.

This all-or-none waiting strategy, however, still fails to reproduce 
the basic psychophysical results that are characteristic of the task 
(Figure 4). First and foremost, the percentage of correct responses 
for this model is the same at all gaps (Figure 4A). This is because the 
probability of waiting in any given trial is constant, and is therefore 
independent of the gap (recall that, during the experimental  sessions, 

change quite dramatically: at short gaps most responses are fast 
(RT < 300–350 ms) and correct, whereas at long gaps the fast 
responses are about equally likely to be correct or incorrect, but 
there are also many slow responses (RT > 300–350 ms), most of 
which are correct. At intermediate gaps there is a transition between 
these two regimes, such that the RT distributions for correct trials 
are bimodal. This progression is accurately captured by the acceler-
ated race model.

The question, however, is whether the experimental data could 
also result from a rather different oculomotor choice process.

3.3 three ways to waIt
The bimodal RT distributions just discussed, and their progression, 
are consistent with the idea that there are two types of trials in the 
task, guesses, and informed discriminations. In the race model, 
whether a particular trial results in a guess or an informed choice 
depends on the initial build-up rates drawn in that trial, and on 
the gap; the dynamics of the model circuit then determines the 
outcome. But intuitively, the subject’s choice in each trial could 
instead depend on whether he or she waits for the cue or not. In 
other words, after seeing the go signal (offset of the fixation spot) 
the subject could withhold the response, wait for the target and 
distracter to be identified, and then initiate an eye movement to 
the target (Figures 3D,E).

In this situation, the observed behavior will depend critically on 
how exactly the subject waits, or what exactly is meant by waiting. 
For instance, the subject may wait until the cue is seen in some tri-
als only, but not in all of them; or perhaps the wait always occurs 
but is long enough only in a subset of the trials (Figures 3D–G). 
These distinctions are subtle but make a large difference in the 
psychophysical responses that are produced, as shown below. To 
explore these scenarios quantitatively, we considered three possible 
waiting strategies and generated corresponding model circuits that 
simulated performance in the compelled-saccade task.

3.3.1 All-or-none waiting
In the situation that is perhaps most intuitive, the subject simply 
waits for the cue to be revealed and makes an informed saccadic 
response. If the subject can always wait for the color discrimina-
tion to be over before starting the saccadic choice process, then, 
regardless of how long the wait needs to be, the choice is always 
(or nearly always) correct. Precisely for this reason, however, this 
strategy can be readily ruled out: it predicts that the percentage of 
correct responses should be close to 100% for all gaps, and this is 
clearly not the case (Figure 2A). Therefore, for sure the monkeys 
do not always wait.

A more nuanced version of this strategy is one in which the 
subject waits for the cue in some trials but not in others. To simu-
late this case, we made two assumptions: (1) that the probability 
that the subject waits in any trial is p

W
, and (2) that the oculomo-

tor plans are not modified once they are initiated. Thus, in trials 
in which there is no waiting, the response is an eye movement to 
one of the two locations chosen randomly, and in waiting trials 
the response is an eye movement to the target. We call this the all-
or-none waiting model (see Materials and Methods). The motor 
plans for random saccades (no wait) are initiated right away, after 
the go signal reaches the model circuit, whereas the motor plans 
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Figure 4 | An all-or-none waiting model cannot reproduce the 
experimental data. In each trial of the model the subject waits for the cue 
with a probability pW. If he does wait, a correct saccade to the target is 
produced; otherwise, a random saccade, or guess is produced. Thus, waiting 
times are either 0 (no wait) or equal to the gap plus a constant (yes wait). 
Experimental data from monkey S are in blue and magenta; best-fitting 
simulation results are in black. (A) Psychometric curves. The all-or-none model 
produces the same percentage of correct responses at all gaps. (B) 
Chronometric curves. The model’s mean RT increases linearly with the gap. 
(C) Distributions of rPT values. (D) Tachometric curves. (e) Distributions of RTs 
at specific gaps. Note that the model distributions consist of stereotypical 
curves that do not vary in width or height as the gap changes.
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Figure 5 compares the performance of the race-to-threshold 
model with (right column) and without (left column) waiting. The 
simulations proceeded in the same way in the two cases, as explained 
above, except for the maximum waiting time T

W
, which was drawn 

from an exponential distribution in each trial of the hybrid model 
(Figure 5, caption). In general, waiting increased the overall per-
formance level and the mean RT in the task (Figures 5A,B), as one 
might have expected intuitively, but it did not affect the tachometric 
curve at all (Figure 5D). Identical tachometric curves were also 
obtained with a variety of waiting time distributions that were 
tested, so the results were the same regardless of the shape of the 
waiting time distribution.

