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Regenerative capacity of the brain is a variable trait within animals. Aquatic vertebrates such as zebrafish have widespread ability
to renew their brains upon damage, while mammals have—if not none—very limited overall regenerative competence. Underlying
cause of such a disparity is not fully evident; however, one of the reasons could be activation of peculiar molecular programs, which
might have specific roles after injury or damage, by the organisms that regenerate. If this hypothesis is correct, then there must be
genes and pathways that (a) are expressed only after injury or damage in tissues, (b) are biologically and functionally relevant to
restoration of neural tissue, and (c) are not detected in regenerating organisms. Presence of such programs might circumvent the
initial detrimental effects of the damage and subsequently set up the stage for tissue redevelopment to take place by modulating
the plasticity of the neural stem/progenitor cells. Additionally, if transferable, those “molecular mechanisms of regeneration” could
open up new avenues for regenerative therapies of humans in clinical settings. This review focuses on the recent studies addressing
injury/damage-induced molecular programs in zebrafish brain, underscoring the possibility of the presence of genes that could be
used as biomarkers of neural plasticity and regeneration.

1. Introduction

The brain is an intricate and complex network of hard-
wired neurons and glia that sustain a tremendously complex
architectural integrity and central physiological function
throughout the life of vertebrates. In contrast to what Ramon
y Cajal proposed in 1928 [1], we now know that the nervous
system is not fixed and immutable, but is quite plastic in its
nature so as to respond to physiological and external stimuli.
The terms of adult neurogenesis and plasticity, therefore,
denote the overall ability of the brain—in general the nervous
system—to remodel its cellular composition and synaptic
wiring on demand.

2. Plasticity in Mammalian Brains Is Limited

The adult vertebrate brains display a large variety of neural
plasticities, which includes the dynamic recruitment of the

synapses, and neurogenesis upon the proliferative activity
of the neural stem cells (NSCs). Neurogenesis in adult
mammalian brain is a result of localized niches of stem cells
[2–7]. In adult mammals, although several regions of the
brains were suggested to be neurogenic [8–11], canonical
zones are believed to exist in the telencephalon [12, 13]
in two distinct neurogenic areas: the subventricular zone
(SVZ) of the lateral ventricle and the subgranular zone of
the dentate gyrus in the hippocampus (SGZ) [2, 3, 14–
17]. In rodents, the SVZ niche consists of heterogeneous
neural stem cells that give rise to different cell types [7, 18].
The SVZ contains relatively quiescent astrocyte-like neural
stem cells and these astrocytes get activated upon damage
or injury yielding in quite poor regeneration due to scarce
newborn neurons, inability to form lost neuronal cell types,
and low survival [19–27]. Another type of astrocytic cells is
the parenchymal astroglia, which is one of the major cell
types reacting to any injury by increasing their proliferation
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rate [24, 28–30]. Despite their neurogenic potential in vitro,
these astroglia do not form neurons in vivo [28, 31–33]. Upon
injury, parenchymal astrocytes remain within their lineage
and amplify themselves as a scar is formed [28, 34–36]. Such
a gliotic scar hampers axonal regeneration by generating an
impermeable physical barrier [37–39], which exacerbates the
insufficient cellular reconstitution and neural recuperation.

Several stimuli including traumatic injuries, chronic loss
of neurons, environmental changes, cognitive input, and
disease states can induce plasticity response in the brain [40–
46]. The disruption of such a plasticity response and mutila-
tion of adult neurogenesis not only are causes of improper
regenerative ability, but also lead to cognitive impairment
and psychiatric disorders [47, 48]. For instance, hippocampal
atrophy and reduced adult neurogenesis due to impaired
activity of theNSCswere found to correlatewith the cognitive
dysfunction andmemory performance [49]. Additionally the
fact that some antipsychotic drugs elevate the proliferation
of the NSCs [50] suggests a strong functional relevance
of adult neurogenesis to schizophrenia—the exact cause of
which is unknown but the onset and progression of the
disease correlate with wrongly structured or absent neural
circuits involved in production of neurotransmitters such as
dopamine or the ones associated with cognitive functions.
One hallmark of the pathophysiology of the psychiatric
disorders is reduced size of the hippocampus—a prominent
region of the brain involved in formation of memory, spatial
navigation, and consolidation of thought. Since hippocampus
is a region that generates neurons throughout the lifespan of
humans utilizing neural stem cells, such observations suggest
that the reduced plasticity of neural stem cells (NSCs) and
hampered adult neurogenesis might be a major cause of
psychiatric disorders.

