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Abstract

Sex differences in methylation status have been observed in specific gene-disease studies and healthy methylation variation
studies, but little work has been done to study the impact of sex on methylation at the genome wide locus-to-locus level or
to determine methods for accounting for sex in genomic association studies. In this study we investigate the genomic sex
effect on saliva DNA methylation of 197 subjects (54 females) using 20,493 CpG sites. Three methods, two-sample T-test,
principle component analysis and independent component analysis, all successfully identify sex influences. The results show
that sex not only influences the methylation of genes in the X chromosome but also in autosomes. 580 autosomal sites
show strong differences between males and females. They are found to be highly involved in eight functional groups,
including DNA transcription, RNA splicing, membrane, etc. Equally important is that we identify some methylation sites
associated with not only sex, but also other phenotypes (age, smoking and drinking level, and cancer). Verification was done
through an independent blood cell DNA methylation data (1298 CpG sites from a cancer panel array). The same genomic
site-specific influence pattern and potential confounding effects with cancer were observed. The overlapping rate of
identified sex affected genes between saliva and blood cell is 81% for X chromosome, and 8% for autosomes. Therefore,
correction for sex is necessary. We propose a simple correction method based on independent component analysis, which is
a data driven method and accommodates sample differences. Comparison before and after the correction suggests that the
method is able to effectively remove the potentially confounding effects of sex, and leave other phenotypes untouched. As
such, our method is able to disentangle the sex influence on a genome wide level, and paves the way to achieve more
accurate association analyses in genome wide methylation studies.
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Introduction

DNA methylation occurs on the C5 position (the 5th carbon of

the cytosine pyrimidine ring) of CpG dinucleotides along the DNA

chain, and forms one of the epigenetic mechanisms controlling

and modulating gene expression. It is not only essential for normal

cellular development, but also may be associated with formation of

diseases. Cancer, for example, has been related to genome-wide

hypomethylation coinciding with gene specific hypermethylation

[1]. A few new studies also show that methylation change of

specific genes is associated with mental illness, such as hypo-

methylation of MB-COMT in schizophrenic and bipolar disorder

patients [2,3,4,5].

In addition to disease, inter-individual differences in healthy

subjects are also observed and are influenced by factors like age,

sex and tissue type [6]. Sex differences have been discussed with

contradictory results. Eckhardt et al. [7] studied 2,524 loci on

chromosome 6, 20 and 22 in 12 different tissues in 43 samples, and

could not find any statistical difference between male and female

samples. In contrast, Sarter et al. reported significant sex

differences in four autosomal genes, and suggested that sex is at

least as strong a predictor of methylation in certain genes as age

[8]. Moreover, conflicting results have been drawn regarding

whether females or males have higher methylation levels. A

tendency toward higher methylation levels in males was identified

in three regions at PEG3, NESP55 (GNAS) and H19 imprinted

genes and two additional loci at Xq28 (F8 gene) and at 19q13.4 [9].

Expression level of DNMT3b (a DNA methyltransferase) in human

liver is significantly higher in females than males, which potentially

influences DNA methylation status [10]. In methylation-disease

studies, females are shown to be 8.8 time more likely than males to

have methylation positive colorectal cancer [11]. Though sex

effects appear to differ across studies, no single study so far has

focused on the sex effect across the genome.

With the microarray genotyping technique, genome wide

methylation measurements are available with up to over 27,578

genetic sites covering 23 pairs of chromosomes (Illumina Infinium

Methylation Assay). Such technology will surely lead to genome

wide association studies (GWAS) of methylation on various

phenotypes. To date, more GWAS have been done on single

nucleotide polymorphisms [12] than on methylation. Before

conducting GWAS on methylation, one of the key questions that

needs to be addressed is how sex influences the genomic

methylation status and how to cope with it in the context of

methylation-disease association study. Methylation can potentially

link to sex and any other phenotypes. As reported by Wu et al. in a
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lung cancer study, O-6-methylguanine-DNA methyltransferase

(MGMT) hypermethylation is more common in squamous cell

carcinomas in males and smokers than in adenocarcinomas in

females, and nonsmokers. MGMT hypermethylation was pro-

nouncedly influenced by sex in addition to smoking status [13].

Such results emphasize the need for a proper way to correct the

sex influence in a methylation-disease study.