The reason for this is that waiting does not affect the accelera-
tion process, which is primarily what determines the tachometric 
curve and what relates to perceptual processing speed in the race 
model. Waiting does alter how long the cue-driven acceleration 

gap values were chosen randomly in each trial; for this reason, in all 
the models they were assumed to be unpredictable). Different values 
of p

W
 shift the psychometric function up or down because p

W
 directly 

determines the success rate, but the resulting curve is always flat, 
regardless of the dynamics of the saccadic responses. Second, waiting 
trials at longer gaps produce correspondingly longer waits, so the 
mean RT always increases linearly as a function of gap (Figure 4B). 
The slope of this linear relationship may vary depending on model 
parameters, but a linear increase is always present.

In spite of these problems, this model is instructive because 
it can indeed produce rPT distributions that reflect two differ-
ent processes, fast guesses, and slower, informed discriminations 
(Figure 4C). Also, although the shapes of these distributions cer-
tainly differ from those obtained experimentally, the model can 
produce tachometric curves that match the experimental data 
extremely well (Figure 4D). The model’s mixtures of random and 
directed saccades again differ quite obviously from the experimen-
tal data when the distributions of RTs for correct and error trials 
are plotted for specific gaps (Figure 4E). In the RT distributions 
obtained from the model, the only feature that varies across gaps 
is the position of the second peak in correct trials; the other peaks 
remain constant. This problem is directly related to the flat psy-
chometric curve: the proportions of random and directed saccades 
are constant, and the only quantity that can change systematically 
across gaps is how long the directed saccades take.

3.3.2 Waiting to accelerate: a hybrid model
The two assumptions of the all-or-none model are that the sub-
ject waits with a probability p

W
, and that once a motor plan is 

initiated, it cannot be modified by the sensory information. The 
second assumption may seem too drastic; one may wonder what 
happens if, for instance, the subject is able to wait a limited amount 
of time but the motor plan can still be modified on the fly in case 
the wait is not long enough to identify target and distracter. The 
consequence of waiting in this case turns out to be quite mild, in 
the sense that once the ramping at different rates can be altered 
by incoming sensory information, the evolution of the perceptual 
discrimination can be accurately captured by the tachometric curve 
and the dynamics of the accelerated race, whether or not there is 
an additional delay due to the waiting. This suggests that the serial 
arrangement between the sensory and motor processes in the all-or-
none waiting model is the fundamental feature that differentiates 
it from the accelerated race model.

To explore this hybrid scenario, we investigated how waiting would 
impact the performance of the accelerated race-to-threshold model. 
In this case, waiting is understood simply as an extra delay: the subject 
does not start his or her motor preparation immediately once the 
go signal is seen – there is an additional waiting time T

W
 – but once 

the cue information arrives at the circuit, the acceleration proceeds 
exactly as before. That is, the variables x

L
 and x

R
 start building up later 

than usual, up to T
A
 + T

W
 ms after the go signal is given, where T

A
 is 

the afferent delay, but once the cue information becomes available 
to the circuit, the acceleration process begins whether the waiting 
time has fully elapsed or not. In this way, the waiting time effectively 
shortens or may even eliminate the initial build-up of activity in the 
model, during which the build-up rates are random, but does not 
change the dynamics of the cue-driven acceleration.
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Figure 5 | effect of waiting within the accelerated race-to-threshold 
model. The accelerated race model was simulated under standard 
conditions (no waiting) and with maximum waiting times drawn from an 
exponential distribution with a mean of 75 ms. Parameters were as listed in 
Table 1 for monkey S. (A) Psychometric curves. (B) Chronometric curves. 
(C) Distributions of rPT values in correct (black) and error (magenta) trials. 
(D) Tachometric curves. Although waiting generally alters the observed task 
performance, it does not affect the tachometric curve.
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In all the models considered in this article, with and without 
waiting, the preparation to make a saccade corresponds to the 
build-up of neuronal activity toward a threshold, and the saccade is 
assumed to be triggered once that threshold is reached (the actual 
saccade onset is considered to occur T

E
 ms after threshold cross-

ing, where T
E
 is the efferent delay). Neurophysiological (Hanes 

and Schall, 1996; Roitman and Shadlen, 2002), psychophysical 
(Carpenter and Williams, 1995; Reddi and Carpenter, 2000; Brown 
and Heathcote, 2007) and modeling (Lo and Wang, 2006) data 
indicate that this is a reasonable simplification of the actual proc-
ess. In the accelerated race model (with and without waiting) the 
build-up rates can change during the rise, but in the stochastic-
waiting model, as in the all-or-none waiting model, those rates 
cannot change once the build-up has started (see Materials and 
Methods for details). Another way to state this is that in the accel-
erated race model the oculomotor plans may be prepared while 
the outcome (i.e., saccade direction) is still uncertain, whereas in 
these two waiting models the oculomotor plans are entirely certain 
from the beginning.

