
nanomaterials

Review

Conductive Atomic Force Microscopy of
Semiconducting Transition Metal Dichalcogenides
and Heterostructures

Filippo Giannazzo * , Emanuela Schilirò, Giuseppe Greco and Fabrizio Roccaforte

CNR-IMM, Strada VIII, 5-5121 Catania, Italy; emanuela.schiliro@imm.cnr.it (E.S.);
giuseppe.greco@imm.cnr.it (G.G.); fabrizio.roccaforte@imm.cnr.it (F.R.)
* Correspondence: filippo.giannazzo@imm.cnr.it

Received: 31 March 2020; Accepted: 17 April 2020; Published: 22 April 2020
����������
�������

Abstract: Semiconducting transition metal dichalcogenides (TMDs) are promising materials for future
electronic and optoelectronic applications. However, their electronic properties are strongly affected
by peculiar nanoscale defects/inhomogeneities (point or complex defects, thickness fluctuations,
grain boundaries, etc.), which are intrinsic of these materials or introduced during device fabrication
processes. This paper reviews recent applications of conductive atomic force microscopy (C-AFM) to
the investigation of nanoscale transport properties in TMDs, discussing the implications of the local
phenomena in the overall behavior of TMD-based devices. Nanoscale resolution current spectroscopy
and mapping by C-AFM provided information on the Schottky barrier uniformity and shed light on
the mechanisms responsible for the Fermi level pinning commonly observed at metal/TMD interfaces.
Methods for nanoscale tailoring of the Schottky barrier in MoS2 for the realization of ambipolar
transistors are also illustrated. Experiments on local conductivity mapping in monolayer MoS2

grown by chemical vapor deposition (CVD) on SiO2 substrates are discussed, providing a direct
evidence of the resistance associated to the grain boundaries (GBs) between MoS2 domains. Finally,
C-AFM provided an insight into the current transport phenomena in TMD-based heterostructures,
including lateral heterojunctions observed within MoxW1–xSe2 alloys, and vertical heterostructures
made by van der Waals stacking of different TMDs (e.g., MoS2/WSe2) or by CVD growth of TMDs on
bulk semiconductors.

Keywords: conductive atomic force microscopy; transition metal dichalcogenides; Schottky barrier;
conductivity; heterostructures

1. Introduction

In the last years, transition metal dichalcogenides (TMDs) have attracted an increasing scientific
interest because of their unique and tunable electronic structure, holding great promise for next
generation applications in electronics and optoelectronics [1,2]. These layered materials are composed
by the stacking of MX2 trilayers (M = Mo, W, etc. and X = S, Se, Te, etc.) held together by van der Waals
bonds. Each trilayer consists of a layer of hexagonal-packed transition-metal atoms (M) sandwiched
between two layers of chalcogen atoms (X), with a strong intralayer covalent bond between the different
atoms. Depending on the composition and internal structure of the individual trilayers, the electronic
behavior of TMDs can range from insulating to semiconducting and semi-metallic. Furthermore,
the optical and electronic properties of these layered materials depend on the stacking order and
number of layers [3]. For instance, bulk or multilayer MoS2 exhibit an indirect band gap of ~1.3 eV,
whereas monolayer MoS2 presents a direct band gap of 1.8–1.9 eV. A similar behavior also occurs in
other semiconducting TMDs. The tunable band gap along with the high quantum efficiency and optical
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absorption make TMDs interesting for optoelectronics [1]. In addition, due to the superior electrostatic
control of channel conductance in field effect transistors (FETs) with an ultra-thin TMD body [4,5],
these 2D semiconductors are currently regarded as strategic materials for the post-Si complementary
metal oxide semiconductor (CMOS) technology [6]. Very interesting performances in terms of the
on/off current ratio (106–108) and a subthreshold swing approaching the ideal value (60 meV/decade)
have been already demonstrated in the early studies on single layer [4] and multilayer MoS2 FETs [5].
More recently, ultra-scaled MoS2 FETs with a 1 nm gate length [7] or with a sub −10 nm channel
length [8] have been reported, further supporting the expectations for MoS2 transistors to further
extend the validity of Moore’s law [9]. In addition, as replacements of silicon for the CMOS technology,
TMDs are also currently employed as building blocks of new transistor concepts based on vertical
van der Waals heterostructures [10–12], or in-plane heterojunctions obtained by engineering the TMDs
composition [13] or even the dielectric environment of the 2D semiconductors [14].

To date, many of these TMD-based (opto)electronic devices have been fabricated using small flakes
obtained by mechanical exfoliation from the parent bulk crystals, due to the ease of preparation in
academic laboratories [4,10]. However, the lateral size (few micrometres) and the low density of flakes
produced by this approach are unsuitable for practical applications, and large area deposition methods
of TMDs are required for a scale-up of these technologies. In the last years, many progresses have been
made in the growth of TMDs by chemical vapor deposition (CVD). The direct CVD growth of TMDs,
in particular MoS2, on noncatalytic insulating or semiconducting substrates (including SiO2 [15–17],
sapphire [18], and GaN [19]) is possible at relatively low temperatures in the range from 700 to 900 ◦C.
This represents an important aspect for the integration of this process in the CMOS devices fabrication
flow. The CVD growth of highly uniform monolayer TMDs on 100 mm [20] and, more recently, 150 mm
wafers [21] have been demonstrated. Furthermore, alternative chemical deposition methods, e.g.,
atomic layer deposition (ALD) [22], or physical depositions, e.g., molecular beam epitaxy (MBE) [23]
and pulsed laser deposition (PLD) [24], are currently explored to achieve layer-by-layer growth of
MoS2 on a large area, up to the wafer scale.

Table 1 summarizes some of the most relevant achievements in the TMD devices and materials
growth in the last years.

Table 1. Recent progresses in the transition metal dichalcogenide (TMD) materials growth and devices.