In this paper, we use a subsample (n = 197, 54 female and 143

male) of a larger genome-wide study, which is designed to

investigate the association between genomic DNA methylation

and alcohol dependence. All participants have some level of

substance abuse, and their substance use behavior was assessed

through questionnaires. Saliva samples were collected from each

participant to extract DNA and then to examine the methylation

value using the Illumina Infinium Methylation Assay. The samples

were processed in a random order, and the subsamples used in this

paper are the first 197 processed samples. We use this data to

investigate the sex effect systemically and also propose a correction

method to eliminate the potentially confounding effect of sex on

methylation-disease association studies. A third-party DNA

methylation data from peripheral blood cells assessed by Illumina

cancer panel array were used to verify the findings.

Results

Five behavioral variables as well as age and sex were used as

phenotypes to investigate the association with methylation status.

The behavioral variables were assessed through self-report

questionnaires, described as follows: 1) The Alcohol Use Disorders

Identification Test (AUDIT) [14]. In this measure, participants

were asked to report the quantity and frequency of heavy drinking

and other symptoms associated with alcohol abuse. The items are

summed to create a total AUDIT score. 2) The Alcohol

Dependence Scale (ADS) [15] includes 24 items with four

subscales. The total score was used as the phenotype in this study.

3) Participants were asked to report the maximum number of

drinks in a single drinking episode (Max_drinks). 4) Self reported

number of cigarettes smoked per day on average (cigarettes use). 5)

The percentage of days smoked marijuana in the past 90 days

(%_MJ_days).

Direct association test on each methylation site with
phenotypes

We first examined the sex influence on methylation via a two-

sample T-test. The results from genomic 20,493 CpG sites spread

out widely, and P-values range from 2.84E-80 to 1. A 5% Bonferroni

multiple comparison corrected false positive rate was used to select

significant sex effects. Thus, 690 CpG sites in 432 genes were

significantly associated with sex (more detailed information see the

supporting Table S1). Among the 432 genes, eleven genes including

12 sites are in autosomes: LRRC2 and TDGF1 in Chromosome 3,

RAB9P1 in chromosome 5, C6ORF68 in Chromosome 6; TLE1 in

Chromosome 9, GLUD1 in Chromosome 10, ALX4 in Chromosome

11, DPPA3 in Chromosome 12, NUPL1 in Chromosome 13,

FLJ20582 and FLJ43276 in Chromosome 15. The remaining 421

genes including 678 sites are located in the X chromosome.

Figure 1A shows methylation values of 12 autosomal sites, while

Figure 1B shows the methylation values of sites in the X

chromosome with red for females and blue for males.

Focusing on the sex influence on autosomes, we found 580

methylation sites (540 genes) in Chromosomes 1 to 22, passing 5%

uncorrected false positive rate. Figure 2A shows the locations of

such sites on chromosomes (see the supporting Table S2 for the full

report), where the top 12 sites passed Bonferroni corrected 5%

false positive. Furthermore, we have identified eight functional

groups prominently presented in these 540 genes. The eight

groups listed in Table 1 were extracted with the highest clustering

stringency, using the built-in gene classification function in the

Database for Annotation, Visualization and Integrated Discovery

(DAVID, http://david.abcc.ncifcrf.gov) bioinformatics resources

[16,17].

We also tested associations between methylation and other

phenotypes using Pearson correlation. Results were corrected by

5% Bonferroni correction. The correlation coefficient for each

phenotype, either significant or not were reported in Table 2 for

complete information. Sex, age, max_drinks, and marihuana use

show very strong connections with methylation level of specific

sites. 85 CpG sites with one in X chromosome were associated

Figure 1. Significant sex effects on 690 methylation sites with
mean and standard deviation values. a): mean and standard
deviation methylation values from 12 autosomal sites. Red indicates
females and blue indicates males. Bars present mean value, while lines
show standard deviation. Eight sites are more methylated in females
than males and four sites are more methylated in males than females.
b): methylation pattern of 678 sites in X chromosome. They are sorted
by female methylation level, presenting 614 sites with higher
methylation in females and 64 sites with higher methylation in males.
Solid squares show mean value while dash lines show standard
deviation.
doi:10.1371/journal.pone.0010028.g001

Sex Effect on Methylation
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with age significantly. Eight sites were significantly related with

marijuana use assessment, and none are from Chromosome X.

Two sites in gene PAGE4 and GRM3 locating in Chromosome X

and 5, respectively, were associated with max_drinks level. One

site in gene SEC31L2 in Chromosome 10 was associated with

cigarette use. The detailed information about the associated

methylation sites were reported in the supporting Table S3.

