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Simple Summary: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer
and requires further research to identify new targeted treatments. We set out to study long non-
coding RNAs (IncRNAs), an emerging class of oncogenes, in the context of TNBC. As IncRNAs are
expressed in a highly specific manner, we applied single-cell RNA sequencing as a high resolution
method to study IncRNA expression in the tumour. Our findings demonstrate that IncRNAs are
expressed heterogeneously and identify previously uncharacterised IncRNAs that can be further
investigated as therapeutic targets or biomarkers.

Abstract: Breast cancer is the most commonly diagnosed cancer in the world, with triple-negative
breast cancer (TNBC) making up 12% of these diagnoses. TNBC tumours are highly heterogeneous in
both inter-tumour and intra-tumour gene expression profiles, where they form subclonal populations
of varying levels of aggressiveness. These aspects make it difficult to study and treat TNBC, requiring
further research into tumour heterogeneity as well as potential therapeutic targets and biomarkers.
Recently, it was discovered that the majority of the transcribed genome comprises non-coding RNAs,
in particular long non-coding RNAs (IncRNAs). LncRNAs are transcripts of >200 nucleotides in
length that do not encode a protein. They have been characterised as regulatory molecules and
their expression can be associated with a malignant phenotype. We set out to explore TNBC tumour
heterogeneity in vivo at a single cell level to investigate whether IncRNA expression varies across
different cells within the tumour, even if cells are coming from the same cell line, and whether IncRNA
expression is sufficient to define cellular subpopulations. We applied single-cell expression profiling
due to its ability to capture expression signals of IncRNAs expressed in small subpopulations of cells.
Opverall, we observed most IncRNAs to be expressed at low, but detectable levels in TNBC xenografts,
with a median of 25 IncRNAs detected per cell. LncRNA expression alone was insulfficient to define a
subpopulation of cells, and IncRNAs showed highly heterogeneous expression patterns, including
ubiquitous expression, subpopulation-specific expression, and a hybrid pattern of IncRNAs expressed
in several, but not all subpopulations. These findings reinforce that transcriptionally defined tumour
cell subpopulations can be identified in cell-line derived xenografts, and uses single-cell RNA-seq
(scRNA-seq) to detect and characterise IncRNA expression across these subpopulations in xenografted
tumours. Future studies will aim to investigate the spatial distribution of IncRNAs within xenografts
and patient tissues, and study the potential of subclone-specific IncRNAs as new therapeutic targets
and/or biomarkers.

Keywords: single cell RNA-seq; non-coding RNAs; long non-coding RNAs; scRNA-seq; IncRNAs;
ncRNAs; breast cancer; triple-negative breast cancer; TNBC; xenograft; heterogeneity

1. Introduction

Breast cancer is the most commonly diagnosed cancer worldwide, with 2.26 mil-
lion cases diagnosed and over 680,000 deaths in 2020 [1]. Triple negative breast cancers
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(TNBC) account for approximately 12% of breast cancers, and are defined as cancers that
are hormone receptor negative, lacking significant expression of estrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth factor receptor (HER2) [2]. TNBC
is highly heterogeneous in terms of both inter-tumour diversity, and intra-tumour gene
expression [3], where tumours are comprised of multiple subclonal populations, with
varying levels of aggressiveness [4,5]. Tumour heterogeneity makes effective treatment
difficult (as reviewed in [3]). Further research into the underlying biology of TNBC is
required to better understand tumour heterogeneity, leading to the identification of new
therapeutic targets and biomarkers and ultimately to improve disease management and
patient outcomes.