Severe neuronal damage in case ofmedial cerebral arterial
occlusion (MCAO) or ischemic injury was also shown to
induce plasticity inmammalian brains [19, 27, 51–53].MCAO
results in infarcts and neuronal death in large regions of
the brain including the striatum and cortex. Upon such an
insult, the progeny of the NSCs at the SVZ diverts their
normal migratory routes to these nonneurogenic regions and
generates neurons that populate the infarct areas [19, 27].
Although the number of neurons is meager, the subtypes of
the neurons are not exactly matching the lost ones and the
survival of newborn neurons is poor. Additionally, mamma-
lian brains were also suggested to bear plasticity upon neu-
rodegenerative conditions [41, 43, 45, 54], although this
ability is not fully translated into functional recovery. Sev-
eral studies have shown that neural stem cell is affected
during chronic neurodegeneration; for instance, postmortem
analyses of Huntington’s patients showed thicker SVZ and
increased proliferation of ventricular cells [41], chemically
induced epileptic seizures transiently increase the production
of neuroblasts in the hippocampus and the SVZ [45], and,
in an experimental model of murine prion disease and post-
mortem analyses of Creutzfeldt-Jacob patients, hippocampal
neurogenesis was found to increase [42], while in Parkin-
son’s patients cell proliferation is dramatically hampered
[43]. These findings constitute an overall indication that
mammalian brains might have a widespread but unfavorable

plasticity response, which endows us an incentive for aiming
at regenerative therapies by manipulating the stem cell
behavior in vivo.

3. Zebrafish Has an Extensive Plasticity in
Its Adult Brain

In nature, in contrast tomammals, several vertebrates display
a striking ability of widespread adult neurogenesis and brain
plasticity [5, 55–58]. One of these organisms is zebrafish,
which possess an extensive adult neurogenesis response of
its NSCs and can regenerate its brain upon traumatic lesions
[59–62].This is in stark contrast tomammalian brains, which
poorly regenerate, despite prevalent adult neurogenesis in
two neurogenic niches of the forebrain. Various zones of stem
cell activity were described in adult zebrafish brain [63–67].
These zones generate neurons that are integrated into the
circuitry as BrdU labeling experiments resulted in various
lineages of newborn neurons in parenchymal regions after
several weeks of BrdU pulse [63, 64]. The majority of the
stem/progenitor cells are of radial glial cells (RGCs) [5, 56,
68]. RGCs express markers such as GFAP, glutamine syn-
thetase, vimentin, S100B, aromatase-B, BLBP, or her4.1 [60,
63, 64, 69–72]. With such properties, adult zebrafish brain is
quitemore plastic than theirmammalian counterparts. Addi-
tionally, in contrast to mammals, the adult fish brain regen-
erates even after severe traumatic lesions without overt scar
formation [60, 61]. Injury to the dorsal telencephalon elevates
the levels of the proliferation of ventricularly located neuro-
genic progenitors: RGCs [59, 60, 62]. Thus, mammals and
zebrafish have a substantial difference in their abilities to
recuperate neuronal damage in their central nervous system.
Additionally, the genes and pathways involved in the ini-
tiation and maintenance of such an extensive regenerative
response in zebrafish brain are largely unknown, rendering
zebrafish as an excellent model to investigate those molecular
programs.