Year Achievements Ref.
2011 Monolayer MoS2 n-type FET with a high-k top gate dielectric [4]
2011 Integrated logic circuit based on a single-layer MoS2 [25]
2012 Monolayer WSe2 p-type FET with a high-k top gate dielectric [26]
2012 Chemical vapor deposition (CVD) of MoS2 atomic layers on SiO2 substrates [15]
2014 FET built from all 2D material components [27]
2014 Vertical and in-plane heterostructures of WS2/MoS2 monolayers grown by CVD [13]
2014 Atomic layer deposition (ALD) of MoS2 thin films [22]
2015 CVD of epitaxial monolayer MoS2 on sapphire [18]
2015 Metal organic CVD of a highly uniform monolayer MoS2 on 100 mm SiO2 wafers [20]
2015 WSe2-based CMOS and integrated circuits [28]
2015 Tunnel diodes based on MoS2/WSe2 vdW heterostructures grown by CVD [12]
2016 MoS2 FET with a 1 nm gate length [7]
2016 MoS2 FET with a sub −10 nm channel length [8]
2016 CVD of epitaxial monolayer MoS2 on gallium nitride [18]
2016 Pulsed laser deposition (PLD) of MoS2 thin films [24]
2017 Ambipolar MoS2 FET by tailoring the Schottky barrier with oxygen plasma [29]
2017 Ohmic contacts to monolayer MoS2 by van der Waals bonded metal/h-BN electrodes [30]
2017 Demonstration of a microprocessor based on CVD grown bilayer MoS2 [31]
2017 Hot electron transistor with GaN emitter, graphene base, and WSe2 base-collector barrier [32]
2018 Batch CVD growth of uniform monolayer MoS2 on 150 mm soda-lime glass wafers [21]
2019 Van der Waals contacts between 3D metals and 2D semiconducting TMDs [33]
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In spite of these recent progresses, several issues need to be addressed to fully exploit the potential
of TMDs in real applications. In addition to the request of optimized thickness uniformity, defectivity,
and doping of the deposited films, a further challenge for materials growth is represented by the
engineering of TMD vertical or lateral heterojunctions [12]. On the other hand, low resistance ohmic
contacts and selective-area doping of TMDs are two major requirements for the fabrication of devices
based on these materials.

High resolution structural, chemical, and electrical characterizations revealed that the overall
electronic properties of TMDS are ultimately determined by peculiar nanoscale defects/inhomogeneities
(e.g., point or complex defects, thickness fluctuations, grain boundaries, wrinkles, etc.), which can
be intrinsic of these materials or dependent on the growth method, on the substrates and on the
device fabrication processes. In this context, electrical atomic force microscopy methods, such as
conductive atomic force microscopy (C-AFM), scanning capacitance microscopy (SCM), Kelvin probe
force microscopy (KPFM), and scanning microwave impedance microscopy (SMIM) proved to be
essential tools to understand the nature and electrical activity of defects/nonuniformities in 2D materials,
and more specifically in TMDs [34–39]. In particular, C-AFM allows performing a high-resolution
current mapping and local current-voltage (I–V) characterization at the nanoscale [40–43]. Hence,
it is the method of choice to investigate the mechanisms of current injection from contacts to 2D
materials [44,45], the lateral homogeneity of conductivity of 2D semimetals (graphene) [46–48],
and semiconductors (TMDs) [44], as well as the transversal current transport across thin dielectric
films [49,50] or 2D insulators (such as h-BN) [51–53]. Furthermore, C-AFM allows investigating
the vertical current injection across the van der Waals heterostructures of 2D materials [12] or their
heterojunctions with bulk semiconductors [19,54–56]. Figure 1 schematically illustrates these possible
applications of C-AFM in the characterization of 2D materials and heterostructures.Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 22 
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pinning [57]. However, contrary to this expectation, experiments showed the opposite behavior, i.e., 
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contacts rules the overall device behavior [62]. As an example, in the case of MoS2 thin films 
(produced either by exfoliation or by CVD) most of the elementary metals exhibit a Fermi level 
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Figure 1. Schematic illustration of conductive atomic force microscopy (C-AFM) applications in two
dimensional (2D) materials characterizations. (a) Lateral current transport in semi-metallic graphene
or semiconducting TMDs. (b) Tunneling current through insulating hexagonal boron nitride (h-BN).
(c) Current transport in 2D materials vertical (or lateral) heterostructures. (d) Current injection in the
heterojunctions of 2D materials (graphene or TMDs) with bulk semiconductors.

This paper reviews some relevant applications of the C-AFM technique to the investigation of
nanoscale transport properties in TMDs, discussing the implications of the local phenomena in the
overall behavior of devices fabricated on these materials.

Section 2 includes recent studies of the current injection mechanisms at the metal/TMDs junctions.
Nanoscale resolution current spectroscopy and mapping by C-AFM provided information on the
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Schottky barrier height (SBH) uniformity and shed light on the mechanisms responsible for the
Fermi level pinning commonly observed at the metal/TMDs interface. The application of this
approach to nanoscale mapping of the SBH distribution in MoS2 thin films subjected to oxygen plasma
prefunctionalization is illustrated, and the practical implications of these results in the realization of
ambipolar MoS2 transistors are also demonstrated.

Section 3 presents experiments on local conductivity mapping in monolayer MoS2 grown by CVD,
providing a direct evidence of the role of grain boundaries (GBs) between MoS2 domains on the overall
current transport in these layers.

Finally, Section 4 presents C-AFM studies of the current transport in TMD-based heterostructures,
including lateral heterojunctions present in TMDs alloys, and vertical van der Waals heterojunctions
formed by the stacking of different TMDs and of TMDs with bulk semiconductors.

