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Background: Groundwater is a common domestic water source in developing countries, but is persistently
contaminated with enteropathogens. However, studies on determinants of diarrhoea have predominantly
focused on piped water. This study examines the relationship between groundwater microbial quality and
household diarrhoea occurrence (HDO).

Methods: Considering it as a proxy of enteropathogens, this study analysed Escherichia coli concentrations in
groundwater wells. Ordinary kriging, a geostatistical technique in geographic information systems, was used
to interpolate the E. coli concentration to survey points that had secondary survey data (n=942). The relation-
ship between E. coli and HDO using simple and multivariate statistical analyses in SPSS was analysed.

Results: A total of 77% of households used groundwater. One-third of households were without piped-water
access (PWA), and these households were significantly more likely to use groundwater than those with PWA.
Of the 87 households that reported HDO, 77% were groundwater users. Of the groundwater users, the house-
holds with HDO consumed groundwater with significantly higher E. coli concentrations than the households
without HDO. Of the households without PWA, the increase in the E. coli concentration increased the odds of
HDO (adjusted odds ratio=3.15; 95% CI=1.07–9.22).

Conclusion: It is suggested that the groundwater microbial quality is a risk factor for HDO and illustrates this
by an application of an interpolation technique relevant for developing countries.
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Introduction
Groundwater constitutes half of the potable water used in coun-
tries such as Bangladesh, China, India, Indonesia, Nepal, the
Philippines, Thailand and Vietnam,1 particularly for the poorest
urban households.2 While an important source of consumable
water, groundwater has widely been reported to have faecal
contamination in countries at all levels of economic develop-
ment.3–9 In the Kathmandu Valley, which is a representative
area of a developing country in Nepal, groundwater is used by
52% of the households and is a major water source.10 A total of

3% of groundwater users use it for drinking and 88% use it for
bathing purposes.11 Shrestha et al.12 recorded numerous studies
conducted at different times and showed that the faecal con-
tamination of shallow groundwater is a persistent problem in
the valley. This discussion provided evidence that shallow
groundwater is unprotected and cannot be considered to be an
improved source as defined by the World Health Organization
(WHO). In addition, the presence of Escherichia coli along with
other pathogens and viruses13 points towards a serious threat
of waterborne diseases to public health in the valley.
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According to the WHO, nearly 1.7 billion cases of diarrhoeal
disease occur each year and it is the leading cause of malnutri-
tion and the death of approximately 525 000 children under the
age of 5 years each year worldwide. It is the second leading
cause of years of life lost due to premature death in Nepal14

and the under-5 mortality rate is 35 per 1000 people.15 To
establish preventive measures for diarrhoea, countless studies
have been performed to identify its determinants over the last
few decades. Numerous studies have emphasized piped water
as an important determinant—access,16 use and quantity.17 In
an effort to reach Millennium Development Goal 7 Target10c,
the coverage of improved drinking water sources increased to
90% in South Asia. The developments of improved drinking
water sources (90% in South Asia) basically refer to other
improved water sources (65% coverage), rather than piped
water (25%).18 Based on the data collected by the Asian
Development Bank (ADB) in the Kathmandu Valley, 21% of
households did not have access to a piped-water supply in
2009,17 which rose to 34% in 2015.11 In addition, the house-
holds that have access receive this supply for six or fewer hours
per week.11 Despite the fact that alternative sources represent a
huge share in household water consumption, these sources have
been analysed in few studies19 as determinants of diarrhoea.

In developing countries, conducting large-scale surveys is diffi-
cult due to institutional and technical reasons, which leads to
insufficient data for scientific studies. In this situation, the applica-
tion of a geographic information system (GIS) to interpolate data
spatially could be an affordable solution. Most of the studies on
risk factors associated with diarrhoeal diseases are based on a
questionnaire survey. Combining survey data with microbial con-
centration data can provide rigorous findings. Interdisciplinary
studies combining environment and health are difficult to conduct
in developing country settings due to technical limitations. If
this study can link separate datasets of different disciplines, it will be
a cost-effective and easy approach to obtain significant findings.