The diversity of maximum waiting times that can be used 
gives the stochastic waiting model much more flexibility than the 
all-or-none version. In fact, Figure 6 shows that, if the distribu-
tion of maximum waiting times has the correct shape, the model 
can accurately replicate all the psychophysical data in the task 
(Figures 6A–D) and can produce RT distributions at individual 
gaps that are quite close to the experimental ones (Figure 6E). For 
these simulations, the distributions of maximum waiting times 
had a single peak and tails of different lengths on the two sides. 
Three parameters were necessary to describe such distributions 
(Materials and Methods). Crucially, in this model, the percentage 
of correct responses changes as a function of the gap, even though 
the repertoire of maximum waiting times is the same across gaps. 
What happens is that, at short gaps, the majority of the T

W
 samples 

are longer than the gap, and so most trials are successful waits that 
end with a directed saccade to the target (∼100% correct); in con-
trast, at long gaps, the majority of the T

W
 samples are shorter than 

the gap, and so most trials are unsuccessful waits that end with a 
random saccade (∼50% correct).

In Figure 6, the quality of the fits is excellent for monkey S but 
slightly less so for monkey G. In particular, the model fails to cap-
ture the small but appreciable dip in the rPT distributions of both 
correct and error trials (Figure 6C, monkey G, near rPT = 100 ms), 
and the model tachometric curve is slightly steeper than the experi-
mental curve (Figure 6D, monkey G). These minor discrepancies 
could be ameliorated in two ways. First, the dip could likely be 
replicated by specifying a short interval during which the ramping 
toward threshold is momentarily interrupted, as done in the race 
model (see Materials and Methods). And second, the tachometric 
curve could probably be better matched by considering waiting time 
distributions with more flexible shapes (e.g., that could have either 
one or two peaks). However, these modifications would require 
more parameters. Instead, rather than increasing the complexity 
of the model, we take Figure 6 as sufficient proof that a waiting 
strategy can, in principle, explain the psychophysical data in the 
compelled-saccade task, and therefore, that just by analyzing the 
behavioral data presented so far, the possibility that the monkeys 
wait for the cue cannot be ruled out.

lasts, but this is precisely what is quantified by the processing time 
rPT, i.e., the maximum stimulus viewing time in each trial, and rPT 
is still accurately calculated as the difference RT − gap (Equation 1) 
regardless of the waiting time. Therefore, the tachometric curve still 
isolates the subject’s perceptual performance. This type of wait-
ing may change some of the psychophysical curves quantitatively, 
but is otherwise of little consequence for interpreting the mod-
el’s results (see also the Supplementary information in Stanford 
et al., 2010).

In conclusion, if understood as a simple delay to respond, 
waiting can be easily incorporated within the accelerated race 
model. This includes the possibility of very long waits on just a 
fraction of the trials, or other possible waiting time distributions. 
However, as long as the cue-driven acceleration mechanism stays 
in place, waiting is of relatively little consequence because it does 
not distort the measured rPTs nor the tachometric curve. Thus, 
waiting, if it happens at all, does not affect the interpretation 
of the results and is essentially harmless within the dynamical 
framework of the race model. Now, with respect to the actual 
experimental data, the match between model and experiment in 
Figure 2 suggests that, if the accelerated race model is correct, 
then the monkeys did not delay their responses once the go signal 
had been detected, because the model used in Figure 2 did not 
include any waiting.

This is not to say that waiting, as implemented in the hybrid 
model, could never occur; dramatic changes in RT and perform-
ance levels can be generated during the task by differentially 
rewarding the possible outcomes, so subjects can slow down and 
speed up their responses according to the task’s contingencies (see 
motor bias experiment in Stanford et al., 2010). Although these 
reward-dependent biases have been accounted for by the acceler-
ated race model, substantial behavioral flexibility suggests that an 
effect like that in Figure 5 might be possible given the appropriate 
experimental circumstance. Crucially, though, this would not be 
diagnostic of a mechanism fundamentally different from the accel-
erated race, and would not alter the interpretation of the results 
in a significant way.