Recently, it was discovered that the majority of the transcribed genome comprises
non-coding RNAs (ncRNAs) [6]. While previous exploration of gene expression profiles in
TNBC had largely been directed towards protein-coding genes [7], interest in changes to
ncRNAs has been growing in recent years (as reviewed in [8]). The largest class of ncRNAs
are long non-coding RNAs (IncRNAs), which are defined as transcripts of >200 nucleotides
in length that do not encode a protein [9]. With some well-characterised exceptions, such
as MALAT1 [10] and NEAT1 [11], IncRNAs are generally expressed at low levels within
the cell [12,13]. LncRNAs have been implicated in numerous diseases, and have been
characterised as drivers in many types of cancers [14-16], including TNBC [17]. They
have been shown to contribute to the six hallmarks of cancer, using many mechanisms to
promote the malignant state [18,19]. LncRNAs are highly suited as oncology targets due to
their superior tissue- and cancer-specific expression compared to protein-coding genes [20],
making them an important area to investigate in the context of TNBC.

While it is known that subpopulations of tumour cells are present in TNBC and gene
expression in the tumour is highly heterogeneous [3,4], investigation of IncRNA expression
within and between tumours has not been investigated in detail yet. LncRNAs have been
noted to be of interest in TNBC [21,22], but little is known about their expression patterns,
or how they are expressed in relation to the formation of subpopulations within a tumour.
Further investigation is required to determine whether expression of specific IncRNAs may
contribute to certain characteristics of these cell populations, such as enhanced invasive or
proliferative potential, as IncRNAs have been described as drivers of these processes [23,24].

We set out to explore tumour heterogeneity in vivo at the single cell level to investigate
whether IncRNA expression varies across different cells within the same tumour even if they
were grafted from the same cell line, and whether IncRNA expression can be used to define
subpopulations within the tumour. Historically, biomarkers and therapeutic targets have
been identified using microarrays and bulk RNA-seq. However, these methods can result
in a bias towards genes that are expressed at high levels on a population average, masking
the expression of genes that have high expression in specific but small subpopulations [25].
As IncRNAs are often expressed in a highly specific fashion, the use of bulk RNA-seq
may result in losing the expression signal of some IncRNAs in small subsets of cells. This
phenomenon has been demonstrated in previous single-cell RNA sequencing (scRNA-seq)
experiments, such as in the developing human neocortex. Many IncRNAs identified were
expressed abundantly in specific cell types, but overall were found to be lowly expressed at
the population level [26]. In the context of cancer, scRNA-seq allows for the identification
of individual cells and small subpopulations, for example, at the leading edge of the
tumour, that may differ in their IncRNA expression profiles due to their invasive potential,
and/or being exposed to a different microenvironment, and is therefore a superior tool for
detection of cell-specific IncRNA expression [27].

Here, we show that heterogeneity exists within a cultured cell line and that tumour
cell subpopulations are present when grown in vivo in xenografts. LncRNA expression was
found to be heterogeneous, with some IncRNAs such as MALAT1, NEAT1 and CYTOR ex-
pressed at high levels on a population average, while other IncRNAs including LINC01615,
LOC107986152, MANCR and LOC107986265 were associated with subpopulations of cells
in the xenograft. Our findings reinforce that IncRNAs play an important role in TNBC, and
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suggest scRNA-seq allows identification of subpopulations defined by small transcriptional
changes to within a tumour.

2. Methods and Materials
2.1. Sample Preparation

Samples were prepared, sequenced and mapped to GrCh38 v15 as described in
detail in [28]. Briefly, MDA-MB-231-LM2 cells [29] were injected into the mammary fat
pad of two Nu/]J mice, and tumour growth was observed for eight weeks using in vivo
bioluminescence. Tumours were dissociated into single cells, and fluorescence-activated
cell sorting (FACS) for GFP+ cells was performed to exclude any host mouse cells. Libraries
were prepared from GFP+ cells using the 10X Chromium scRNA-seq kit, and sequenced
on an Illumina platform. Libraries were mapped to GRCh38 v15 using 10x Genomics
Cellranger 5.0 [30] (Figure 1A).
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Figure 1. Growth and sequencing of cell-line derived xenografts. (A) Outline of methods used.
Xenografts were grown in vivo, FACS sorted for GFP+ cells and single cell sequenced using 10x
technology. Data was analysed in R using the Seurat package, and clusters were further characterised
and investigated for IncRNA expression. (B) Feature detection pre and post QC. A low number of
unannotated features were also detected. Error bars indicate the mean of two biological replicates +
stdev. (C) Overlap of detected features between the two samples. T1 = Tumour 1, T2 = Tumour 2.