With the background of wide usage and the poor microbial
quality of groundwater, as well as the lack of investigations regard-
ing their relationship with diarrhoea, this study analyses the micro-
bial quality of the groundwater as a determinant of diarrhoea in
the Kathmandu Valley. The first part of this paper illustrates the
spatial distribution of the groundwater microbial concentration
using a geostatistical interpolation technique in GIS to integrate
environmental data (microbial quality) with social data. An ordinary
kriging interpolation is applied, which uses the statistical properties
of the measured points to quantify the spatial autocorrelation
between measured points and account for the spatial configuration
of the sample points around the prediction location. The second
part examines the potential impact of the groundwater microbial
quality on household diarrhoea occurrence (HDO) with the aim to
emphasize the necessity of pollution control interventions for water
sources in addition to piped water.

Methods
Study area
The Kathmandu Valley lies in the central hilly region of Nepal
and comprises 85% of the Kathmandu district, the entire
Bhaktapur district and 50% of the Lalitpur district. The valley is

situated at an elevation of 1300–1400m above sea level, and is
drained by the Bagmati River and its tributaries. The residents of
the valley exploit two aquifers to meet their water needs—shallow
and deep aquifers. The shallow aquifer is composed of up to 50m
of Quaternary arkosic sand, with some discontinuous interbedded
silt and clay, and lies in the northernmost part of the valley.20 The
deep aquifer is beneath the interbedded clay and lignite aquitard of
up to 200 m thickness and consisted of Pliocene sand and gravel,
with interbedded lignite, peat and clay, and lies in the southern
zone of the valley.21 Based on the water table map and the piezo-
metric surface elevation, the groundwater flow is towards the cen-
tre from the periphery.22 The shallow aquifer is directly recharged
via precipitation and small rivers, whereas the deep aquifer is
recharged via precipitation from the northeast part of the valley.23

Groundwater is tapped from the shallow aquifers via dug wells and
tube wells, and from the deep aquifer via deep tube wells.

The Kathmandu Valley is the largest urban centre in the coun-
try; it has a population of 2.51 million people and shows an
annual growth rate of 3.65%. The Kathmandu district alone has a
population density of 4408 persons per km2, which is 30 times
higher than the national population density. Most of the wards
(administrative units) of the Kathmandu metropolitan city (KMC)
and the Lalitpur sub-metropolitan city (LSMC) have population
densities higher than 10 000/km2, especially the old settlements
that lie in the centre, which have densities >20 000/km2.24

Kathmandu Upatyaka Khanepani Limited (KUKL) supplies 106 mil-
lion litres/day (MLD) and 76 MLD of water during the wet and dry
seasons, respectively, countering a water demand of 320 MLD,
and the water loss due to leakage is 40%.25 Of the alternative
water sources used, 52% of the households use groundwater.

Groundwater sample collection and microbial analysis
In this study, 36 groundwater wells were randomly and uni-
formly selected from the wards in KMC and LSMC (Figure 1). The
samples were collected once during August–September 2009,
which was the wet season. The daily rainfall data of the sam-
pling period was compared with those of August–September in
2008 and in 2010. The rainfall amount and pattern in the sam-
pling period were similar to those in the previous and following
years, indicating an absence of extreme rainfall events within
the sampling window. Before collecting water samples, tube
wells and dug wells that were fitted with a hand pump were
purged for 1–2min. For open dug wells, the water samples were
brought to the surface using the same method used by the
owners. The autoclaved 250 mL polythene bottles were rinsed
with the groundwater to be sampled, then the samples were
collected and immediately stored in an icebox.

E. coli was selected as the faecal indicator bacterium, and
the concentrations in the groundwater previously reported12,13

were used for statistical analysis. The EPA-approved IDEXX
Quanti-Tray method (USA) using the Colilert reagent was
applied. After mixing the reagent, 100mL of the sample water
was poured into a tray, and the tray was sealed and incubated
for 24 h at 35±0.5°C. After incubation, the wells in the tray pro-
ducing a blue colour under UV light were counted. The most
probable number (MPN) table is referred to here to determine
the MPN of the E. coli in 100mL of the sample. Only one sample
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was analysed per site, and field blanks, laboratory blanks and
duplicates were not used.