3.3.3 The stochastic-waiting model
We now consider one last waiting scenario in which, as in the all-or-
none model, we assume that once a motor plan starts developing, 
it is not modified by incoming sensory information. The idea is to 
remedy the flaws of the all-or-none waiting model by considering 
a similar but somewhat more sophisticated waiting strategy, which 
is as follows.

Suppose that the subject tries to wait for the cue but cannot 
fully control how long. So, in any given trial, there is a maximum 
amount of time that the subject can wait, but this amount varies 
randomly and unpredictably. In each simulated trial, a maximum 
waiting time T

W
 is drawn from a distribution, and when the go 

signal reaches the circuit, the saccadic motor plan is withheld. If the 
target and distracter identities become known to the circuit before 
T

W
 has elapsed, then a directed saccade to the target is prepared; 

otherwise, if the waiting time expires before these identities are 
revealed to the circuit, then a random saccade to one of the two 
locations is prepared. Because T

W
 is sampled from a distribution, 

we call this the stochastic waiting model.
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tachometric curve (Figure 7A). This is because, in the race model, 
the slope of the tachometric curve is directly related to the speed 
of the perceptual process, and a difficult discrimination should 
require more viewing time than an easy one (Bodelón et al., 2007). 
To appreciate the generality of this result, consider how the color 
discrimination enters into the race model. Perceptual performance 
depends on the strength of the sensory signal, through parameters 
r

T
 and r

D
, and on how fast that sensory signal is delivered to the 

circuit generating the saccadic choice, through parameter τ. But 
the first two terms appear in the dynamical equations as r

T
/τ and 

r
D

/τ (Eqs. 4–6), so it is these two combinations of parameters that 
matter the most. They control the cue-dependent acceleration and 
deceleration of the motor plans, which in turn determine the slope 
of the tachometric curve. Therefore, variations in task difficulty 
can be modeled by modifying these two quantities, thus producing 
tachometric curves with different slopes.

In contrast, although similar effects are expected for the psycho-
metric and chronometric curves according to the stochastic waiting 
model, its prediction is very different for the tachometric curve: it 
should shift to the right, without any change in slope (Figure 7C). 
The reason for this is that, in this model, the slope of the tachomet-
ric curve depends principally on the variability of the afferent delay 
(σ

A
), which is unlikely to be related to task difficulty. Changes to 

the parameter that corresponds to the sensory  discrimination time 

So, two distinct neural mechanisms can explain the  psychophysical 
data, cue-driven acceleration and stochastic waiting. In the two 
remaining sections we explore behavioral and neurophysiological 
predictions that can distinguish them unambiguously.

3.4 psychophysIcal predIctIons
To differentiate the accelerated race model from the stochastic 
waiting model, we consider two hypothetical experiments that 
are variants of the standard compelled-saccade task. Besides their 
predictive value, these simulations provide a better intuition of the 
key differences between the two models.

First, suppose that the difficulty of the sensory discrimination 
is increased. This can be achieved, for instance, by decreasing the 
chromatic contrast between the red and green spots, or by having 
the subject discriminate two similar shapes instead of two colors. 
The idea is that difficult discriminations should require longer 
viewing times than easy discriminations for any given percentage 
of correct responses (Bodelón et al., 2007). If this assumption is 
correct and all other aspects of the task remain constant, then a 
clear prediction can be made in each model (Figures 7A,C).

According to the accelerated race model, higher perceptual dif-
ficulty should translate into a decrease in the percentage of correct 
responses and a slight increase in mean RT, particularly at short 
gaps, but most importantly, it should also produce a shallower 
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Figure 6 | The stochastic waiting model reproduces the psychophysical 
performance of monkeys S and g in the compelled-saccade task.  
(A) Psychometric curve. (B) Chronometric curve. (C) Distributions of rPT values for 
correct (top) and incorrect (bottom) trials. (D) Tachometric curve. (e) Reaction time 

distributions in correct and incorrect trials at specific gaps. Same experimental data 
and format as in Figure 2, but with simulation results from the stochastic waiting 
model. The maximum waiting time TW was drawn from a broad distribution in each 
trial. This waiting strategy produced good fits to the experimental data.
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not influenced by motor contingencies and its location along the 
x axis depends exclusively on the afferent and efferent delays. Also, 
performance increased because slower movements provide more 
viewing time, and thus more time for the circuit to accelerate and 
choose the correct location. Note that, although the tachometric 
curve did not change, an increase in overall performance resulted 
because more trials with long rPTs were produced, so more points 
were sampled from the right side of the curve than in the control 
case.

In contrast, the stochastic waiting model again predicted a 
shift of the tachometric curve and an overall increase in RT, but 
most notably, no change in performance as a function of gap 
(Figure 7D). Performance did not change because saccades in 
this model are always made to a location that is certain; the speed 
of the motor plan has no bearing on the location of the resulting 
eye movement.