4. Induced Molecular Programs
Enable Plasticity Response during
Zebrafish Brain Regeneration

The process of regeneration definitely involves turning on
“redevelopment.” For instance, if a neuron will be generated,
genes that govern the specification and differentiation of that
particular subtype of neuron during development—such as
Delta-Notch signaling or pathways leading to subtype spec-
ification, axonogenesis, or synaptogenesis—become active
again. However, in case of neuronal loss, be it acute or
chronic, nonphysiological events that are normally not seen
during development take place.These include stress response,
inflammation, wound healing mechanisms, and other phe-
nomena related to the breach of the homeostatic balance. In
most cases, these phenomena were shown to be detrimental
for the regenerative ability in mammals [73–80], and they
have to be overcome for regeneration to succeed.On the other
hand, zebrafish can regenerate even though experiencing
such nonphysiological circumstances. Therefore, a plausible
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Figure 1: Induced intermediary molecular programs enable regen-
eration. In regenerating and nonregenerating organisms, injury or
damage leads to similar initial events such as inflammation, stress,
and wound healing response. There is increasing evidence that
regenerating organisms such as zebrafish induce the expression
of genes that are functionally essential for regenerative response
including the modulation of stem cell plasticity, cell proliferation,
differentiation, and survival. These genes and pathways constitute
the “induced intermediary molecular programs,” which set up the
stage for reopening the developmental programs of specification,
differentiation, patterning, and morphogenesis. One of the reasons
why regeneration is not efficient in mammals could be the lack of
activation of these intermediary genes. Therefore, the intermediary
molecular programs bear a significant value for translational aspects
of regenerative medicine and can be used as biomarkers of plasticity
and regenerative ability.

hypothesis is that the organisms that can regenerate might
be using some “intermediary” molecular programs that link
the initial events to the redevelopment of tissues (Figure 1).
These intermediate programs could be specifically induced
after neuronal loss and might be crucial to regenerative
success as they might set the stage to alleviate the negative
consequences of homeostatic compromise and to turn on the
programs of redevelopment. A scientific challenge based on
this hypothesis is to identify such putative intermediary genes
and pathways in regenerating organisms. Thus, zebrafish
serves as a promising animal model to this purpose.

Several studies have so far shown that, during regenera-
tion of the adult zebrafish tissues, genes that are not expressed
during the development of the corresponding tissues can be
induced [81–91]. Specifically in adult zebrafish brain, acute
inflammation has been shown to contribute to activation
of neural progenitor cells with radial glial identity [77, 86].
Leukotriene C4 (LTC4) was shown to emanate from immune
cells that populate the brain tissue after lesion and activate
an intracellular signal transduction in radial glial cells, where
the cysteinyl leukotriene receptor 1 (cystlr1) is present [86].

Injection of LTC4 using cerebroventricular microinjection
(CVMI) [70, 92] is sufficient to increase the proliferation of
radial glial cells and subsequent regenerative neurogenesis by
activating regeneration-specific molecular program involv-
ing the zinc finger transcription factor gata3. This gene is
interesting as it is not expressed during development and
homeostatic adult telencephalons of the zebrafish brain, but
is induced in the RGCs shortly after lesion [84]. Knockdown
experiments using CVMI and Gata3 antisense morpholinos
showed that Gata3 does not partake in regulation of constitu-
tive neurogenesis, but is specifically required for the injury-
induced cell proliferation response of the ventricular neuro-
genic progenitor cells and subsequent reactive neurogenesis:
two hallmarks of the regenerative response gata3 are injury
induced in other regenerating organs of zebrafish and are
functionally required for the proliferation of progenitor cells
[84]. Such a dynamic expression and biological relevance of
gata3 suggests that this gene might be part of a molecular
program zebrafish might be using universally for regenerat-
ing its tissues. Additionally, gata3 has not been documented
to be activated in mammalian brains upon injury or insult
so far, suggesting that such genes like gata3 might underlie
the disparity between the regenerative capacities of zebrafish
and mammalian brains. Therefore, such molecular programs
or novel epistatic interactions could be used as biomarkers of
brain injury and regenerative response.