In this study, E. coli was considered to be the faecal indicator
bacterium to infer the presence of pathogens, and the Quanti-
Tray method, which was used here, cannot discriminate
between pathogenic and non-pathogenic strains of E. coli. E. coli
is applicable for predicting total bacteria pathogen26 and patho-
genic viruses.27 E. coli concentration has been widely applied in
risk assessment studies in the form of faecal indicator ratio con-
version.28 Based on these lines of evidence, E. coli was treated
as a proxy of pathogenic microorganisms to examine the impact
of groundwater microbial quality on HDO.

Secondary data from household surveys
Secondary data were obtained from a household survey of the
Kathmandu Valley Water Distribution, Sewerage and Urban

Development Project conducted by the ADB from August to
September in 2009.10 The study used a multi-stage cluster sur-
vey design.10 The ADB chose 84 geographical locations ran-
domly and then drew a circle with each randomly generated
geographical location at the centre. Furthermore, they selected
20 houses closest to the random location and all the house-
holds that were in those houses were interviewed. In the
Kathmandu Valley, one house may contain more than one
household. The total number of households interviewed was
2214. This study selected 35 geographical points among the
84 that lie within KMC and LMSC (Figure 1) for a total number
of households of 942. Details of the survey strategy, and inclu-
sion and exclusion criteria of households have been presented
elsewhere.10,17

The secondary data included information on diarrhoea occur-
rences in at least one family member in the past month, which
was defined as an HDO in this study. According to the WHO,
diarrhoea is defined as the passage of three or more loose or
liquid stools per day (or a more frequent passage than is normal
for the individual); this definition was applied in the present
study. In addition to health, information on water-use behaviour
was also obtained from the secondary data for the statistical
analysis. The data on the sources of water use and the purpose
of use of each source, as well as socio-economic and demo-
graphic data, were also used.

Data analysis

Geostatistical spatial interpolation

Here, the ArcGIS Geostatistical Analyst Extension of the ArcMap
software (Version 10.1, Environmental System Research Institute,
USA) was used to interpolate the groundwater microbial quality
data over KMC and LSMC, and to the 35 studied geographical
points. Ordinary kriging was chosen as an appropriate tool based
on previous groundwater studies.29 Ordinary kriging weights sur-
rounding the measured values were used to derive a prediction
for each location, and the weights were based on the distance
between the measured and predicted locations, as well as on the
spatial arrangement of the measured points. Kriging requires spa-
tial autocorrelation, where close samples are considered to be
more similar than those farther apart. Based on this concept, an
interpolated microbial concentration at each point was then
assigned to all 20 houses associated with that point.

First, the spatial dependency was quantified using a semivar-
iogram.30 The empirical semivariogram is then fitted to a theoret-
ical model, and the best-fit model of the spherical, exponential,
linear and Gaussian models was used for the interpolation. The
prediction accuracy of the fitted model was determined using
the root mean square error (RMSE) and the coefficient of deter-
mination (R2) obtained via cross-validation. The RMSE should be
as small as possible.29

Statistical analysis

A χ2 test of independence was used to compare the HDO
between groundwater users and non-users. An independent
t-test and its non-parametric alternative, the Mann–Whitney

Figure 1. Locations of groundwater wells and questionnaire survey
points in the Kathmandu metropolitan city (KMC) and the Lalitpur sub-
metropolitan city (LSMC) area. Open circles (Nwell=36) represent wells,
and closed triangles (Nsurvey_points=35) represent survey points. The dark
black boundary represents the boundary between KMC and LSMC. The
river flowing from east to west separates KMC and LSMC.
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U-test, were performed to compare the E. coli concentrations
between HDO and without HDO in different groups:

• groundwater users;
• households that use groundwater only for drinking;
• households that use groundwater only for bathing;
• socio-demographic and water use characteristics;
• those with and without piped-water access (PWA).

The relationship between PWA and groundwater use was exam-
ined using the χ2 test. Finally, to examine the relationship
between the groundwater microbial quality and HDO, a simple
logistic regression model was applied separately for the house-
holds with and without PWA. Each model was adjusted for com-
mon influencing socio-demographic characteristics, e.g.
ethnicity, income, education of the decision maker, the head of
the household and family size. Statistical significance was set at
a p-value of <0.05. The statistical program IBM SPSS Statistics
Version 21.0 (IBM Corporation, Armonk, NY, USA) was used for
all statistical analyses.