3.5 neurophysIologIcal predIctIons
Another way to distinguish the two candidate mechanisms at 
hand is to compare the neural activity patterns that they predict 
with actual neuronal activity recorded directly from oculomotor 

T
D
 can only shift the curve, and changes to other parameters leave 

the curve unchanged. Therefore the dependency of the tachometric 
curve on task difficulty is a robust criterion for distinguishing the 
two models.

The second hypothetical experiment is complementary to the 
first. The idea now is to keep the perceptual component of the task 
constant and manipulate the motor component instead. Specifically, 
we consider a hypothetical condition in which oculomotor prepara-
tion is slower than in the standard compelled-saccade task. Although 
the hypothetical outcomes are clear, in practice, influencing motor 
preparation independently of the sensory evaluation is more dif-
ficult, but might be accomplished in a variant of the task that places 
greater demands on the motor choice associated with a particular 
perceptual discrimination (e.g., Sato et al., 2001).

In the race model such manipulation was assumed to decrease 
the build-up rates of the oculomotor plans (i.e., r

G
), effectively slow-

ing down motor execution. This change in parameters caused an 
increase in both the percentage of correct responses and the mean 
RT, particularly at long gaps, but it did not alter the tachometric 
curve at all (Figure 7B). Again, this is consistent with the frame-
work of the model, in which the slope of the tachometric curve is 
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Figure 7 | Psychophysical predictions of two computational models. Each 
column shows psychometric, chronometric, and tachometric curves from two 
sets of simulations, a standard condition (black points and lines) which uses the 
parameters that best fit the data from monkey S for each model, and a 
hypothetical experimental condition. (A) Predicted effects of task difficulty on 
performance according to the accelerated race model. Increased difficulty in 
discrimination (blue) was simulated by increasing the acceleration time constant 
τ from 190 to 437 ms. (B) Predicted effects of motor response time on 
performance according to the accelerated race model. Slower oculomotor 
activity (magenta) was simulated by reducing the mean build-up rate rG from 3.8 

to 2.5. (C) Predicted effects of task difficulty on performance according to the 
stochastic waiting model. Increased difficulty in discrimination (blue) was 
simulated by increasing the sensory discrimination time TD from 5 to 40 ms. 
(D) Predicted effects of motor response time on performance according to the 
stochastic waiting model. Slower oculomotor activity (magenta) was simulated 
by reducing the rates μ1 and μ2 from 15 and 8.5 to 10.5 and 6, respectively. These 
parameters are the mean rates at which oculomotor activity increases from 
baseline to threshold when a random location is chosen (μ1) and when the target 
location is known (μ2). Note the different predictions that the two models make 
on the psychometric and tachometric curves.
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the cue, or on the saccade. In addition, because the rPT is a crucial 
variable in the task, separate averages were generated for trials with 
long and with short rPTs (Figure 8). All of these procedures were 
meant to mimic the standard methods used for analyzing extracel-
lular recordings from oculomotor cells (Thompson et al., 1996; 
Port and Wurtz, 2009; Stanford et al., 2010).

 structures engaged during the task. To generate such predictions, 
several thousand trials were run for each model, and the simulated 
motor plans were saved for all trials. Then we computed the average 
traces of the motor plans in the neurons’ preferred direction and 
of the plans in the opposite direction. These average traces were 
calculated with all trials synchronized either on the go signal, on 
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Figure 8 | Neurophysiological predictions of two computational models 
and comparison with experimental data. For each model, 8000 trials were 
simulated using the parameter values that best fitted the data from monkey S 
(Tables 1,2). Trials were sorted into two groups, one with short (rPT ≤ 115 ms), 
and another with long (rPT ≥ 145 ms) processing times. The model responses in 
each group were aligned either on the go signal (left column), on the cue (middle 
column), or on the saccade (right column), and were then averaged. Separate 
averages were calculated for responses in the preferred direction of the model 
neurons (red traces) and in the antipreferred direction (green traces). Only 

correct trials were considered. (A) Average neural activity predicted by the 
accelerated race model in short-rPT trials. (B) Average neural activity predicted 
by the accelerated race model in long-rPT trials. (C) Average neural activity 
predicted by the stochastic waiting model in short-rPT trials. (D) Average neural 
activity predicted by the stochastic waiting model in long-rPT trials. (e,F) Average 
normalized activity obtained from a population of 30 FEF neurons. Trials were 
sorted and aligned exactly as described above for the simulated data. Shaded 
areas indicate ±1 SE across neurons. In all plots, the y axis corresponds to 
normalized firing rate.
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were described in an earlier publication (Stanford et al., 2010; 
neurophysiological methods detailed there). The same popula-
tion responses were aligned on the saccade, as was done before, 
and were also replotted synchronized on the go signal and on cue 
onset (Figures 8E,F). In each case, the activities associated with 
eye movements into (red traces) and away from (green traces) the 
movement field showed a close agreement with the average traces 
predicted by the accelerated race-to-threshold model.