2. Schottky Barrier Height Mapping at Metal/TMDs Junction

The lack of out-of-plane bonds in TMDs initially led to the expectation that the Schottky barrier
at the interface between metal contacts and TMDs would approach the Schottky–Mott limit of weak
pinning [57]. However, contrary to this expectation, experiments showed the opposite behavior, i.e.,
the SBH for most semiconducting TMDs is only weakly dependent on the metal work function, and this
effect has been attributed to a Fermi level pinning [58–61]. Clearly, this phenomenon has strong
implications on TMDs-based transistors, as the current injection/extraction from the source/drain
contacts rules the overall device behavior [62]. As an example, in the case of MoS2 thin films (produced
either by exfoliation or by CVD) most of the elementary metals exhibit a Fermi level pinning close to
the MoS2 conduction band, resulting in SBH values for electrons injection ranging from 20–60 meV for
low work function metals (Sc, Ti, etc.) to 150–250 meV for high work function ones (Ni, Pt, etc.) [58].
As a matter of fact, the low SBH for electrons translates into a high SBH for holes. Hence, n-type FETs
with an electron accumulation channel can be easily obtained with unintentionally n-type doped MoS2,
whereas the fabrication of MoS2 FETs with the complementary p-type behavior is challenging, due to
the difficulty to inject holes in the inversion channel [63,64]. Contrary to the case of MoS2, a p-type
behavior is commonly observed in monolayer WSe2 FETs [26], whereas ambipolar transistors have
been demonstrated using a few layers of MoTe2 [65]. In spite of these differences, the electrical behavior
of TMDs-based FETs is generally dominated by the Schottky barrier of source and drain contacts.

The origin of the Fermi level pinning at the junction between metals and TMDs is currently an object
of debate. According to the commonly accepted models of Fermi level pinning at metal/semiconductor
interfaces, this effect can be ascribed either to metal-induced gap states (MIGS) [66] or to the disorder
induced gap states (DIGS) [67]. In the DIGS model, the Fermi level pinning is due to states in the
electronic structure of the host semiconductor associated to defects in its crystalline structure. On the
other hand, the MIGS model predicts that the states in the gap are induced by the interaction with
the metal, i.e., the metal dominates over the substrate in pinning the Fermi level. Recently, ab-initio
simulations of defect-free TMDs showed that the metal/TMD junctions largely follow the MIGS model,
similar to three-dimensional semiconductors despite their different structure and bonding [59]. In this
context, Fermi level depinning by the insertion of an ultra-thin tunnel barrier (such as monolayer h-BN)
between contacts and MoS2 has been recently reported [30]. The main function of this barrier layer is
increasing the physical separation between the MoS2 and the contact electrode, thereby minimizing
the metal/MoS2 interfacial interaction responsible for the creation of MIGS. On the other hand, early
nanoscale electrical investigations (based on scanning tunneling microscopy) highlighted the possible
role of the defects present at the MoS2 surface in the Fermi level pinning phenomenon [68].

As a matter of fact, SBH mapping with nanoscale resolution is required to disentangle the effect of
surface (or near surface) defects in the TMD materials from that of metal-induced gap states. To this
purpose, the conductive tip of C-AFM has been employed as a nanoscopic metal electrode to record local
I-V characteristics on the TMDs surface, from which the SBH was quantitatively evaluated [44,45,69].
Contacting the TMD surface with a sliding metal tip presents the additional advantage of excluding
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eventual reactions that have been reported at the metal/TMD interface (for some metal species) when
the contact is fabricated by evaporation or sputtering [70,71]. In this way, the effect of the interaction
with a metal electrode in close proximity to the TMD surface can be investigated. In the following
subsection, recent studies of the Fermi level pinning in TMDs using C-AFM are discussed.

2.1. C-AFM Investigations of Fermi Level Pinning in TMDs

The C-AFM technique was firstly employed in the current-voltage (I-V) spectroscopy mode to
investigate the current injection to the surface of multilayer MoS2 exfoliated on a SiO2 substrate [44].
Local I-V measurements were performed under ambient conditions using a Pt coated Si tip (curvature
radius rtip ≈ 10 nm) connected to a high sensitivity current amplifier, while a bias was applied to a
macroscopic front contact, as schematically illustrated in Figure 2a. Figure 2b shows a set of 25 I-Vtip
curves (with Vtip as the bias referred to the tip) measured on the MoS2 surface on a 0.5 × 0.5 µm
area. All the curves are asymmetric from a positive (forward) to negative (reverse) bias, indicating a
Schottky behavior of the Pt/MoS2 contact. A representative forward I-Vtip characteristic from this array
of measurements is reported in Figure 2c. In the semilog-plot, a linear increase of the current over
more than two decades (from 1 × 10−10 to 5 × 10−8 A) is observed, followed by a saturation. The SBH
(ΦB) and the ideality factor (n) for the nanoscopic Pt/MoS2 contact were evaluated by fitting the low
voltage region of the forward I-Vtip curve with the thermionic emission law:

I = AA∗T2 exp
(
−

qΦB

kBT

)
exp

( qVtip

nkBT

)
(1)

where q is the electron charge, kB is the Boltzmann constant, T is the absolute temperature (T = 300 K),
A = πrtip