2.2. Quality Control

Following mapping, filtered feature-barcode expression values were further filtered
for cell quality, normalised and scaled in R version 4.0.2 [31] using the Seurat 4.0 analysis
workflow [32]. Low quality cells with abnormal feature counts per cell (high or low) or
those with a high amount of mitochondrially encoded genes (suggesting the cell was
undergoing apoptosis) were excluded. Specifically, cells were excluded if they had <200
or >2000 features, or >2.5% mitochondrially encoded features. Normalisation and scaling
were performed using the default settings for the NormalizeData and ScaleData functions.
Because the tumours were grown from a cultured epithelial cell line and further FACS
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sorted for specificity, cell type annotation was not required. However, to determine if
any host cells had contaminated the FACS sorted samples, cell type annotation was per-
formed using the SingleR [33] package, with the CHETAH [34] tumour microenvironment
reference set.

2.3. Principle Component Selection and Clustering

To identify the genes most likely to define subpopulations within the tumours, the
top 2000 most variable features were selected to carry forward for further analysis. The
default ‘vst’” selection method in the FindVariableFeatures function was used. To reduce
complexity for further analysis, a principal component analysis (PCA) was performed, and
an Elbow Plot (Figure S1) was used to determine the number of components to include in
downstream analyses. To cluster the data, the FindNeighbours and FindClusters functions
were used on the first 15 principle components for each dataset. Granularity was not
restricted. Clustering of the first two principal components for each dataset was visualised
using the Uniform Manifold Approximation and Projection (UMAP) and t-distributed
Stochastic Neighbor Embedding (t-SNE) methods. For both samples, the top 10 most highly
expressed genes per cluster were visualised on a heatmap.

2.4. Cluster Characterisation and IncRNA Identification

To determine which genes were upregulated and define a given cluster, differential
expression analysis between a given cluster compared to all other cells was performed
using the Find AllMarkers function. The following parameters were used: to be significantly
upregulated and defining a cluster, a gene must be found in at least 25% of the cluster, have
a minimum log2 fold change (log2FC) of +0.25, and have an adjusted p-value of p < 0.05
(Bonferroni adjustment). Significant upregulation in one cluster did not exclude lower
levels of expression in other clusters.

Clusters were investigated to determine similarity between samples. To gain an
approximation of whether subpopulations are functionally distinct, gene function patterns
were investigated for significantly upregulated genes in clusters of both samples using
Metascape [35]. Upregulated genes were then filtered for IncRNAs using the GENCODE
GRCh38.p13 IncRNA annotation file [36], with manual investigation of unannotated loci.
LncRNA expression across clusters was investigated using the FeaturePlot function.

To validate our findings, we identified upregulated IncRNAs and investigated the
expression patterns in an additional scRNA-seq dataset of MDA-MB-231 cells which
were grown in vitro (compared to the xenografts in our study which were grown in vivo
(accession number GSE181410). MDA-MB-231 cells are the parental cell line to the MDA-
MB-231-LM2 cell line used in this study, and while not identical, are a relatively comparable
control. This data set was downloaded as an h5 Seurat object, with quality control and clus-
tering already performed by the authors. We performed marker identification and IncRNA
filtering and analysis to this data set as described for our xenografted cells described above.