First, consider the data aligned on the go signal (Figures 8E,F, 
left column). Note what happens at the time point marked by an 
arrow, 190 ms after the go, at which point the red traces in the 
two models are either still rising a little or have just stopped (see 
Figures 8A–D, left column). At this time, the red and green experi-
mental traces are nearly fully separated in short-rPT trials, whereas 
in long-rPT trials they still have not diverged; this is both because 
the activity associated with the distracter is higher and because the 
activity associated with the target is lower than in short-rPT trials. 
These differences are not seen in the stochastic waiting model, but 
are very much as predicted by the race model.

Second, consider the experimental data aligned on cue onset 
(Figures 8E,F, middle column). In short-rPT trials the red and 
green traces have already diverged substantially by the time that 
the cue is revealed, whereas in long-rPT trials both traces have just 
started rising, and do so together for another 110 ms approximately. 
Again, this is very much as expected from the race model. In con-
trast, the stochastic waiting model predicts that, during long-rPT 
trials, activity should start rising about 40 ms after the cue presenta-
tion, which is clearly not what happens in FEF.

Finally, consider the experimental data synchronized on the 
onset of the saccade (Figures 8E,F, right column). As noted in 
our earlier report (Stanford et al., 2010), there are two impor-
tant differences between long- and short-rPT trials in this case. 
First, the neural activity associated with eye movements away 
from the receptive field (green traces) is stronger in the latter 
condition, but declines sharply before the saccade is initiated. 
And second, the neural activity associated with eye movements 
into the receptive field (red traces) has slightly but significantly 
different curvature in short- versus long-rPT trials, the latter 
condition producing a steeper rise in activity. Both effects are 
in agreement with the results of the race model, and the sec-
ond one is at variance with what is expected from the stochastic 
 waiting model.

4 dIscussIon
The compelled-saccade task is useful because it provides, through 
the tachometric curve, a direct characterization of a subject’s per-
ceptual judgment as it evolves in time; i.e., it shows how long it 
takes for the subject to make a discrimination regardless of motor 
execution. With this curve at hand, it also becomes possible to 
correlate the temporal evolution of the subject’s percept with the 
temporal profile of activity of a population of recorded neurons, 
which, in turn, serves to identify their functional impact during 
task performance (Stanford et al., 2010).

However, a simple but important assumption must be true for 
this scheme to work: the measured sensory processing time rPT 
must be proportional to the effective stimulus viewing time, and this 
exposure time should indeed be the relevant variable  determining 

An important consideration here is that the accelerated race 
model makes specific predictions both for the motor plan in 
the preferred direction of the neurons and for the plan in the 
opposite direction, because it is based on two competing popula-
tions (Figures 8A,B); whereas the stochastic waiting model only 
specifies the motor plan in the preferred direction, because there 
is no explicit competition, only a single motor plan per trial. 
Although these are shown as flat (Figures 8C,D, green traces), 
the waiting model simply does not say anything about the motor 
plans in the antipreferred direction, except that they do not reach 
threshold.

In spite of this caveat, differences between the two sets of 
model predictions are easy to appreciate. Notably, the race model 
generally predicts a larger and earlier separation between the 
two activity traces on short rPTs than on long rPTs (compare 
Figures 8A,B). We interpret this phenomenon as follows: when, 
at the beginning of a trial, it so happens that one of the motor 
plans builds up much faster than the other, the outcome is typi-
cally a fast guess, which results in a short rPT; in contrast, when 
the two initial build-up rates are moderate, there is more time 
for the cue signal to accelerate the plan associated with the target, 
typically producing a correct discrimination with a long rPT. A 
consequence of this is that the activity in favor of the distracter 
side (green traces) is generally stronger at long rPTs than at short 
ones. Thus, in the race model, the competing motor plans not 
only separate less at long rPTs than at short ones, but also separate 
much later, on average.