PCA methylation factors and their association with
phenotypes

Twenty-six factors were extracted from methylation data using

principle component analysis (PCA), maintaining 99% of the data

variance. A factor here represents a combined effect from multiple

methylation sites with various levels of contribution. Two resultant

factors show significant sex differences, with P-values of 2.53E-69

and 1.82E-3 passing 5% Bonferroni correction. These two factors

are also tested for correlation with other phenotypes and results

are listed in Table 3.

ICA methylation factors and their association with
phenotypes

Similarly, 26 independent factors were extracted using inde-

pendent component analysis (ICA), maintaining the same 99% of

variance of data. Only one factor is significantly related to sex with

a P-value of 3.06E-79. The expression of this factor in subjects is

plotted in Figure 3. Females in general have positive expression

weights and males have negative weights except for six subjects

(two males show positive weight values and four females show

negative values). We also tested the correlation of this factor with

other phenotypes in Table 3, and no correlation was found

significant.

In this sex related factor, each site contributes differently with

|Z| score ranging from 83.65 to 0. Z score represents contribution

weight of each site to the factor, with positive/negative sign

showing the direction. Z score distribution reflects the P-value’s

distribution derived in the two-sample T-test on sex. Top sites in

|Z| scores consist of genes in X chromosome and autosomes, such

as TLE1, GLUD1, C6orf68, RAB9P1, TDGF1, FLJ20582, DPPA3,

BXDC1 and LRRC2, which are consistent with the T-test results.

This factor was identified as the sex factor, and we corrected for it

using Equation 4 in Materials and Methods section.

Figure 2. Autosomal sites identified as sex differentially
methylated. Human chromosomes 1-22 are arranged vertically.
Methylation sites in each chromosome are plotted horizontally in blue
line. Red dots present sites showing sex difference based 5%
uncorrected false positive rate. The ones above blue lines are sites
where females are more methylated than males. The ones below blue
lines are sites where males are more methylated than females. a): result
from saliva methylation data. 307 sites are methylated more in females
than in males, while 273 sites are methylated more in males. b): results
from blood cell verification data. 21 sites are methylated more in
females than in males, while 15 sites are methylated more in males.
doi:10.1371/journal.pone.0010028.g002

Table 1. Functional clusters of the autosomal sex differentially methylated genes.

Gene groups Enrichment score Gene List Size Min P-Value

regulation of transcription, DNA-dependent, DNA-binding, nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process

2.23 52 1.8E-38

spliceosome, RNA/mRNA splicing, RNA/mRNA processing, RNA–binding 1.7 5 1.7E-09

signal, trans-membrane, membrane, integral to membrane, intrinsic to membrane 1.27 5 7.6E-04

cadherin, cell-cell adhesion, calcium, 1.27 6 5.5E-13

cation channel activity, metal ion transporter activity, channel activity 1.25 7 1.4E-11

G-protein coupled receptor, transducer, rhodopsin-like G-protein coupled receptor, transmembrane
receptor activity

1.03 15 2.5E-19

tyrosine-protein kinase, transmembrane receptor protein tyrosine kinase activity 1.01 5 2.5E-10

protein kinase activity, protein amino acid phosphorylation, protein serine/threonine kinase activity, 0.81 11 1.1E-14

Note: Enrichment score ranks the biological significance of gene groups based on overall modified P-values of all enriched annotation terms.
doi:10.1371/journal.pone.0010028.t001

Sex Effect on Methylation
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Association of sex-corrected methylation with
phenotypes

The association result between methylation sites and pheno-

types after the sex effect correction is listed in Table 2. For

maximum drink level and cigarette use, the same associations from

genes PAGE4, GRM6 and SEC31L2 were identified. For marijuana

use, three additional sites from genes TCEAL8, TIMM8A and NOV

demonstrated significant correlations. Two different sites were

associated with age after sex effect correction. The details are

reported in the supporting Table S3.