3. Results
3.1. Quality Control

We detected expression from a total of 21,701 genes from 695 cells in Tumour 1 (T1),
and 24,606 genes from 799 cells in Tumour 2 (T2) (Figure S2). The median gene (feature)
count per cell was 1802 for T1 and 1919 for T2 (Figure S3). Following filtering for low
quality cells (based on feature counts per cell and percentage of mitochondrial genes,
Figure S4), there were 16,929 features across 514 cells remaining for T1 and 17,718 features
across 687 cells remaining for T2 (Figure 1B). Of these, 15,573 were common between
both T1 and T2 (Figure 1C). A small number of features were detected that were unable
to be matched with data in the GENCODE reference file and were therefore classed as
“unannotated’. Selection of the top 2000 most variable features excluded all genes with a
standardised variance of approximately <1.5 (Figure 2A). The most highly variable features
in both samples were protein-coding genes known to be associated with cancer. These
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include genes such as PAEP, which encodes the protein glycodelin, a lipocalin protein
associated with reproductive cancers including breast cancer [37], ISG15, a prognostic
marker in breast cancer [38], and ANKRD1, which has been associated with lung and
ovarian cancer [39,40] (Figure 2A). Cell type annotation did not result in meaningful calls.
To confirm this, reference cell type expression was correlated with expression centroids for
each cell in T1 and T2. Both T1 and T2 cells had a median Pearson correlation coefficient of
0.37 between cell expression centroids and the reference cell expression, with no correlation
with a reference cell type being greater than 0.5 (Figure S7). This confirmed cell type calls
were not based on a strong correlation to the reference cell type, indicating that the dataset
was likely not contaminated with mouse host cells, and instead represents a predominantly
epithelial cell population.

3.2. Cluster Characterisation

Clustering using FindNeighbours and FindClusters resulted in five clusters for T1 and
six clusters for T2 (Figure 2B). The Find AllMarkers function was used to perform differen-
tial gene expression analysis between a given cluster compared to all other cells. Cluster
visualisation on a UMAP projection showed two major clusters for T1 and three major
clusters for T2, with the remaining clusters in each sample having a smaller number of
significantly upregulated genes associated with them (Figures 2B and 3A,B). For T2, cluster
1 had only four significantly upregulated genes. In total, there were 429 significantly upreg-
ulated genes in common between T1 and T2. Genes and pathways previously identified
as dysregulated in TNBC were detected in our dataset. These include the upregulation of
genes involved in MAPK [41] and NFkB [42] signalling, and cyclin dependent kinases [43].

Visualising the top 10 genes for each cluster using a heatmap revealed that for both
T1 and T2, the top 10 genes defined each cluster in a specific manner (Figure 2C,D), with
structure evident across the heatmap. Clusters were also visualised on a t-SNE projection
(Figure S5). Common clusters were identified between T1 and T2, with four out of five
T1 clusters matching clusters in T2 (Tables 1 and S1-S5). While analysis was limited by
the small number of genes defining each cluster (Figure 2B), gene function analysis using
Metascape suggested that the common subpopulations in T1 and T2 were clustering due
to changes in expression of small number of genes including some genes involved in
extracellular matrix remodelling and cell signalling (Figure S6).

Table 1. Matching clusters between T1 and T2.

T1 Cluster T2 Cluster % Markers in Assigned Cluster
0 2 72%
1 Undetermined -
2 0 71%
3 5 67%
4 4 92%
Undetermined 1 -
Undetermined 3 -
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Figure 2. Subpopulations in cell-line derived xenografts form clusters. (A) The top 2000 most variable

genes for each sample were highly comparable, and included genes known to be associated with
cancer phenotypes. (B) Number of significantly upregulated genes for each cluster. Clusters are
coloured by similarity between T1 and T2. (C) Heatmap showing the top 10 genes for each T1
cluster, coloured by expression (Log2FC). (D) Heatmap showing the top 10 genes for each T2 cluster,
coloured by expression (Log2FC).
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3.3. Significantly Upregulated IncRNAs