The stochastic waiting model does not specify the motor plan 
away from the chosen direction, as mentioned above. However, 
it is possible to compare the activity associated with the winning 
motor plan (red traces) in short- versus long-rPT conditions. In 
this case, there are two predictions that are very different for the two 
models. First, when the data are aligned on the go signal, the race 
model predicts a higher build-up rate for short than for long rPTs 
(Figures 8A,B, left column), whereas the waiting model predicts 
no difference (Figures 8C,D, left column). And second, when the 
data are aligned on saccade onset, the average rise to threshold is 
obviously different for the two models: the race model predicts that 
the average trajectory toward threshold should be steeper and more 
curved in long-rPT trials than in short-rPT trials (Figures 8A,B, 
right column), whereas the waiting model essentially predicts the 
opposite, that a steeper trajectory should be observed in short-rPT 
trials (Figures 8C,D, right column).

A point to keep in mind about both sets of predictions is that 
the models do not specify anything after saccade onset. This is 
important for interpreting the model results aligned on the go or 
the cue. It means that the predicted average traces apply mainly 
during the rising phases of the red curves, which mostly reflect 
the activity leading to saccade onset. In each case, the decrease 
that follows the peak (Figures 8A–D, red curves in left and middle 
columns) occurs because progressively fewer trials contribute to 
the average traces as time increases; that is, trials that end quickly 
(with short RTs) contribute only to the first part of a trace when 
the data are aligned on the go or the cue.

These predictions were compared with experimental data 
recorded from the frontal eye field (FEF). For the comparison, 
we used a set of 30 FEF neurons with saccade-related activity that 
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compelled-saccade task (Stanford et al., 2010). Here, we extended 
those observations by replotting the same experimental data in 
other ways, namely, synchronized on the go signal and cue onset, 
thus exposing several characteristic features of the neural activity 
that can be readily compared against the models’ predictions. The 
results are clear: in all cases, the FEF responses are inconsistent with 
those expected from the stochastic waiting model, but match quite 
closely the results of the accelerated race model.

Beyond the neurophysiological evidence, the two models 
make distinct predictions for how the degree of perceptual dif-
ficulty impacts the psychometric, chronometric, and tachometric 
curves (Figure 7), and manipulating task difficulty is the basis 
for planned experiments designed to further distinguish between 
these alternatives.

4.2 why dIdn’t the suBjects waIt for the cue?
If it is true that our monkey subjects did not wait to see the cue 
during task performance, one may wonder why not. We think there 
are at least three reasons.

First, it might simply be very difficult to withhold a saccade when 
the fixation spot disappears. In fact, the compelled-saccade task is 
an elaboration of the so-called “gap task,” in which extremely short 
saccadic RTs to a single target are induced simply by eliminating 
the fixation spot slightly before target presentation (Saslow, 1967; 
Paré and Munoz, 1996). It seems plausible that the release from 
an active state of fixation in conjunction with the presence of two 
highly salient spots, and a 50% probability of being rewarded for 
either choice, is sufficient to “compel” the subject to engage sac-
cade planning mechanisms. Put another way, it may be much more 
difficult to wait, i.e., to stare at the blank screen between the two 
bright targets, than it is to look at one of them. It is also relevant 
to note that gap values were randomized, further increasing the 
difficulty of implementing a purposeful waiting strategy – on any 
given trial, the subjects do not know how long to wait, if that is 
indeed what they try to do.

Second, before performing the compelled-saccade task, the 
monkeys were trained on a traditional choice paradigm that is 
very similar to the compelled task, except that the cue is revealed 
before the go signal; this is the easy choice task (see Supplementary 
information in Stanford et al., 2010). Thus, during training, our 
subjects learned the rule “move your eyes as soon as the fixation 
spot disappears.” It is likely that they applied this exact same rule 
in the compelled version of the task, since transition from the easy 
to compelled versions required no additional training, and the two 
task types could be interleaved without any disruption in perform-
ance. Logically, the two tasks can be viewed as a continuum, with 
easy trials having negative gap values, compelled trials having posi-
tive gap values, and the transition between the two corresponding to 
zero gap. Accordingly, RTs in the easy choice task were most similar 
to those for the shortest gaps in the compelled condition.

Third, although waiting may seem advantageous from the point 
of view of this particular task, in general, the oculomotor system 
is not engineered to stop and wait until certain sensory events 
occur in the world. Normally, primates make about three saccades 
per second – they do so even in the dark – and the saccade statis-
tics change very little across visual scenes and behavioral contexts 
(Castelhano et al., 2009). It is only under exceptional circumstances, 

perceptual performance in the task. This condition is true in the 
accelerated race model with and without waiting, but it is not sat-
isfied in the stochastic waiting model. Although it produces good 
fits to the experimental data, including the tachometric curves, in 
the stochastic waiting model the sensory discrimination time T

D
 

is fixed, and the rPT values measured across trials are not causally 
related to the trials’ outcomes. We found that both models could fit 
the psychophysical data from the standard compelled-saccade task, 
but they made mutually exclusive predictions for the behaviors that 
should be expected under additional task conditions, and for the 
neural activity that should be observed during task performance.