Verification using an independent cancer panel
methylation data

The verification data are genomic (1298 loci, 762 genes)

methylation values of peripheral blood cell DNA, assessed by

Illumina GoldenGate Methylation Cancer Panel I. The two-

sample T-test on sex difference identified 47 sites in 26 genes

passing 5% Bonferroni correction. Among them, 25 genes are in X

chromosome with one site showing higher methylation in males

than females and others showing the opposite pattern. The P-value

ranges from 1.01E-18 to 2.40E-05. One gene, CASP6 in

Chromosome 4 also presents significant sex difference with female

methylation of 0.0660.02 and male methylation of 0.0160.01 (P-

value: 1.74E-6). Compared with the findings derived from our

saliva methylation data, 22 genes demonstrated significant sex

difference in both saliva samples and peripheral blood cell samples

(see Table S1). Since only 27 sex significantly differentially

methylated genes (5% corrected) in saliva (all in X chromosome)

are included in the Illumina Cancer Panel I array, the overlapping

rate of identified sex affected genes in X chromosome between

saliva and blood cell is 81% (22/27).

Focusing on genes in autosomes, we have identified 36 sites (in

34 genes) showing sex differences by the two-sample T-test of 5%

uncorrected false positive rate. 21 sites show higher methylation in

females than males, and 15 sites show opposite pattern. The

distribution of these 36 sites is plotted in Figure 2B in line with the

results from saliva samples. Four genes, MYLK, HOXA9, PEG10,

and CDKN2B present the same strong sex difference in both saliva

and blood cell DNA methylation. Since a total of 52 genes in the

540 sex strongly differentially methylated autosomal genes (5%

uncorrected) are included in the Illumina Cancer Panel I array,

Table 2. Association test results between methylation and phenotypes.

phenotypes Minimun P-value
Maximum absolute
Correlation

Sites passing 5% Borferroni multple comparison
corretion

Before sex effect correction

Sex 2.84E-80 32.33 (T value) 690 sites

ADS 2.05E-5 0.30 0

AUDIT 1.10E-5 0.31 0

Max_drinks 1.50E-7 0.36 2 sites

Cigarettes 1.20E-6 0.34 1 site

Age 1.32E-16 0.54 85 sites

%_MJ_days 3.78E-07 0.35 8 sites

After sex effect correction

Sex 1.37E-2 2.48 (T value) 0

ADS 2.07E-5 0.30 0

AUDIT 1.09E-5 0.31 0

Max_drinks 2.67E-7 0.36 2 sites (2 sites in common*)

Cigarettes 1.41E-6 0.34 1 site (1 sites in common*)

Age 1.57E-16 0.54 85 sites (83 sites in common*)

%_MJ_days 1.54E-7 0.35 11 sites (8 sites in common*)

*Common sites before and after sex effect correction.
doi:10.1371/journal.pone.0010028.t002

Table 3. Properties of the sex-related factors extracted by PCA and ICA.

Sex ADS AUDIT Max_ drinks Cigarettes Age %_ MJ

PCA: Factor 1 Correlation 27.62* 0.11 0.03 0.08 0.01 0.01 0.11

P-value 2.53E-69 0.12 0.63 0.27 0.93 0.91 0.11

PCA: Factor 2 Correlation 3.16* 0.08 0.14 0.08 0.16 0.11 0.07

P-value 1.82E-3 0.26 0.05 0.28 0.02 0.12 0.34

ICA: Factor 1 Correlation 31.87 0.09 0.00 0.09 0.04 0.03 0.11

P-value 3.06E-79 0.20 0.95 0.21 0.55 0.64 0.13

Note: bold indicates marginal significant correlations passing 5% uncorrected false positive control. * notes for t values from the two-sample T-test.
doi:10.1371/journal.pone.0010028.t003

Sex Effect on Methylation
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the overlapping rate of autosomal genes showing sex different

methylation is 8% (4/52).

ICA was also performed on the verification data using the same

parameter setting as on the saliva data. Five independent factors were

extracted to keep 99% of the total variance. One factor is significantly

related to sex with a P-value of 1.41E-18. All females show positive

weights in this factor, averaged at 0.1860.04. All males show negative

weights averaged at 20.1360.02. After the correction based on the

ICA factor, no methylation site shows a sex difference.

Discussion

Three methods, a direct T-test at each site, PCA and ICA

factorization tests all show strong sex influence in the genome wide

methylation data from saliva, with the minimum P-values of

2.84E-80, 2.53E-69 and 3.06E-79 respectively. We used a 5%

corrected false positive rate to select 690 sites. Their methylation

values in Figure 1 show cases in which methylation is higher in

females than males or vice verse. It suggests that the influence of

sex on methylation is site specific. The presence of more sites with

higher methylation in females than males on the X chromosome

can be explained by the X-inactivation process, in which one of

two copies of genes on the X chromosome in females is silenced.