In general, expression levels of most IncRNAs across T1 and T2 were low, indicating
that scRNA-seq was beneficial for detection of lowly expressed transcripts. From the total
16,929 features for T1 and 17,718 features for T2, 1069 annotated IncRNAs were detected in
T1, and 1154 annotated IncRNAs were detected in T2. From the 2000 most variable genes in
T1 and T2, the Find AllMarkers function identified seven IncRNAs which were significantly
upregulated in one of the clusters, compared to all other cells (Table 2, Figure 3C,D). The
low number of upregulated IncRNAs indicates that most of the detected IncRNAs were
expressed at a similar level across the entire xenografted tumour, and were not inherent to
any subpopulation. We found that IncRNAs were present in all clusters, with a median of
25 IncRNAs detected per cell (Figure 3A,B). We then classified the expression profiles of the
seven upregulated IncRNAs. LncRNAs that were significantly upregulated in one cluster
with low/no levels of expression in all other clusters were classed as having “cluster-
specific” expression. LncRNAs that were significantly upregulated in one cluster, but were
also present in all other clusters were classed as having “ubiquitous” expression. Lastly,
IncRNAs that were not cluster-specific or ubiquitously expressed (i.e., were expressed in
more than one but not all clusters) were classed as having a “hybrid” expression profile.

Table 2. Significant upregulated IncRNAs.

LncRNA Identified in: Log2FC Adjusted p-Value Cluster
9.75 x 10704,
MALATI T1, T2 11,14 160 = 10-16 0,1
3.22 x 10792,
LOC107986152 T1, T2 0.76,1.2 102 % 10-11 0,3
LINC01615 T1 1.07 1.12 x 10~% 3
CYTOR T1 0.76 251 x 1070 2
LOC107986265 T2 0.93 1.33 x 10 %4 3
MANCR T2 0.32 1.91 x 10~ 0
NEAT1 T2 0.70 354 x 10703 1

Analysis of T1 revealed four IncRNAs which exhibited significantly higher expression
in one cluster compared to all other cells. These were MALAT1, CYTOR, LINC01615 and
LOC107986152 (Figure 3A). As MALAT1 was significantly upregulated in cluster 0, but
was also expressed at a lower level across almost all cells in the sample, it was classed as
having ubiquitous expression. In a similar fashion, CYTOR was significantly upregulated
in cluster 2, however, it was also expressed at a lower level in all other clusters and therefore
also classed as having ubiquitous expression. LINC01615 was found to be significantly
upregulated in cluster 3, and was expressed in almost no cells outside of cluster 3, leading
us to classify expression of LINC01615 as cluster-specific. LOC107986152 was found to
be significantly upregulated in cluster 0. It also showed some lower expression in other
clusters, which led us to classify it as having a hybrid expression pattern.

Analysis of T2 revealed five significantly upregulated IncRNAs. These were MALATI,
LOC107986152, LOC107986265, MANCR and NEAT1 (Figure 3C). MALAT1 was significantly
upregulated in cluster 1 compared to all other cells. Similarly to its expression pattern
in T1, MALAT1 was also expressed at a lower level in almost every cell in the sample.
LOC107986152 was significantly upregulated in cluster 3, and similar to its expression
pattern in T1, had some lower expression in other clusters. LOC107986265 was upregulated
in cluster 3, but was present at lower levels in all clusters, and so was classed as having a
ubiquitous expression pattern. MANCR was significantly upregulated in cluster 0, with
some lower expression in other clusters, and was therefore classed as having a hybrid
expression pattern. Lastly, NEAT1 was significantly upregulated in cluster 1, and also
showed a lower level of expression across almost all cells in the sample, resulting in its
classification as ubiquitously expressed.
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Figure 3. LncRNA expression was heterogeneous in cell line derived xenografts. (A) Number of T1
IncRNAs expressed per cell (count = number of cells), UMAP projection of cell clustering, coloured
by cluster. (B) Number of T2 IncRNAs expressed per cell (count = number of cells), UMAP projection
of cell clustering, coloured by cluster. (C) T1 upregulated IncRNA expression across cells. Scale =
Log2FC. (D) T2 upregulated IncRNA expression across cells. Scale = Log2FC.