2 is the tip contact area, and A* is the Richardson constant of multilayer MoS2 [44]. In particular,
ΦB = 307 meV and n = 1.61 were determined from the intercept and the slope of the linear fit of the
ln(I)-Vtip characteristic for Vtip < 0.3 V. The current saturation observed on the semilog-scale at higher
bias values is due to a series resistance contribution R.
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Figure 2. (a) Schematic of the experimental setup for C-AFM measurements on MoS2. (b) Set of 25
I-Vtip characteristics measured on a 500 × 500 nm array of tip positions with ~100 nm spacing on MoS2.
(c) Representative forward bias I-Vtip characteristic from this set of measurements and fit with the
thermionic emission law to extract the Schottky barrier height (SBH) and ideality factor. (d) The H
function plot for the determination of the series resistance R. Figures adapted with permission from
Reference [44], copyright from the American Physical Society 2015.
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Since the downward curvature in the high voltage region of the I-Vtip curves depends both
on n and R, the Cheung’s method [72] was applied to evaluate the R contribution. In this method,
the function H is defined as H = Vtip−nkBT/q ln[I/(AA*T2)], which depends on I as H = nΦB + IR.
Figure 2d shows a plot of H vs. I obtained from the forward bias I-Vtip characteristic in Figure 2c.
R = (8.02 ± 0.12) × 105 Ω was evaluated by the slope of the linear fit for current values larger than
0.1 µA. The R value is mainly due to the spreading resistance Rspr, associated to current spreading
into multilayer MoS2 from the nanoscale contact. Rspr is related to the local resistivity ρloc of MoS2

under the tip as Rspr = ρloc/(4rtip), being rtip the contact radius. Hence, the local resistivity ρloc could
be estimated from the R values measured at each tip position. By performing the same analysis on
the full set of I-Vtip characteristics of Figure 2b, the distributions of the local SBHs, ideality factors,
and resistivity values at the different tip positions on MoS2 were determined. The histograms of the
ΦB, n, and ρloc values are reported in Figure 3a–c, respectively.
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The distribution in Figure 3a shows an average SBH of 300 meV with a standard deviation of 24 meV.
This average value is in good agreement with the SBH evaluated for deposited Pt contacts on multilayer
MoS2 [58]. According to the Schottky–Mott theory, the ideal SBH value for a metal/semiconductor
contact without Fermi level pinning is expressed as:

ΦB = WM − χ (2)

where WM is the metal work function and χ is the semiconductor electron affinity. In the specific
case of Pt and multilayer MoS2, ΦM ≈ 5.4 eV and χ ≈ 4.1 eV, result in an ideal ΦB ≈ 1.3 eV. Clearly,
the experimental SBH values are much lower than the ideal one. The histogram in Figure 3b shows
that n is close to unity only on ~10% of the investigated MoS2 area, whereas the average value of n
is 1.60 with a standard deviation of 0.23. Generally, the deviation of n from unity indicates that the
current transport is not perfectly described by the thermionic emission theory and can be ascribed to
the presence of surface states [73]. Finally, an average resistivity of 2.99 Ωcm with a standard deviation
of 0.68 Ωcm was estimated from the distribution in Figure 3c. The lateral variations of ρloc can be
ascribed to inhomogeneities in the carrier concentration and/or in the carrier mobility of MoS2.

Since these C-AFM analyses were carried out under ambient conditions, the measured SBH
distribution can be affected by the presence of a water meniscus under the tip, which is known to cause
a degradation of the lateral resolution. In this context, performing C-AFM under a high vacuum or
within an environmental chamber has been shown to allow current mapping and spectroscopy with a
greatly improved resolution [74].

Recently, high resolution current mapping by an environmental chamber C-AFM, combined
with atomic resolution scanning tunneling microscopy (STM), provided further insight on the nature
of defects responsible for the Fermi level pinning in MoS2 [45] and other TMDs (MoSe2, MoTe2,
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WS2, and WSe2) [75]. Figure 4a shows a lateral force microscopy (LFM) and the corresponding
AFM topographic image (inset) of a freshly cleaved MoS2 sample, showing a smooth surface in both
images [45]. On the other hand, the simultaneously recorded C-AFM map (Figure 4b) shows a laterally
inhomogeneous current injection through the nanoscopic contact between the conductive tip (made
of boron doped diamond) and the MoS2 surface. Multiple dark circular features (with radii ranging
between 3 and 4 nm) are present in this image, with a higher current than the surrounding areas,
indicating a lower tip/MoS2 contact resistance. The surface density of these features was found in
the range between 1010 and 1011 cm–2, depending on the sample and location. Atomic resolution
scanning tunneling microscopy (STM) analyses of the MoS2 surface were also carried out to understand
the nature of the high current spots in the C-AFM images. The STM maps revealed the presence of
characteristic features appearing as circular depressions on which the MoS2 lattice is superimposed
(see Figure 4c). The typical lateral size of these depressions was up to 5 nm and their areal density was
(8 ± 3) × 1010 cm−2, similar to the density of conductive features in the C-AFM images. The absence of
such depressions in the topographic and LFM images (Figure 4a) suggested that the observed features
in the STM maps are electronic in nature and induced by subsurface defects. They were associated
to Mo-vacancies or Mo-substitutional defects, located below the outermost S layer [45]. In addition
to these subsurface defects, sulfur vacancies (see Figure 4d) were found to be ubiquitously present
in the topmost S layer of MoS2, with an areal density of (7 ± 4) × 1012 cm−2. No specific features
corresponding to these point defects were observed in the C-AFM map.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 22 
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Figure 4. (a) Lateral force microscopy (LFM) and topography (insert) image of the MoS2 surface.
(b) Simultaneously recorded C-AFM image. (c) Scanning tunneling microscopy (STM) image of a
subsurface defect, corresponding to one of the high current spots in the panel (b). (d) STM image of a
sulfur vacancy in the outermost sulfur layer. Images adapted with permission from Reference [45],
copyright from the American Chemical Society 2017.