We do not know any mechanism to explain those X chromosome

sites with higher methylation in males, but they are very interesting

and merit further investigation. In autosomes, our data show a

trend of more sites being highly methylated in females versus

males; i.e. 8 significant sites verse 3 sites in Figure 1A and 307 sites

verse 273 sites in Figure 2A. Fuke et al. discovered subtle but

significantly higher 5-methyldeoxycytidine content in males by a

high performance liquid chromatography (HPLC) study [18]. The

difference, however, might just be caused by different measuring

techniques. HPLC is designed to measure the global methylation

content without knowing/distinguishing individual sites. Micro-

array technique using bisulfite measures for specific sites resulting

in a methylation level for each site.

Our data, overall, show remarkable sex influences on specific

autosomal sites. Genes like TLE1, C6orf68, GLUD1, RAB9P1,

TDGF1, FLG43276, DPPA3, and LRRC2 are the top sex-affected

sites that survived stringent Bonferroni correction. For the 580

autosomal sites in Figure 2A, showing strong yet not quite

statistically significant sex differences (5% uncorrected), may also

reflect true methylation influence from sex. Kaminsky et al.

proposed the hypothesis that sex hormone might induce epigenetic

change, which predisposes female and male differently to un-

Mendelian complex diseases [19]. For example, TLE1, a

transcriptional repressor essential in hematopoesis, neuronal

differentiation and terminal epithelial differentiation, has been

shown to contribute to acute myeloid leukemia (AML), synovial

sarcoma, and other cancers [20,21,22]. Even though the pathways

of TLE1 affecting cancer growth are not clear, our data reflect that

the strong sex difference of TLE1 methylation might explain

partially that AML and synovial sarcoma are a little more

common in males than females. In the total of 540 autosomal sex

differentially affected genes, eight functional groups including

many pathways are involved, from DNA transcription, RNA

splicing, membrane, trans-membrane, cell to cell adhesion, to ion

transporter, etc. It suggests that the influence of sex on methylation

is broad and not limited only to sex specific factors.

In our verification analysis, blood cell DNA showed a pattern of

methylation which was consistent with what we observed for saliva

DNA. Twenty-five genes on the X chromosome and one gene,

CASP6, on Chromosome 4 were identified a significantly sex

difference and the difference occurs in both directions. The

overlapping rate of identified genes with saliva data is 81%. Since

all overlapped genes are from X chromosome, the ratio presents

an attribute of X chromosome between different tissues. When

focusing on autosomes, Figure 2 shows that sex influences

methylation in a very similar way in both saliva and blood cell

DNA (Figure 2A and 2B). Among the 36 autosomal sites showing

clear sex difference (5% uncorrected) in blood cells, 21 are highly

methylated in females and 15 in males. Four genes show the same

sex difference pattern in both saliva and blood cells. The

overlapping rate of 8% might be due to the small number of

samples and tissue differences. Overall, we are more convinced

that sex differences in autosomes may not be statistically

significant, but likely present a true effect of sex.

Both datasets from saliva DNA and blood cell DNA present

genomic sex effects on methylation; a large amount of loci from

both autosomes and X chromosome are affected by sex, and the

influence is in both directions (females highly methylated than

males or vice verse). We notice that between different tissues (or

different populations) the same or different loci can be affected,

but the genomic sex effect pattern holds the same.

Methylation of some genes is possibly modulated by both sex

and other factors, such as age, substance use, and diseases. For

example, in saliva data, methylation status of genes XPNPEP2,

PAGE4, TIMM8A and TCEAL8 is associated with age, cigarette

use and max_drinks, respectively, in addition to sex. Most of the

genes in the verification data are functionally cancer related

including the genes showing sex difference [23,24,25,26] Both

genes CASP6 and HOXA9 are hypermethylated, leading to

decreased gene expression in pancreas cancer tissue [24]. Gene

PEG10 is involved in human hepatocellular carcinogenesis [26].

Gene CDKN2B functionally influences tumor suppression and its

methylation has been studied for its power in leukemia treatment

[25,27,28]. For studies of genetic function or formation of diseases,

the sex influence can potentially obscure the methylation–disease

association results. It is thus important to take into account the sex

confounding effect. There are at least three different ways to

address the sex effect. First, we can use sites only from autosomes.