Another study identified the 7-pass transmembrane
domain chemokine receptor Cxcr5 as a gene required for
regenerative neurogenesis but not for increased proliferation
of the radial glial cells [83]. Cxcr5 is expressed at low
levels in the RGCs in homeostatic unlesioned adult zebrafish
telencephalon and is predominantly absent in neurons. After
a lesion, cxcr5 expression increases dramatically in periven-
tricular neurons [83]. Blocking this chemokine signaling by
overexpressing a dominant negative version of the Cxcr5
receptor that lacks the transmembrane domains 5, 6, and 7,
which renders the receptor incapable of eliciting an intracel-
lular signaling cascade, does not result in any change in RGC
proliferation in unlesioned or lesioned brains. However, the
same genetic knockdown results in reduced number of new-
born neurons only after lesion [83]. Similarly, morpholino-
mediated knockdown of cxcr5 gene in adult zebrafish brain
leads to similar reduction of regenerative neurogenesis [83].
Conversely, when the full-length Cxcr5 is overexpressed,
production of new neurons increased significantly only after
lesion despite no change in RGC proliferation.These findings
suggest that Cxcr5-mediated chemokine signaling might be
specifically required for generation of neurons after acute
neuronal loss and might also serve as a biomarker for
regenerative neurogenesis.

Alternatively, some molecular programs could be turned
off or overridden during regeneration of adult zebrafish brain
[93]. For instance, estradiol was shown to hamper prolifer-
ation of progenitor cells in the adult zebrafish brain under
homeostatic conditions, while this regulation does not take
place during regeneration [93]. Since radial glial cells specif-
ically express the aromatase that synthesizes estrogen [72],
certain physiological conditions might downregulate signal-
ing pathways that are prevalent during homeostatic state.
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Figure 2: Relative expression levels of regeneration-associated genes of adult zebrafish brain in mouse brain before and after lesion based on
publicly available gene expression datasets.

Collectively, an important but still partial list ofmolecular
programs that allow the special regenerative response in
the zebrafish brain was identified as described above. Inter-
estingly, some of those programs are induced only during
regenerative stage and are essential for production of new-
born neurons. These findings suggest that regenerating orga-
nisms such as zebrafish could use special molecular programs
to enable regenerative neurogenesis, and these programs
might be responsible for different regenerative capacities of
zebrafish and mammalian brains.

5. Missing Regeneration Programs
in Mammals?

Experimental data suggests that the crucial need for induced
intermediary programs in zebrafish makes regeneration pos-
sible [56, 77, 83, 84, 86]. A very valid and intriguing question
is therefore whether those regeneration programs would be
activated in mammalian brains after neuronal loss. Several
gene expression datasets on central nervous system injuries
are publicly available on repositories such as Array Express
(http://www.ebi.ac.uk/arrayexpress/) and Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). To
find out whether the regeneration programs of zebrafish are
activated in mammalian models of injury, we investigated
the expression levels of those genes in one representative
dataset (Figure 2). In this dataset, gene expression profiles
of injured and uninjured mouse brains are compared. The
expression values of the genes presented in the pathway
analysis map are based on the Query Data Set GSE58484
(Gene Expression Omnibus accession number) [94]. The
injured group reflects the gene expression from wild type
B6 mice at 3 days after a traumatic brain injury at the
ipsilateral neocortex (Datasets: GSM1412408, GSM1412409,
andGSM1412410).The control samples show the gene expres-
sion values at the neocortex of uninjured wild type B6
mice (Datasets: GSM1412411, GSM1412412, andGSM1412413).
When we checked the expression levels of three genes exper-
imentally known to be required for regeneration in zebrafish,

gata3, cxcr5, cystlr1, we found that cystlr1 is expressed in
high levels after injury, while cxcr5 and gata3 are unchanged
(Figure 2). Interestingly, gata3 expression is very low before
and after injury, almost at nonexistent levels. Cxcr5 is also
expressed at low levels and statistically is not different than
that of nondetectable levels. These findings suggest that it
is quite possible that the inability to activate regeneration
programs and genes, two of which are cxcr5 and gata3, might
be one of the underlying reasons why mammalian brains
could not turn on regeneration mechanisms.This hypothesis
also points to the importance of further experiments to
elucidate more genes participating in regeneration response
of adult zebrafish central nervous system.