Figure 5a shows a map of the SBH distribution extracted from an array of 128 × 128 I-V curves
collected by the conductive diamond tip on the freshly cleaved MoS2 surface. More specifically,
the local ΦB values were obtained by fitting the low forward bias region of the individual I-V curves
with the thermionic emission model, as already discussed in Figure 2c. This high resolution SBH map
showed minimum ΦB values of ~0.3 eV corresponding to the subsurface defect regions, whereas a
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nearly constant SBH of ~0.53 eV was observed in the surrounding areas. As a matter of fact, these SBH
values are much smaller than the ideal one (~1 eV) predicted by the Schottky−Mott Equation (2) in the
specific case of a boron doped diamond tip (work function ΦM = 5.1 eV) in contact with MoS2. Hence,
even in the regions without the subsurface defects, a Fermi level pinning occurs, although less intense
than on defects. The authors excluded that this Fermi level pinning can be due to the sulfur vacancies,
and ascribed this effect to gap states induced by the interaction of the metal tip with MoS2, as indicated
also by ab-initio calculations [59]. Clearly, the high density of low ΦB ≈ 0.3 eV patches (separated
by a distance of ~10 nm from each other) dominates over the background with higher ΦB ≈ 0.53 eV
and determines the effective SBH. Based on these considerations, the results of this high resolution
C-AFM investigation are in agreement with those of the C-AFM study in [44], as well as with SBH
measurements on macroscopic contacts [58].
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Figure 5. (a) Schottky barrier height (SBH) map on the MoS2 surface obtained by fitting an array
of 128 × 128 local current-voltage (I-V) curves with the thermionic emission model. (b) SBH for the
defect-free MoS2 areas (blue) and on subsurface defects (red) vs. the metal tip work function (ΦM).
The pinning factor S was evaluated as the slope of the linear fit. The dotted line is the standard
Schottky–Mott rule. The SBH of different TMDs (MoSe2, MoTe2, WS2, WSe2) for defect-free (c) and
defect regions (d) vs. the metal tip work function. Panels (a) and (b) adapted with permission from
Reference [45], copyright from the Chemical Society 2017. Panels (c) and (b) adapted with permission
from Reference [75], copyright from the American Chemical Society 2019.

To get a more complete description of the Fermi level pinning effect, the dependence of the
local SBH on the metal tip work function was also investigated [45]. Figure 5b shows a plot of the
experimental ΦB values as a function of the metal tip work function both on the defect-free MoS2 areas
and on the subsurface defect regions. In addition to the conductive diamond tip (ΦM = 5.1 eV), a PtSi
tip (ΦM ≈ 4.9 eV) and a highly n-type doped Si tip (ΦM ≈ 4.1–4.2 eV) were used in this experiment.
The pinning factor S = dΦB/dΦM was evaluated as the slope of the linear fit of these data. The obtained
values for S are ~0.3 and ~0.1 for the MoS2 regions without defects and for the regions with subsurface
defects, respectively. The observed pinning factor of the defect-free MoS2 areas was found to be
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consistent with the theoretically predicted values for pristine MoS2 considering gap states induced
exclusively by the metal/TMD interaction [60,61]. On the other hand, the measured pinning factor on
the defect sites matches well with the experimentally obtained values on metal/MoS2 contacts [58,60,76],
confirming the dominant role of these defects on the overall contact behavior.

This kind of investigation was also extended to other TMDs, i.e., MoSe2, MoTe2, WS2, and WSe2 [75].
Figure 5c,d shows the SBH values for the different TMDs evaluated in the defect-free (c) and in the
defect regions (d) as a function of the metal tip work function. A similar behavior in the case of MoS2

is observed also for these TMDs, i.e., the presence of Fermi level pinning in the defect-free regions,
ascribed to gap states induced by the metal tip, and an even stronger pinning (30–40% increase) on
defect regions due to defects induced gap states.

2.2. Nanoscale Mapping of MoS2 Schottky Barrier Tuned by Oxygen Plasma Treatments

As previously discussed, the Fermi level pinning at the metal/TMDs interface has important
implications in electronic device performances, since the resulting Schottky barrier ultimately rules the
device on-resistance, as well as the type of carriers (n-type or p-type) that can be injected in the channel
of TMD-based transistors. In the specific case of MoS2, which is an unintentionally n-type doped
semiconductor, the Fermi level pinning close to the conduction band results in a relatively small SBH
for electron injection and in a high SBH for holes injection. Hence, MoS2 transistors commonly exhibit
an n-type behavior associated with the formation of an electron accumulation channel for positive
gate bias above the threshold voltage, whereas the observation of a p-type behavior related to the hole
inversion channel at a sufficiently high negative bias is typically precluded. Clearly, this represents an
obstacle for the realization of a complementary MOS technology all based on MoS2.

Recently, soft O2 plasma functionalization revealed an effective method to finely tailor the SBH
of multilayer MoS2, and this approach was exploited to demonstrate MoS2 field effect transistors
with ambipolar (i.e., both n-and p-type) behavior [29]. In this context, nanoscale electrical analyses
by C-AFM showed how the SBH of MoS2 can be tuned by increasing the plasma exposure time [29].
Figure 6a,d reports the SBH map and the histogram of the ΦB values measured on pristine MoS2,
showing a narrow SBH distribution. Figure 6b reports the SBH map after the 300 s soft plasma
treatment, which results in a broader SBH distribution, with ΦB ranging from 0.21 to 0.58 eV, as shown
by the histogram of the ΦB values (see Figure 6e). Finally, Figure 6c shows the SBH map after the 600 s
soft plasma treatment. In this case, the SBH distribution extends from ~0.2 to ~0.9 eV (see Figure 6f).
Hence, it includes both regions with a low barrier for electrons and regions with a low barrier for holes,
being the Schottky barrier for holes ΦB,h = Eg − ΦB, with Eg as the bandgap of multilayer MoS2.