Such an approach is simple and most likely effective, but some

Figure 3. Weights of the sex-related factor expressed in
subjects. Weights in 143 males are plotted on the left with two
subjects above zeros; weights in 54 females are plotted in the right with
four subjects below zero.
doi:10.1371/journal.pone.0010028.g003
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important information might be lost. As shown in this study,

PAGE4, XPNPEP2, TCEAL8, and TIMM8A from Chromosome X

contribute greatly to non-sex phenotypes. Second, we can try to

remove sites associated with sex only, but that requires a threshold

setting to select sex-related sites. This approach will be subjective

and likely suboptimal. Finally, we can try to correct the sex effect

using factorization methods. Sex factor(s) can encompass both

strong and weak influences on multiple sites, without selecting an

arbitrary cut-off point. Then we can correct the sex effect by

removing the factor(s). PCA and ICA are two such factorization

methods which were compared in this study.

Two factors extracted from the PCA show a significant

association with sex, while ICA extracted only one strong sex

related factor. Since both PCA and ICA maintain the same

amount of variance in the original data, the extracted factors are

representing the same information in a slightly different format.

ICA emphasizes the independence of factors, while PCA only

considers the orthogonality of factors. It is likely that ICA is able to

pull the information of the two PCA sex related factors into one

factor based on the independence criterion. Table 3 also shows

that the sex related factor by ICA is not associated with any other

phenotypes of interest, while the 2nd factor by PCA shows

marginal connection with AUDIT and cigarette use. This is strong

evidence that suggests we should utilize the sex factor from ICA

not from PCA results, since the correction will not jeopardize the

associations of other known phenotypes. The Z scores of the sex

related factor by ICA displays a similar pattern to P-values of the

T-test on each site. This result provides additional evidence that

the ICA sex factor represents the true sex influence accommodat-

ing both strong to weak effects. Figure 3 displays how the ICA sex

factor is revealed in subjects, with each subject manifesting the sex

factor with an individual expression weight. The sex factor

represents the common sex influence trend extracted from all

subjects, but its expression level allows individual difference. The

weights are clearly clustered into two groups: positive and

negative. Most of the females show positive weights and most of

the males show negative weights. We do not know exactly why six

subjects are showing the opposite pattern, but we hypothesize that

individual endocrinological differences might be involved [19].

ICA is also able to extract one sex related factor from the

verification data, where all females have positive expression

weights and males have negative expression weights.

Sex correction was performed based on the ICA factor, and

Table 2 compares the results of the direct correlation test before

and after the correction. All phenotypes, except sex, show very

similar results. After the correction two different sites out of 85 are

linked to age, and three additional sites are added to be associated

to %_MJ_days. The similarity tells us that sex correction, as

expected, removes effects only from sex and no harm is done for

sex irrelevant sites. More importantly, the fact that more sites show

significant relationships, indicates that sex can be a confounding

factor, influencing association analysis of some methylation sites,

and more accurate associations can be determined after the

correction.

This study focuses on the sex influence on genomic methylation

and correction. Strong evidences from both saliva data and blood

cell verification data show that sex affects methylation both

genome wide and site-specific. A higher methylation in females or

in males can occur, and can occur in autosomes and the X

chromosome. The strong, yet not statistically significant sex

differences in autosomes may truly represent the influence of sex.

Moreover, sex effects can be entangled with other environmental

factors. We proposed a simple method to disentangle and correct

the sex effect. ICA is a data driven method to extract factors based

on high order statistics of data. Given different datasets, e.g.

methylation from different tissues, the sex factor extracted by ICA

can be different in terms of loci and influence strength, but it

should be significantly correlated with sex. Therefore, sex effect

correction is not a fix value correction, instead, adapted to the

data. Confirmation of the significant association with sex is

necessary to identify the sex factor. An alternative approach would

be to simply analyze female subjects and male subjects separately.

This may be a good approach, when the sample size is big enough

to divide into two groups. However, in genome wide studies, we

usually face a situation of large dimensionality and small sample

size, and maximizing sample size in the analysis is always

desirable. Besides, some phenotypes like cancer have different

incidence rates in females and males, and it is important to identify

the underlying mechanisms. The sex factor extracted by ICA and

its expression on each individual provide a direct metric to explain

the sex influence and quantify the influence on each individual. A

sex correction method based on factorization is able to account for

both strong and weak sex effects without drawing a cutoff line,

which is most likely reflecting how sex influences methylation

status on different sites. We have demonstrated that in this study

the sex factor is not related to any other known phenotypes, but

there is the possibility that some unknown trait might contribute to

the observed sex difference, and the correction would negatively

impact the analysis. For such a case, the researcher should

measure the trait first, and test whether it is related to the sex

factor. If not, the correction can proceed. Otherwise, a different

approach should be used. Every methylation site showing a

significant association with any phenotype is of great interest, and

in this study we are just providing a reference point for further

investigation. When we have a relatively small set of interesting

loci, verification by pyrosequencing or a single nucleotide primer

extension based assay will be very helpful.