Results
Observed groundwater E. coli concentration
E. coli was detected in 61% (22/36) of the groundwater sam-
ples.12,13 The minimum, maximum and mean (±SD) values of
the observed E. coli concentrations were <0, 3.84 and 1.271
(±1.274) Log10 MPN/100mL, respectively.

Interpolation of groundwater E. coli concentration and
integration with survey data
Observed E. coli concentrations were used for the interpolation
and, because the data best fit to a log-normal distribution, it
was log transformed beforehand. The ordinary kriging method
was used for interpolation. Different semivariogram models
were tested for model prediction—circular, spherical, exponen-
tial, gaussian, k-Bessel and stable. Of the other semivariogram
models, the gaussian model had the lowest RMSE (0.86) and
the highest R2 (0.41). Therefore, it was used to prepare a predic-
tion map of the E. coli concentration (Figure 2) over KMC and
LSMC. The interpolated E. coli concentration ranged from 0.00
Log10 MPN/100mL to 2.94 Log10 MPN/100mL. The predicted
spatial distribution suggests that the E. coli concentrations grad-
ually increase moving from northeast to southwest.

Using the prediction surface (Figure 2), the E. coli concentra-
tions at 35 survey points (Figure 1) were determined. Of the 35
survey points, the mean (±SD), minimum and maximum E. coli
concentrations were 1.707 (±0.796), 0.114 and 2.678 Log10
MPN/100mL, respectively.

Because the interviewed houses were the closest buildings to
the survey points and because all the households inside a house
were interviewed, all households that belong to one survey
point were assigned the same interpolated E. coli concentration
for the respective survey point.

Descriptive information on socio-demographic and
water using characteristics and HDO
Of the surveyed households, 47 (442/939), 52 (485/939) and 1
(12/939)% of households were from Brahmin/Chettri, Janajati
and Dalit ethnicity, respectively, and 48% (366/762) of house-
holds had monthly incomes of >147 US$, 32% (242/762) had
monthly incomes of 49–147 US$ and 20% (154/762) had
monthly incomes of <49 US$ (US$ 1=NRs 101.94, as of 30
December 2017). A total of 73% (676/927) of the household
heads were educated to above secondary level, 10% (97/927) to
below secondary level and 17% (154/927) were illiterate. The
average family size was 4.5 (±1.8).

A total of 75% (709/942) had PWA within their premises, 73%
(684/942) households used groundwater and 29% (271/942)
bought jar or bottled water. Of the groundwater users, 32% of
households (184/575) bought jar water. Of the 942 households,
52% and 31% used piped water only for drinking and bathing,
respectively. Likewise, 6% and 30% used groundwater only for
drinking and bathing, respectively. Households without access to
PWA had significantly higher (p-value <0.05) proportions of ground-
water users compared with households that had PWA (Table 1).
Likewise, the proportions of households that used groundwater only
for drinking or for bathing were significantly greater in households
without PWA than in those with PWA (Table 1). However, a signifi-
cant difference between these two groups regarding other water
sources such as vendor tankers or stone spouts was not observed.

A total of 9% (87/942) of the total households, 10% (68/684) of
the groundwater users and 8% (21/258) of the groundwater non-
users reported HDO. Even though there was no statistical signifi-
cance, the tendency to HDO seemed to be higher in groundwater
users compared with non-users. Of the households reporting
HDO, 77% (67/87) used groundwater.

Figure 2. Observed and predicted surface of the E. coli concentration in
the groundwater in the KMC and LSMC areas. The white bubbles
represent the observed concentration, and the surface represents the
interpolated E. coli concentration.
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Relationship between HDO and groundwater microbial
quality

Groundwater users

Groundwater users were selected for further analysis and the E.
coli concentration was compared between users with HDO and
without HDO across different household characteristics
(Table 2). Table 2 shows an apparently higher mean E. coli con-
centration in the HDO group compared with the without HDO
group across all household characteristics except for Dalit ethni-
city. However, a significant difference was achieved for ground-
water user households, where the household head’s education
level was below secondary level or was illiterate, households
with no PWA and households in which members bathed only in
groundwater. However, the E. coli concentrations were not sig-
nificantly different between the HDO and without HDO groups
among the households that drank only groundwater and
among those that bathed in all types of water.