Hence, starting from a narrow distribution of low SBHs for electrons in the case of pristine MoS2,
the SBH map was modified after a 600 s O2 plasma treatment into a broad distribution formed by
nanometric patches with low SBH for holes in a background with low SBH for electrons. These
SBH inhomogeneities in the O2 plasma treated samples were associated to lateral variations of the
incorporated oxygen concentration in the MoS2 surface region [29]. Back-gated FETs were fabricated
with Ni source and drain contacts deposited on pristine MoS2 (see schematic in Figure 7a) or on areas
selectively exposed to O2 plasma functionalization for 600 s (see schematic in Figure 7c). Figure 7b
shows the transfer characteristics ID-VG for different drain bias values (VDS = 1, 2, and 5 V) measured
on a FET with channel length of L = 10 µm fabricated on a pristine MoS2 flake. The n-type transistor
behavior typically reported for MoS2 FETs can be observed, with a monotonic increase of ID over more
than five decades in the considered gate bias range. Figure 7d shows the transfer characteristics ID-VG

(for VDS = 1, 2, and 5 V) of a MoS2 transistor with the same channel length and thickness, but with
the source and drain contacts deposited on plasma O2 functionalized regions. For VDS = 1 and 2 V,
the transfer characteristics exhibit a pronounced p-type behavior, with the hole current branch (for
VG < 0) significantly higher than the electron current branch (for VG < 0), whereas for VDS = 5 V
an ambipolar behavior is observed, with the Ion/Ioff current ratio of ~103 for both the electrons and
holes branches.
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The ambipolar behavior in O2 functionalized FETs was explained by the coexistence of regions
at low SBH for electrons and regions at low SBH for holes within the same source and drain contact
areas, as demonstrated in the SBH map of Figure 6c. In particular, for a positively biased drain contact
(VDS > 0), the injection of electrons from the source to the accumulation channel (for VG > 0) occurs
through regions with lower SBH for electrons, whereas the injection of holes from the drain to the
inversion channel (for VG < 0) is allowed by the regions with low SBH for holes. The possibility to
have both the n- and p-type current transport in a single device structure is an important step towards
the implementation of a CMOS technology with MoS2.
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3. Local Resistance Mapping at Grain Boundaries in CVD Grown MoS2

The C-AFM experiments reviewed in the previous section demonstrated the enhanced current
injection due to localized defects on the surface or near-surface region of multilayer TMDs [44,45,75].
These defects are responsible for the Fermi level pinning effect commonly observed at metal Schottky
junctions with these semiconducting materials.

In addition to these localized defects, the presence of extended defects, such as grain boundaries
(GBs), must be taken into account in the case of CVD grown TMDs. As an example, the CVD deposition
of MoS2 on a commonly used SiO2/Si substrate typically results in the formation of a 2D polycrystalline
material, composed by several domains with a triangular shape separated by GBs [77]. The structural
and electrical properties of GBs have been the object of many experimental and theoretical investigations
in the last years [78,79], due to their impact on the mobility of MoS2 field effect transistors and their role
in peculiar extrinsic charge transport phenomena in MoS2 [80,81]. Recent investigations indicated that
inter-domains scattering (due to GBs) can play a major role (as compared to the intra-domain scattering
due to localized defects [68,82,83]) in the degradation of the MoS2 mobility, especially for certain
misorientation angles between MoS2 domains [81]. To this purpose, complex transistors structures
and modeling for electrical data interpretation have been employed to evaluate the impact of the
specific GB configurations on the MoS2 channel mobility [81]. In this context, C-AFM has been recently
employed as a powerful tool for direct probing of the electrical properties of MoS2 domains and GBs.
As an example, the C-AFM analyses of a few layers of MoS2 grown by CVD on sapphire revealed a
reduced current injection in the GBs, located in the topmost and in the buried MoS2 layers [84].

Nanoscale resolution current mapping by C-AFM has been also employed to evaluate the
conductance drop associated with GBs in monolayer MoS2 grown by CVD onto a SiO2/Si substrate [85].
Figure 8a shows an optical microscopy of the as-grown domains, which exhibit typical triangular
shapes and sizes up to 50 µm. The coalescence of MoS2 domains, resulting in the formation of GBs, can
be deduced from this optical image. Figure 8b illustrates the employed experimental configuration for
C-AFM measurements, where the current is measured between the nanoscale contact formed by a PtIr
tip and a macroscopic electrode partially covering some MoS2 domains. Figure 8c,d shows the surface
morphology and the corresponding current map measured with an applied bias Vtip = 1 V (referred
to the tip) in the region indicated by a red box in Figure 8b. This area includes two MoS2 domains
(indicated as D1 and D2) separated by a GB, with D1 directly connected to the macroscopic contact.
The GB is clearly visible both in the morphology (as a sharp peak with ~1 nm height) and in the current
map. The current contrast is almost uniform within the individual domains, whereas a significant
conductance drop can be observed from the domain D1 to the domain D2 separated by the GB. This is
further elucidated by the two scan lines in Figure 8e,f, extracted from the morphology and current map,
respectively. A reduction of the current by about a factor of 7 can be observed moving from D1 to D2,
which is clearly associated to the resistance contribution of the GB. Furthermore, a dip in the current
can be observed at the GB position. Noteworthy, the width of this current dip is ~150 nm, much larger
than the width of the peak in the height profile. This can be explained by a potential barrier associated
to the GB, with the formation of depletion regions at the two sides of this barrier. This picture is
consistent with the scenario proposed in Reference [81], where a potential barrier ranging from ~0.2 to
~0.6 eV was calculated, depending on the misorientation angle between adjacent MoS2 domains.

Hence, C-AFM represents a powerful tool to directly evaluate the impact of GBs in polycrystalline
TMDs grown by CVD, without the need for fabricating ad hoc device structures.
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4. Local Transport Properties in TMD Lateral and Vertical Heterojunctions

4.1. Lateral Heterojunctions of TMDs

Due to their unique electronic properties, TMDs offer various solutions to realize lateral,
i.e., in-plane, semiconductor heterojunctions. As an example, the significant bandgap variation
from monolayer (1L) to bilayer (2L) of TMDs has been exploited as a simple way to create lateral
heterostructures at the boundaries between 1L and 2L regions of the same material [86]. Another
promising way to tune the TMD electronic structure (i.e., the band gap and the conduction/valence
band energies) is the formation of alloys, obtained by mixing Mo with W and S with Se in a controlled
way [87–89]. As an example, single layers of MoxW1–xSe2 alloys have shown a tunable band gap, with
the conduction/valence band levels depending on the exact ratio of Mo and W [90]. Although Mo and
W exhibit a similar electronic structure, preferential segregation of Mo-rich and W-rich regions has
been commonly observed during the growth process of the TMD alloys [91], resulting in the formation
of one-dimensional (1D) lateral heterojunctions [92].