To validate our findings, we also analysed a publically available scRNA-seq dataset
from MDA-MB-231 cells. The dataset contained data for 38,702 features over 4374 cells,
and was sequenced more deeply than T1 and T2 (Figure S8A), however, we detected a
comparable number of IncRNAs per cell (Figure S8B), confirming that our dataset was
sequenced to sufficient depth for IncRNA detection. Additionally, we identified overlaps
in the list of significantly upregulated IncRNAs, with MALAT1, NEAT1 and MANCR
upregulated, and following very similar expression patterns to those found in xenografts
(Figure S8C-E). We also observed CYTOR and LINC01615 to be expressed in the MDA-MB-
231 dataset but not significantly upregulated in any cluster.

4. Discussion

We used scRNA-seq to investigate the heterogeneity of IncRNA expression in vivo
using TNBC xenografts. The resulting tumours were found to cluster into cellular sub-
populations. While some cell to cell variation in expression is expected in cell lines [44],
transcriptional subpopulations of cells may also (at least, in part) have evolved over the
growth period of 8 weeks in the mouse mammary fat pad. The identified subpopula-
tions clustered based on changes in the expression of small numbers of genes (<100 of
17,000 genes detected in total), and could potentially represent different spatial locations
within the tumour, where oxygen and metabolite gradients, as well as interactions with
the tumour microenvironment can affect tumour growth [45,46]. The major clusters found
in T1 corresponded well with clusters in T2 based on gene expression profiles. While
pathway analysis was based on a relatively small number of genes, clustering appeared to
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correlate with changes to biological processes such as extracellular remodelling, which is
often leveraged in cancer [47], and upregulation of components involved in cell signalling,
which can play a number of roles in cancer [48]. LncRNA expression alone was insufficient
to define a cluster, however, clusters were able to be stratified by their top 10 genes.

Because IncRNAs are regulatory molecules that can drive the malignant pheno-
type [19], we focussed our investigation on changes in IncRNA expression across the
two samples to understand whether they played a role in the formation of subpopulations
within the tumour. We identified seven significantly upregulated IncRNAs, but found
that their patterns of expression were heterogeneous. MALAT1, NEAT1 and CYTOR had
a ubiquitous expression pattern, with high levels of expression on population average.
Because of their ubiquitous expression, it is unlikely that these IncRNAs are drivers behind
the formation of subpopulations in the tumour. MALAT1 was expressed more highly
than any other IncRNA in both T1 and T2, which is in agreement with the literature [10].
MALATT1 has been shown to be a prognostic marker in TNBC [49], and implicated in
therapeutic resistance [50] and metastasis in breast cancer [51]. It appears to affect the
malignant phenotype by chromatin binding, and as a splicing modulator [52]. NEAT1
has been shown to be involved in many cancers [53,54], and promotes chemoresistance in
TNBC [17], while early studies on the IncRNA CYTOR (also known as LINC00152) have
shown it may regulate signalling in breast cancers [55,56].

LINCO01615 was expressed at lower levels on a population average and was classed as
having a cluster-specific expression pattern. Initial studies on LINC01615 demonstrate that
it may be involved in metastasis in hepatocellular carcinomas [57,58]. As MDA-MB-231-
LM2 cells are highly metastatic [29], the expression of LINC01615 may suggest that it is also
associated with metastasis in TNBC. The cluster-specific expression of this IncRNA, implies
that perhaps that particular subpopulation may have a higher tendency to metastasise than
the other populations in the tumour.