Households without PWA

Among households without PWA, the E. coli concentration was sig-
nificantly (p-value <0.05) higher in the HDO group than in the
without HDO group. However, this relationship was not evident in
households that had PWA. In a simple logistic regression analysis,
the E. coli concentration in the groundwater was significantly and
positively associated with HDO (Table 3). With a one unit (Log10 1
MPN/100mL) increase in groundwater E. coli concentration, the
odds of HDO increased three-fold (adjusted odds ratio [AOR]=3.15;
95% CI=1.07–9.22; p-value=0.03). Another factor that was asso-
ciated with HDO was education. Compared with households with
well-educated household heads, those with less-educated or illiter-
ate household heads were at 4.6-fold (AOR=4.59; p-value=0.05)
and 5.3-fold (AOR=5.3; p-value=0.03) more risk of HDO, respect-
ively. Conversely, neither the E. coli concentration nor the ground-
water use was significantly associated with HDO in households

with PWA. The factors that were associated with HDO were ethni-
city and the education level of the household head.

Discussion
The aim of this study was to identify the association of ground-
water microbial quality with HDO by applying interpolation tools
to link the groundwater microbial data (environmental data)
with epidemiologic survey data. A total of 61% of the observed
groundwater samples in this study detected E. coli and
exceeded the National Drinking Water Quality Guideline, which
states that E. coli should not be present in collected samples.
These results are in line with previous groundwater studies in the
Kathmandu Valley.13,31 These comparative findings indicated per-
sisting faecal contamination in the aquifer and confirmed that
the water sources in most of the parts of study area fell under
the ‘unimproved source’ category as defined by the WHO. As dis-
cussed in Shrestha et al.,12 the possible sources of the microbial
contamination of the groundwater wells in this urban area could
be anthropogenic, e.g. leaky sewers, improperly constructed sep-
tic tanks, and improperly designed and managed storm drains
that carried a mixture of sewage and storm water, which fre-
quently overflowed, polluting the land surface.

These experimental E. coli concentration data were used for a
geostatistical interpolation applying GIS for integration with the
survey data. Even though the observed high E. coli concentration
values were underestimated and the low values were overesti-
mated, which is an inherent feature of interpolation algorithms,32

the E. coli interpolation revealed that the quality of water wor-
sened from northeast to southwest within the study area. JICA33

(1990) divided the Kathmandu Valley watershed into three
groundwater districts—northern (NGD), central (CGD) and south-
ern (SGD). The northeastern part of the study area lies in the
NGD, and the rest lies in the CGD. Previous studies have sug-
gested higher chemical contamination in CGD compared with in
NGD.33,34 Most of the groundwater wells in CGD had a high
ammonia, high nitrogen content33 and high electrical conductiv-
ity compared with those in NGD.34 The sediments in NGD consist
of highly permeable sand and gravel, and exhibit the greatest
groundwater potential, whereas those in CGD are comprised of
very thick impermeable black clay, and a shallow layer, up to a
depth of 20m, overlies the thick clay. Such differences in the per-
meability of the sediments could produce a better dilution effect
of the precipitation on the chemical, as well as the microbial con-
taminants in NGD, given the similar subsurface pollution.

Groundwater is the most commonly used alternative water
source:

• 75% (709/941) households had PWA;
• 73% (684/942) households used groundwater;
• 29% (271/941) bought jar water.