Recently, Bampoulis et al. [69] used C-AFM to characterize the conductivity of a MoxW1−xSe2 alloy
at the nanoscale. They observed the segregation of Mo-rich and W-rich domains and demonstrated that
these different regions exhibit distinct SBHs values, reflecting the different band structures of WSe2 and
MoSe2. An atomic resolution C-AFM map of a MoxW1-xSe2 alloy (with x = 0.3) is reported in Figure 9a,
showing distinct differences in the conductivity between neighboring regions with a nanometer size
(indicated with (i) and (ii)). To get further insight into this observation, a local I-V spectroscopy was
carried out on these differently conductive regions. Figure 9b shows a series of I-V characteristics
recorded along the line indicated in the inset which depicts the boundary between the Mo-rich (more
conductive) and W-rich regions (less conductive). The I-V curves appear to gradually change when
moving from one region to the other. Figure 9c shows the SBH values along this line, extracted by
thermionic emission fitting of the individual I-V curves in the forward bias regime. The transition
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to the smaller SBH (Mo-rich) regions happens gradually and on the length scale of about 3–4 nm.
This gradual transition is due to band bending across the phase boundary. The Mo-rich and W-rich
regions were expected to approach the electronic band diagram of the MoSe2 and WSe2 crystals,
as schematically illustrated in Figure 9d. Based on this diagram, a type-II staggered gap heterojunction
is expected when moving from a Mo-rich region to a W-rich region, and band bending occurs at the
interface of the two regions. Finally, assuming that the Fermi level pins at the same energy level across
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Figure 9. (a) C-AFM image of the surface of a Mo0.3W0.7Se2 alloy, showing regions with different
conductivities. (b) I-V characteristics across a W-rich/Mo-rich boundary (insert); the rainbow line
indicates the positions where the I-V characteristics were recorded. (c) SBH as a function of the position
along the line, with the color code corresponding to the exact I-V curves of panel (b). (d) Schematic
band diagram of a WSe2/MoSe2 lateral heterojunction, illustrating the conduction band minima (CBM)
and valence band maxima (VBM) of WSe2 and MoSe2 and the conduction band offset (CBO). Images
adapted with permission from Reference [69], copyright from the American Chemical Society 2018.

4.2. Vertical Heterostructures of TMDs

In addition to the 1D lateral heterojunctions discussed in the previous paragraph, 2D
semiconducting heterostructures obtained by vertical stacking of different TMDs are currently the
object of increasing scientific interest, due to the wide range of potential applications in electronics and
optoelectronics [10]. In particular, 2D heterostructures of TMDs with a type II band alignment, such as
MoS2 and WSe2, offer the possibility to implement band-to-band tunneling diodes and transistors for
ultra-low-power consumption logic applications.

Recently, Lin et al. [12] reported the growth of MoS2/WSe2 heterostructures onto epitaxial
graphene (EG) on SiC by sequentially depositing monolayers of the two TMDs employing oxide
powder vaporization or metal-organic CVD. In particular, WSe2 was first grown on EG at 950 ◦C.
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Following this first growth step, the surface coverage of the WSe2 on EG was typically >60%, with a
lateral size of 2 µm for WSe2 domains, as illustrated by the AFM image in Figure 10a. Subsequently,
the growth of MoS2 on WSe2/EG was performed at 750 ◦C. The MoS2 domains are smaller (~300 nm)
and typically grow on WSe2 starting from the domain’s edges, as illustrated by the AFM image
in Figure 10b. Given the small size of the MoS2/WSe2 areas, C-AFM was employed to investigate
a vertical current transport across the heterostructure [12]. In particular, local I-V measurements
through the MoS2/WSe2/EG and WSe2/EG heterostructures were carried out at room temperature
according to the schematic in Figure 10c. Representative I-V curves collected on the two systems
are reported in Figure 10d. The I-V characteristics of the WSe2/EG heterojunction exhibit a slight
rectifying behavior, associated to the p-n junction between p-type WSe2 and n-type EG on SiC.
On the other hand, the curves measured on the MoS2/WSe2/EG show a current peak (at Vpeak ≈ 1.1 V)
followed by a valley (with a peak-to-valley current ratio of 1.9) and, finally, an exponential current
increase. The negative-differential-resistance (i.e., the Esaki diode behavior) is a clear evidence of
band-to-band-tunneling occurring at room temperature, indicating the formation of an ultra-sharp
interface at the MoS2/WSe2 n-p junction.
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Figure 10. AFM morphology of (a) single layer WSe2 and (b) MoS2/WSe2 stacks deposited onto
epitaxial graphene (EG) on SiC. (c) Schematic of the C-AFM setup for the I-V measurement in this
layered system. (d) I-V curves recorded at room temperature (T = 300 K) on the WSe2/EG p-n junction
and on the MoS2/WSe2/EG heterostructure. Images adapted with permission from Reference [12],
copyright from the Nature Publishing Group 2015.