Materials and Methods

Subjects
One hundred ninety-seven participants including 54 females with

age 32.02610.73 and 143 males with age 32.2269.70 were

investigated in this study, which is a subsample of an on-going study

designed to investigate genetic prediction for substance dependence.

Subjects between age 21 and 55 with a minimum alcohol

consumption of a regular pattern of two binge drinking episodes

per week (allowing comorbidity of tobacco and marijuana use),

otherwise healthy (no history of severe brain injure or brain related

medical problems, no symptoms of psychosis during a diagnostic

interview), were included. The behavioral variables were assessed

through self-report questionnaires during the interview. The samples

were processed in a random order, and the subsamples used in this

paper are the first 197 processed samples, including treatment-

seeking and non-treatment-seeking participants. Participants obtain a

wide range of alcohol use severity (AUDIT range = 6–38) in order to

better assess the relationship between genetics and drinking problems.

The study was conducted according to the principles expressed in the

Declaration of Helsinki, approved by the Institutional Review Board

of University of New Mexico. All patients provided written informed

consent for the collection of samples and subsequent analysis.

Methylation measurement
Participants were instructed to deliver 5 ml of saliva into a

sterile 50 ml conical centrifuge tube. DNA was then extracted

from saliva, purified, bisulfite converted and hybridized. The

Illumina Infinium Methylation Assay was used to detect genome

wide 27,578 CpG sites, spanning 14,495 genes. The CpG sites
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locate within the proximal promoter regions of genes, with

distance to transcription start site ranging from 0 to 1499 bp

averaged at 3896341 bp. A methylation value was outputted for

each site, which is a continuous variable between 0 and 1,

representing the ratio of the intensity of the methy lated type to the

total intensity. Zero means no methylation, and one means 100%

methylation. The reproducibility of Illumina assay methylation is

reported as R2 of 0.98, and the standard deviation of methylation

values from replicates is less than 0.06 [29]. We observed a very

similar property in our data using two replicates test (R2 = 0.97,

SD = 0.064). Among the 27,578 CpG sites, some sites have shown

either low level averaged methylation or low level variation among

all 197 subjects. They thus convey very limited information for

further study and great influence of measurement errors. We

eliminated these sites using an empirical threshold setting of

averaged methylation being 5% of maximum value, and/or

variance being 1% of maximum variation. This results in 20,493

CpG sites for further study.

Analyses methods
We use three different ways to test the connection between sex

and genome-wide methylation status, as well as its potential

influence or confounding effects on associations of methylation

with other phenotypes. Furthermore, a sex effect correction

method was introduced based on factorization, and comparisons

before and after the sex effect correction were conducted.

Firstly, a two-sample T-test on sex was performed on each

methylation site, and Pearson correlation was performed to test

association of methylation with other phenotypes. All results are

corrected using 5% Bonferroni multiple comparison correction.

The significant associations and/or the associations with minimum

P-values were listed for each phenotype. When focusing autosome

methylation, we chose 5% uncorrected P-value to identify all

possible sites affected by sex. Then, we grouped these autosomal

sex affected genes based on their functional similarity. DAVID

gene functional classification tool (http://david.abcc.ncifcrf.gov/)

was used due to its ability to provide a rapid means to organize

large lists of genes into functionally related groups to help unravel

the biological content captured by high throughput technologies

[16,17]. Being conservative, we used the highest classification

stringency to extract the most reliable gene groups.

Secondly, PCA, a factorization method, was utilized to extract

factors explaining maximum variance of data. The generic

formula of PCA is presented as [30]:

Y T~X T :P~U :S;

X T~U :S:VT , then, P~V ;

where U ,S,and V are the singule value decomposition results:

ð1Þ

X is the observation data with each row representing a repetition

of the experiment and each column representing a variable or a

dimension. In this study X is the methylation measurement from

each subject. Y is the new representation of data–the latent principle

components/factors. P is the principle component coefficient,

carrying each factor’s expression pattern in subjects. PCA projects

data into new directions so that each direction is orthogonal to each

other. We then test the connection of P with sex and other

phenotypes, aiming at identifying the sex factor.