Possessing a groundwater well within a compound makes
households use it more often (ADB 2010).10 It was also
observed in this survey data that, compared with households
that had PWA, those without access were more likely to use
groundwater, and more likely to rely solely on groundwater for
drinking and bathing purposes (Table 1), with 10% of

Table 1. Proportion of groundwater users among households with
and without PWA

Water-use characteristics Piped-water
access**

p-value

No Yes

Groundwater use No 23a 234c <0.05#

Yes 209b 475d

Drinking only groundwater No 173a 707c <0.05*
Yes 59b 2d

Bathing only in groundwater No 98a 556c <0.05#

Yes 134b 153d

Proportion of groundwater users in: without PWA=b/(a+b); with
PWA=d/(c+d).
#, χ2 test; *, Fisher’s exact test; **, out of 942 households, one
household has missing information on PWA.
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groundwater using and 8% of non-using households reporting
HDO, respectively. Similarly, 77% (70/87) of the records of HDO
were groundwater users. These higher tendencies of HDO
among groundwater users give a weak indication of some con-
nection between groundwater use and HDO.

Across all household characteristics among groundwater
users, the E. coli concentration was apparently higher in the HDO
group than in the without HDO group. The E. coli concentration
was significantly higher in the HDO groups than in the without
HDO groups among the groundwater users and among the
households that use groundwater only for bathing. However,
such a significant difference was not observed among those
households that drank only groundwater, but bathed in all types
of water. In this study, 25% of the households did not have PWA.
Among these households, the E. coli concentration was signifi-
cantly higher in households with HDO than those without HDO.
Among the households without PWA, the likelihood of HDO
increased by three-fold with a log unit increase in E. coli concen-
tration (Table 3). However, such an association was not significant
among households with PWA. The association of the E. coli

concentration with HDO under different conditions indicates that
the microbial contamination of groundwater could be an import-
ant factor aggravating diarrhoea in the study area; this associ-
ation was prominent when PWA was lacking.

A review of studies on global outbreaks and epidemiology, and
studies on pathogens and risk assessment demonstrated that
consumers served by an untreated groundwater supply remain
at risk for enteric diseases.35 Previous risk assessment studies on
enteric infections from a variety of pathogens in groundwater
estimated high risk and advised proper risk management strat-
egies.36 The only risk assessment study in the Kathmandu
Valley31 estimated a high risk of diarrhoea from groundwater and
suggested the implementation of risk reduction programmes.
Comparable with this finding of a high E. coli concentration
among the ‘bathing only in groundwater’ group, Shrestha et al.31

estimated a high risk of diarrhoea via the bathing pathway.
During swimming and bathing, people usually accidentally ingest
water and children ingest higher amounts than adults.37 Bathers
in polluted seawater are exposed to an increased risk of gastro-
intestinal infections.38 These outcomes have opened an avenue

Table 2. Comparison of the E. coli concentration between households with and without diarrhoea occurrence among different strata of
groundwater users

Groundwater users (N=684) Diarrhoea frequency E. coli concentration in groundwater
Log10 MPN/100mL

p-value

No Yes Diarrhoea no Diarrhoea yes

Groundwater users 617 67 1.58 1.79 0.05
Ethnicity
Brahmi/Chettri 299 39 1.60 1.83 0.09
Janajati 309 26 1.56 1.71 0.35
Dalit 7 1 2.05 1.64 1.00*

Household income#

>US$ 147 245 22 1.61 1.87 0.09
US$ 49–147 162 20 1.55 1.87 0.11
<US$ 49 94 10 1.53 1.81 0.33

Education of household head
Above secondary level 451 38 1.60 1.66 0.65
Below secondary level 66 9 1.64 2.10 0.047*
Illiterate 91 18 1.48 1.86 0.042*

Water treatment
No 132 10 1.48 1.81 0.20
Yes 479 56 1.61 1.77 0.16

Piped-water access
No 168 10 1.58 2.07 0.008*
Yes 449 57 1.58 1.72 0.23

Drinking only groundwater
No 558 65 1.61 1.78 0.10
Yes 59 2 1.37 1.90 0.45

Bathing only in groundwater
No 350 47 1.60 1.72 0.35
Yes 267 20 1.57 1.95 0.035*

*Mann–Whitney U-test; #, US$ 1=NRs 101.94, as of 30 December 2017.
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for researching the role of bathing in disease transmission, espe-
cially among young children. Overall, with a huge proportion of
residents relying heavily on shallow groundwater, the findings of
this study strongly indicate a potential risk from contaminated
groundwater to public health, as well as suggesting the immedi-
ate application of groundwater pollution control approaches.