LOC107986152, LOC107986265 and MANCR had an expression pattern that was a
hybrid of the two classes, being significantly upregulated in one cluster, but with moderate
expression in additional clusters. LOC107986152 was found to be significantly upregu-
lated in both T1 and T2, and is thus far an uncharacterised IncRNA. Its genomic size is
12,782 bp, and it comprises two exons forming a transcript of 3402 nucleotides in length.
LOC107986152 is located closely upstream and antisense to GOLIM4 on chromosome 3,
a gene that encodes a golgi integral membrane protein [59]. LOC107986265 is another
thus far uncharacterised IncRNA. Its genomic size is 653 bp and it comprises two exons
forming a transcript of 591 nucleotides in length. It completely overlaps with the gene
GBA3 in the sense direction on chromosome 4. GBA3 is a gene which encodes a cytosolic
beta-glucosidase [60]. Further characterisation of these two novel IncRNAs could be per-
formed using our previously described IncRNA toolkit [61]. Finally, early studies suggest
depletion of the IncRNA MANCR has been shown to reduce cell proliferation and viability
in TNBC [62].

We demonstrate that scRNA-seq can be used to identify potentially oncogenic IncR-
NAs within aggressive subpopulations of patient tumours. Additionally, the previously
uncharacterised IncRNAs found to be upregulated in a cluster-specific manner have the
potential to be further characterised in the context of TNBC progression, which may lead
to the identification of novel biomarkers and/or therapeutic targets in the future.

The conclusions from this study are limited as only two xenografted tumours were
analysed, making generalisation of conclusions across TNBC xenografts difficult. While
the overlap in overall gene expression between the two samples was very high, the overlap
between significantly upregulated genes was limited, with some clusters being unable to
be matched between the two tumour samples. This could be attributed to heterogeneity
within the cell line prior to xenograft growth, or inter-individual variation of transcriptional
patterns in vivo. The analysis of additional TNBC xenografted tumour samples would
address these limitations and increase the resolution of gene expression in subpopulations.
The analysis of an independent scRNA-seq dataset of MDA-MB-231 cells revealed an
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overlap in IncRNA expression with our dataset, and these IncRNAs followed similar
expression patterns, adding further validity to our dataset and analysis. The detection
of MALAT1, NEAT1 and MANCR in MDA-MB-231 cells grown in vitro suggests that
these IncRNAs may always be upregulated in the MDA-MD-231 model of TNBC, while
the detection but not significant upregulation of CYTOR and LINC01615 suggests that
there may be differences in IncRNA expression between in vitro and in vivo growth.
Alternatively, these IncRNAs may differ in their expression patterns between MDA-MB-231
and MDA-MB-231-LM2 cells.

Future experiments will aim to determine the potential of any of the seven identified
upregulated IncRNAs as oncology targets, and to understand their expression in the spatial
context of the tumour. Tumour cell subpopulations often form according to their spatial
positioning within the tumour, and some subpopulations may have an increased ability
to metastasise. For example, the spatial expression of LINC01615 would be important to
consider, as it has the potential to be associated with metastasis in TNBC. To determine
spatial expression patterns, RNA in situ hybridisation could be performed on formalin fixed,
paraffin embedded (FFPE) sections of TNBC xenografted tumours. LncRNAs expressed at
the invasive edge of the tumour could be further explored in patient-derived TNBC tissue
samples, and could be followed up by a more detailed investigation of IncRNA expression
in circulating tumour cells and metastatic nodules.

5. Conclusions

In summary, the present study addresses the underlying biology of TNBC, with the
overarching goal of finding potential oncology targets to improve patient-specific treatment
and monitoring of disease. LncRNAs are an increasingly important group of oncology
targets, which have been shown to act as drivers in TNBC, and are also emerging as clinical
biomarkers [19,63]. We have shown that IncRNAs are overall expressed at low levels in
TNBC xenografted cells, but are detectable using scRNA-seq. We showed that IncRNAs
are expressed in a heterogeneous fashion that can be classed as ubiquitous, cluster-specific,
or hybrid. We also identified IncRNAs that have not been characterised in detail in TNBC,
including two novel IncRNAs, LOC107986152 and LOC107986265, and should be further
investigated as oncology targets.
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