Similar to PCA, ICA is also used to extract hidden factors in the

data, but through higher order statistics enabling maximization of

the independence of each factor. ICA is generally formed as:

X~A:S; Z~W :X ;

if W~A{1,then Z~S;
ð2Þ

max H Yð Þf g~{E Lnfy Yð Þ
� �

;

Y~
1

1ze{U
,U~W :XzW0;

where fy Yð Þ is the probability density function of Y;

Ln is natural logarithm; E is the expected value;

H is the entropy fucntion; W0 is the initial value of W:

ð3Þ

X is an observation data matrix that can be composed of

measurements such as speech signals from multiple microphones,

or subject’s methylation values. S contains the independent

components, which consists of unknown sources such as multiple

speakers’ voices, or methylation factors accounting for various

phenotypes. A is a linear mixing matrix, relating the sources to the

mixed measurements. W is an unmixing matrix. If W equals the

inverse of A, then the Z, the estimated component matrix, is

equivalent to S, the source matrix. Therefore, the essence of ICA is

to find W so that Z is as close as possible to the true independent

components contained in S. There are many ICA algorithms

based on different independence criteria. Among them, the

infomax algorithm attempts to find the W matrix through

maximizing an entropy function as defined in Equation 3

[31,32]. We use infomax to extract factors/components, and then

tested their associations with sex and other phenotypes.

Thirdly, a factor significantly associated with only sex and not

other phenotypes is defined as a sex factor. The effect of this factor is

removed from the observation data using the Equation 4, where sj is

the identified sex factor. The corrected data X C has the same

dimension as X , containing all the methylation sites corrected for sex.

X~A:S;

A~ a1,a2, . . . ,am½ �; S~ s1,s2, . . . ,sm½ �

X c~X{aj
:sj ;

where the j is the index for the gender factor,

aj and sj are vectors:

ð4Þ

Finally, the two-sample T-test on sex and Pearson correlation

between methylation and other phenotypes was tested again after

the sex effect correction.

Verification data and methods
To verify the findings of this study, we chose a third-party

independent methylation data (GEO accession: GSE19515), and

conducted the same analysis. The GSE19515 dataset was uploaded

by the German cancer research center, including genomic

methylation data of 27 samples, as well as their sex information. In

this dataset, DNA was prepared from peripheral blood cells of 1

patient (at time of diagnosis and month 27) and 25 healthy controls

(12 males and 13 females). The Ilumina GoldenGate Methylation

Cancer Panel I array was used, spanning 1,505 CpG sites from

promoter regions or the first exon of 808 mostly cancer related genes
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(based on gene annotation). To be consistent, we only use 25 healthy

controls data in the verification process. Data quality control was first

applied. Two loci (DAB2IP_P671_F and SCGB3A1_P103_R) from

genes DAB2IP and SCGB3A1 were removed due to their high

averaged detection P-values (.0.5, i.e. targeted signal is lower than

50% of negative control signals). Two hundred and five loci were

removed from analysis due to low level methylation or low variance

(averaged methylation value ,0.01, or averaged variance ,0.0001).

Thus, the verification data include 25 healthy subjects and 1298 loci

(762 genes, 39 of them from X chromosome). Among these 762

genes, 672 genes are included in our saliva DNA methylation data.

We first conducted a two-sample T-test on methylation of each locus

regarding sex difference, and corrected the results with 5%

Bonferroni correction. Then, we used an uncorrected 5% P-value

to select all autosomal loci showing sex differences. Finally, we

performed the ICA analysis to identify the sex related factor. All

results were compared with the corresponding findings from our

saliva data.

Supporting Information

Table S1 960 sites showing significant sex difference on saliva

DNA methylation. 960 sites from autosomes and X chromosome

showing significant sex difference on saliva DNA methylation.

Some also show significant sex difference on peripheral blood cell

DNA methylation.

Found at: doi:10.1371/journal.pone.0010028.s001 (0.45 MB

DOC)

Table S2 580 autosomal sites showing sex difference on saliva

DNA methylation. Some also show sex difference on peripheral

blood cell DNA methylation.

Found at: doi:10.1371/journal.pone.0010028.s002 (0.66 MB

DOC)

Table S3 Correlation results before and after sex effect

correction. Significant correlation of methylation with age,

marijuana use, maximum drink, and cigarette use before and

after sex effect correction.

Found at: doi:10.1371/journal.pone.0010028.s003 (0.14 MB

DOC)
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