The biggest limitation of the present study is the lack of micro-
bial data for other water sources. However, the observational data
were compared with published data of piped, stored39 and stone
spout water.40 The mean (558) and maximum (6867) values of
E. coli (MPN/100 mL) in groundwater are higher than those in
piped (mean=44; maximum=488), stone spout (mean=107; max-
imum=500) and stored (mean=301; maximum=2420) water. This
comparison indicates that groundwater is a highly polluted major
water source. However, it is strongly recommended that the
microbial qualities of other water sources, together with ground-
water, should be analysed to obtain a more realistic picture in
future studies. The second limitation is the use of the faecal indi-
cator bacterium, E. coli; the use of enteropathogens is recom-
mended for quantitative microbial analyses, even though it was
not feasible in this study due to limited resources and time. Data
on pathogens such as protozoa are being accumulated in continu-
ing research,13 and further analyses will be reported in the future.
The third limitation is the moderate regression accuracy (R2=0.41)
of the interpolation method, which could be due to the small sam-
ple size. Small sample size is thought to be a factor that leads to
reduced accuracy. Therefore, using a larger sample size in future
studies is recommended. Moreover, the recall period of HDO was 1

month in this study; this may have led to a recall bias. A previous
study showed a 42–44% drop in diarrhoea reporting when the
recall period was only 1 week.40 In this study, it is highly likely that
the respondents might have forgotten the frequency of diarrhoea,
which might have resulted in an underestimation of HDO. In add-
ition, single water sampling instead of daily or weekly sampling to
characterize water quality in the wet season is another limitation
of this study. A previous study12 showed consistency in the E. coli
detections and concentrations in wet seasons of different years
and showed significant variations between dry and wet seasons in
a single year. Despite these limitations, this study is an example of
an integration of environmental with social data, which is espe-
cially important for developing countries that face financial
restraints to conducting wider scale and interdisciplinary studies.

Conclusions
This study successfully integrated environmental data with survey
data to perform an interdisciplinary analysis. With the application
of the geostatistical interpolation technique, the observed E. coli
concentration of groundwater samples in the wet season of 2009
was estimated for 35 survey points that had survey data of the
same season and year. The E. coli concentration was significantly
higher in the HDO group compared with the without HDO group
among groundwater users and among households that use only
groundwater for bathing. A quarter of the households still did not
have PWA on their premises in the urban area, and these

Table 3. Factors associated with household diarrhoea occurrence (HDO)

Factors Frequency (N=232) B p-value Exp(B) 95% CI for Exp(B)

Lower Upper

E. coli concentration in groundwater (Log10 MPN/100 mL) 1.68 (±0.80) 1.22 0.03 3.15 1.07 9.22
Groundwater use
No 23 Ref.
Yes 209 −0.51 0.56 0.60 0.11 3.33

Ethnicity
Brahmin/Chettri 119 Ref.
Janajati 109 −1.13 0.09 0.32 0.09 1.18
Dalit 4 −20.01 1.00 0.000 0.000 0.000

Household income*
>US$ 147 82 Ref.
US$ 49–147 68 −0.31 0.68 0.74 0.17 3.19
<US$ 49 44 −0.07 0.94 0.94 0.19 4.64

Education of household head
Above secondary level 156 Ref.
Below secondary level 34 1.52 0.05 4.59 1.01 20.90
Illiterate 39 1.67 0.03 5.29 1.16 24.08

Family size (people) 4.5 (±1.8) −0.06 0.73 0.94 0.66 1.33

B, beta coefficient; Exp(B), adjusted odds ratio; CI, confidence interval; *, US$ 1=NRs 101.94, as of 30 December 2017; Ref., reference group.
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households were more likely to use groundwater, as well as relying
only on groundwater for drinking and bathing purposes. The
increased risk of HDO with the increasing E. coli concentration of
the groundwater among households without PWA suggests the
need for further studies on interventions to improve groundwater
quality and their effect on reducing HDO. The interpolation method
and interdisciplinary approach used in this study are relevant to
other developing countries with similar settings.
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