Hypothetically, the regeneration genes if turned on in
mammalian brains could modulate further pathways and
genes. This modulation might run through two ways: (1)
regeneration genes can regulate downstream genes and path-
ways that are already known to be associated with them;
(2) regeneration genes could regulate completely novel genes
and pathways. The latter scenario is impossible to predict
without experimental studies, which will aim to identify
downstream gene regulation of regeneration factors after
misexpression studies such as knockdown, knockout, or over-
expression. However, the former scenario can be predicted
using already existing interaction maps. In order to find
out this interaction map and pathway analysis for gata3 and
cxcr5, we used publicly available online in silico tools, such
as GeneMANIA, a prediction tool for functional interaction
maps and pathways based on a large data of functional
interaction data (http://genemania.org/). When we included
gata3 and cxcr5 into query and also added three proneural
genes Neurogenin1 (Ngn1), achaete-scute complex homolog
1 (Ascl1), and Notch1 to narrow down the interaction map
to neurogenic pathways, we found two particular maps for
human and mouse (Figure 3). These maps revealed several
potential map partners, which are hypothetically the genes
that could be regulated if gata3 and cxcr5 would have
been expressed in mammalian brains after injury regarding
the first scenario above. When we analyzed the expression
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Figure 4: Relative expression levels of GeneMANIA-predicted map partners of Gata3 and Cxcr5 in experimental mouse brain injury gene
expression datasets. See text for details.

levels of those potential map partners in the original mouse
brain injury dataset, we found that several of these genes—
for instance, Bcr, Unc13b, IL3, and Pip5k1c—were either
expressed at very low levels or unexpressed (Figure 4). These
genes are taking part in regulating diverse events including
cell cycle, neurotransmitter release, long-term potentiation
of synapses, second messenger pathways, cytokine signaling,
cell fate determination, and cell migration [95–102]. Thus,

activation of regeneration factors in mammals could have
the potential to modulate all these molecular events, which
might be misregulated in the absence of such factors, two of
which could be gata3 and cxcr5. As newmolecular playerswill
be identified experimentally, the interaction and regulation
map could be widened. Potential candidates could also be
analyzed for their expression and function in mammalian
central nervous system to see whether they could convey
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the regenerative ability in mammalian nervous tissue. For
instance, when predicted interaction maps and pathway
analysis are made for Bcr,Unc13b, IL3, and Pip5k1c in mouse,
several genes are included in the map (Figure 5), which could
serve as a starting point for functional epistatic analyses of
regenerative ability.

6. Neurodegeneration as a Means of
Addressing Stem Cell Plasticity in Zebrafish

Specific regions of the zebrafish brain are strikingly conserved
withmammalian brains [103, 104], and this allows zebrafish to
be used as an excellent model for neurodegeneration. Several
transgenic or mutant zebrafish lines were generated to model
neurodegeneration in fish [105–108]. Various techniques
ranging from morpholino knockdown of specific disease-
related genes [109, 110] to the use of neuronal promoters
for driving mutant versions of different neurodegeneration-
associated proteins [111–116], or generating mutants for loss
of/function studies [117–122] were used. These models pro-
vide important information of the pathophysiology of the
disease progression and underlying molecular programs.
Like the genes induced after traumatic injury in zebrafish
brains, neurodegeneration models are also likely to give us
insights on biomarkers that could be pragmatically utilized in
regenerative medicine. These biomarkers can also be used to

find out the “druggable” candidates that could be harnessed
in clinical settings for regenerative therapies.

7. Conclusion

Zebrafish serves as a yet developing but quite promising
organism for modeling human diseases [123]. The premise of
zebrafish is its ease in getting at the mechanisms underlying
the in vivo regenerative aptitude. Understanding such mech-
anisms would thus be instrumental in addressing questions
on the presence of special molecular mechanisms and on
whether we can activate those programs in mammalian
brains to achieve functional recovery utilizing the endoge-
nous stem cells. Here, we wish to underscore the need to
further test the hypothesis that induced molecular programs
utilized by adult zebrafish brain might give insight into how
we can coax mammalian neural stem cells to proliferate and
enhance the adult neurogenesis response in compromised
adult brains. With simple in silico tools, such genes and path-
ways can also help researchers to hypothesize the molecular
basis of regenerative ability also in mammalian brains.
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