The present modeling results are interesting because they illus-
trate how sets of psychophysical data can be simultaneously consist-
ent with drastically different underlying neural mechanisms, even 
when the experimental curves contain non-trivial features (e.g., two 
peaks). In addition, they answer several important questions about 
the compelled-saccade task and the mechanisms for oculomotor 
choice that may be at work during its execution.

4.1 dId the suBjects waIt for the cue?
For several reasons, we believe the answer is, no. In its simplest, most 
intuitive form, a waiting strategy implies a serial process requir-
ing the subject to wait until the perceptual decision is completed 
before planning a saccade to the chosen target. This all-or-none 
strategy, which corresponds most closely with the voluntary act of 
waiting, failed to explain numerous prominent features of the data. 
Whether applied on every trial or on some fraction of the trials, 
such an all-or-none waiting regime, in which the subject “waits out” 
the gap, is clearly inconsistent with the psychophysical data. Most 
tellingly, it predicts a flat psychometric function (Figure 4A), and 
a linear rise in the chronometric curve (Figure 4B). Instead, we 
observed monotonically declining psychometric curves and rela-
tively flat chronometric functions, each readily explained within 
the framework of an accelerated race model lacking any provision 
for waiting.

Although waiting in its most deliberate form (i.e., wait until 
sure, then look) is easily ruled out, the fits to the data obtained 
with the stochastic waiting model show that it is not possible to 
rule out a more sophisticated waiting scheme solely on the basis 
of the current psychophysical findings. Nevertheless, we note that 
a number of specific conditions must be met for such a waiting 
regime to work. First, the waiting time cannot exceed the gap on 
every trial (successful waits), because then performance would 
be near perfect, and that was not observed. Also, waiting can 
work, but only if the subject generates waiting times across trials 
with precisely the correct distribution, and ensuing motor plans 
develop rapidly enough so that saccades conform to the observed 
RT distributions.

Although the accelerated race model and the stochastic wait-
ing model both produce good fits to the behavioral data, they 
imply very different underlying neurophysiological mechanisms 
(Figure 8). In fact, these two models make opposing predictions for 
how sensory processing time is manifest in the temporal profile of 
oculomotor activity. In a recent report, we demonstrated that the 
motor-related discharge of neurons in the FEF is highly consistent 
with the temporal interaction between sensory and motor processes 
predicted by the accelerated race model during performance of the 
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4.3 concludIng reMarks
It appears intuitive that subjects would try to wait to see the sensory 
cue and withhold their saccadic responses to gain an advantage 
during performance of the compelled-saccade task. However, our 
results show that, in its simplest and most natural form, the result-
ing waiting model does not match the experimental data; only a 
more intricate, less intuitive waiting strategy can do so. This strategy 
turned out to be inconsistent with the neuronal responses observed 
in FEF (Figure 8; Stanford et al., 2010). Furthermore, upon closer 
examination, the main mechanistic assumption of the model – that 
in a sizable fraction of the trials the onset of motor preparation 
is contingent on the arrival of a fully processed sensory signal – is 
clearly at variance with our current understanding of oculomo-
tor choices, in which perceptual processes and motor preparation 
interact extensively and generally display a strong temporal overlap. 
In fact, in models of other perceptual decision making tasks, the 
relevant sensory information typically exerts a continuous influ-
ence on the developing motor plans (Machens et al., 2005; Palmer 
et al., 2005; Beck et al., 2008), or may even lag the initial motor 
preparation substantially (Cisek et al., 2009), in a similar spirit as 
the accelerated race model proposed here. This account will be 
tested further with future experiments and analyses, but so far it 
provides a more parsimonious and consistent explanation of the 
compelled-saccade data.
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periods of time. Four types of experimental observation support 
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(4) Microstimulation experiments in which oculomotor neurons 
are artificially activated indicate that sensory information influ-
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These diverse experiments indicate that saccadic plans are indeed 
modified on the fly; that is, that in general, preparatory oculomotor 
activity interacts with sensory information to determine the direc-
tion of the evoked saccadic choice and its timing. The perceptual 
and preparatory motor processes are not decoupled, as the waiting 
models would imply. For this reason, it would be extremely difficult 
to adapt the stochastic waiting model to any of the four types of 
experiments just discussed.
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