4.3. Vertical Heterostructures of TMDs with Bulk Semiconductors

As shown in the previous paragraph, the Van der Waals epitaxy of heterostructures entirely made
of 2D materials is still in its infancy, and further developments of this approach will be required
to realize these systems on a large area. On the other hand, the integration of 2D materials with
conventional bulk semiconductors can represent an easier root toward the exploitation of these low
dimensional materials in (opto)electronics. In fact, this approach allows adding new functionalities
to the existing semiconductor devices, and opening the way to the demonstration of new device
concepts [11,32,93]. In the last years, the integration of graphene and semiconducting TMDs with
silicon and other semiconductors, such as GaN and related materials [94], has been explored by several
research groups. Different approaches have been explored, from the transfer of 2D materials [95–98] to
the direct growth on the semiconductor substrate [19,99]. In particular, the epitaxial growth of MoS2

on the basal plane of GaN is especially favored by the low in-plane lattice mismatch (<1%) between
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the two hexagonal crystals. Furthermore, the small difference in the thermal expansion coefficients
between the two materials is expected to result in a reduced strain during cooling down from the
growth temperature of MoS2 to room temperature [100,101].

Recently, Ruzmetov et al. [19] reported the CVD growth of epitaxially oriented MoS2 islands on
the GaN basal plane. Figure 11a reports a scanning electron microscopy (SEM) image of the as-grown
MoS2 on the GaN surface, consisting of triangular domains of monolayer MoS2 with a typical size of
~1 µm. The sides of these triangles were perfectly aligned with the m-plane (1–100) of the wurzite
GaN substrate, indicating the in-plane epitaxial alignment of the GaN and MoS2 lattices. Thanks
to this rotational order, no evidence of grain boundaries was observed in a larger size of monolayer
MoS2 islands formed by the coalescence of these small domains. This is a major advantage of MoS2

grown on GaN with respect to the more commonly used CVD MoS2 on amorphous SiO2, which is a
polycrystalline material with a large density of grain boundaries. In fact, as discussed in Section 3,
grain boundaries are one of the main sources of electron mobility degradation in MoS2 [81,85].
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Figure 11. (a) SEM image of triangular domains of epitaxial monolayer MoS2 grown by CVD on GaN.
(b) Schematic of the C-AFM setup for local I-V analyses on the MoS2/GaN junction. (c) Current-voltage
characteristic on an individual MoS2 domain. (d) Surface potential map measured by KPFM on a
monolayer (1L) MoS2 domain on GaN and (e) potential line-scan along the dashed line in the map,
showing a 360-mV surface potential difference between 1L MoS2 and GaN. (f) Energy band alignment
at the 1L MoS2/GaN interface, as deduced from the surface potential map. Images adapted with
permission from Reference [19], copyright from the American Chemical Society 2016.

C-AFM has been applied in combination with KPFM to investigate the electrical properties of
the heterojunction between CVD MoS2 and n-GaN, specifically the vertical current flow across the
heterointerface and the surface potential [19]. Figure 11b schematically illustrates the C-AFM setup
for local current measurements, and Figure 11c reports a current vs. tip bias characteristic on an
individual monolayer (1L) MoS2 domain, showing a rectifying behavior of the tip/MoS2/GaN junction.
Figure 11d shows a KPFM surface potential map on a GaN region partially covered by the 1L MoS2

domain. A line-scan of the surface potential along the red dashed line in the map is reported in
Figure 11e, from which a surface potential difference of ≈360 meV between MoS2 and n-GaN can be
evaluated [19]. Finally, Figure 11f shows an illustrative energy band diagram showing the type I energy
band alignment between 1L MoS2 and GaN, as deduced from the surface potential map. This peculiar
energy band alignment of the MoS2/GaN heterojunction has been recently exploited in various device
demonstrators, including Esaki diodes [102] and high responsivity deep-UV photodetectors [103].
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5. Conclusions and Perspectives

The electronic transport properties of semiconducting TMD layers are strongly dependent on
point and extended defects present in their crystalline structure. In this context, the C-AFM technique
proved an essential tool to investigate the current transport in these materials at nanoscale. In this
paper, recent C-AFM studies on TMDs have been reviewed, discussing the implications of local
transport phenomena in the overall behavior of TMD-based devices. The current mapping and I-V
spectroscopy by C-AFM allowed clarifying the mechanisms responsible for the Fermi level pinning
commonly observed at the metal/TMDs interface. In particular, subsurface defects in the transition
metal layer (with a density of 1010–1011 cm−2) have been identified as the main origin of the pinning,
although the metal/TMD interaction was also shown to partially contribute to this effect. The impact of
extended defects, such as grain boundaries, on the conductivity of monolayer MoS2 grown by CVD
was also directly imaged by C-AFM. Methods for nanoscale tailoring of the Schottky barrier in MoS2,
such as oxygen plasma functionalization, have been illustrated, and the changes in the barrier height
spatial distribution with the plasma exposure time was imaged at the nanoscale. The application
of this approach for the realization of ambipolar MoS2 transistors has been also discussed. Finally,
C-AFM studies of the current transport in lateral and vertical heterostructures based on TMDs have
been reported. As an example, a high-resolution current mapping of MoxW1−xSe2 alloys showed the
formation of 1D lateral heterojunctions between the nanoscale Mo- and W-rich regions formed due to
phase segregation. Finally, the C-AFM-based current-voltage spectroscopy provided insight on the
current injection mechanisms in vertical heterojunctions formed by van der Waals epitaxy of different
TMDs (such as the MoS2/WSe2 junction) and by the integration of TMDs with bulk semiconductors
(such as the MoS2/GaN junction). Potential applications of these heterojunctions for novel electronic
and optoelectronic devices have been also discussed.

Further progress in the development of 2D/2D or 2D/3D van der Waals heterostructures is expected
in the forthcoming years. As a matter of fact, realizing the full potential of these material systems will
require understanding and controlling disorder, which can obscure intrinsic properties and hinder
device performances [104]. Furthermore, atomic defects or disorder can also be harnessed to provide
useful electronic, optical, chemical, and magnetic functions. In this context, the C-AFM technique,
in combination with other electrical and optical scanning probe methods, will represent a valuable
tool to elucidate the correlation between nanoscale and macroscopic properties of the heterostructures,
and will provide a guidance to tailor materials properties.
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