
sensors

Article

Fuzzy-Based Microservice Resource Management Platform for
Edge Computing in the Internet of Things

David Chunhu Li 1 , Chiing-Ting Huang 2, Chia-Wei Tseng 2 and Li-Der Chou 2,*

����������
�������

Citation: Li, D.C.; Huang, C.-T.;

Tseng, C.-W.; Chou, L.-D.

Fuzzy-Based Microservice Resource

Management Platform for Edge

Computing in the Internet of Things.

Sensors 2021, 21, 3800. https://

doi.org/10.3390/s21113800

Academic Editor: Fatos Xhafa

Received: 13 April 2021

Accepted: 28 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Information Technology and Management Program, Ming Chuan University, Taoyuan City 333321, Taiwan;
davidli@mail.mcu.edu.tw

2 Department of Computer Science and Information Engineering, National Central University,
Taoyuan City 320317, Taiwan; ginting@g.ncu.edu.tw (C.-T.H.); cwtseng@g.ncu.edu.tw (C.-W.T.)

* Correspondence: cld@csie.ncu.edu.tw; Tel.: +886-03-4227151

Abstract: Edge computing exhibits the advantages of real-time operation, low latency, and low
network cost. It has become a key technology for realizing smart Internet of Things applications.
Microservices are being used by an increasing number of edge computing networks because of
their sufficiently small code, reduced program complexity, and flexible deployment. However, edge
computing has more limited resources than cloud computing, and thus edge computing networks
have higher requirements for the overall resource scheduling of running microservices. Accordingly,
the resource management of microservice applications in edge computing networks is a crucial issue.
In this study, we developed and implemented a microservice resource management platform for
edge computing networks. We designed a fuzzy-based microservice computing resource scaling
(FMCRS) algorithm that can dynamically control the resource expansion scale of microservices. We
proposed and implemented two microservice resource expansion methods based on the resource
usage of edge network computing nodes. We conducted the experimental analysis in six scenarios
and the experimental results proved that the designed microservice resource management platform
can reduce the response time for microservice resource adjustments and dynamically expand mi-
croservices horizontally and vertically. Compared with other state-of-the-art microservice resource
management methods, FMCRS can reduce sudden surges in overall network resource allocation, and
thus, it is more suitable for the edge computing microservice management environment.

Keywords: edge computing; fuzzy system; Internet of Things; microservice; resource management;
scaling

1. Introduction

With the recent development of emerging technologies, the information industry
is vigorously developing the integration of edge computing and cloud computing and
the introduction of edge computing into the vertical field. The rapid development of the
Internet of Things (IoT) has promoted the development of various flexible and decentralized
computing architectures in the industry. In the edge–cloud computing architecture, edge
computing plays a role in the local learning and filtering of data transmitted by a terminal
device, while simultaneously sharing the computing and storage tasks of the cloud [1–3].
From the perspective of cloud computing to edge computing, the cloud platform can
deploy various microservices to the edge computing network in accordance with the needs
of a terminal device [4]. Edge computing exhibits the advantages of real-time operation,
low latency, and low network cost, enabling it to share the cloud’s load; this capability has
become an important consideration in the design of IoT system architecture [5,6].

Edge computing is a distributed network infrastructure that allows data to be pre-
processed and analyzed closer to their source. Edge computing can be used in various
applications, such as IoT, artificial intelligence, and big data. The microservice architecture
involves the development of applications as a collection of small services, wherein each

Sensors 2021, 21, 3800. https://doi.org/10.3390/s21113800 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5250-310X
https://www.mdpi.com/article/10.3390/s21113800?type=check_update&version=1
https://doi.org/10.3390/s21113800
https://doi.org/10.3390/s21113800
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113800
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3800 2 of 24

service can implement business functions, run its process, and communicate through
HyperText Transfer Protocol (HTTP) application programming interfaces (APIs). Each
microservice can be deployed, upgraded, expanded, and restarted independently of other
services in the application [7]. Therefore, the integration of edge computing and microser-
vices can provide a flexible and diverse application development architecture.

Microservices are functionally meaningful applications that are sufficiently small to
focus on a specific business function or requirement [8,9]. Microservices are independent
during either the service development or deployment phase; they are also easy to integrate
into third-party application systems, enabling easy and flexible integration and automatic
deployment [10,11]. Given the aforementioned advantages, various microservice appli-
cations [12–14] have been run extensively in cloud computing networks. However, edge
computing has more limited resources than cloud computing, and thus edge computing
networks have higher requirements for the overall resource scheduling for the running
of microservices [15,16]. The smooth network communication of various containerized
microservices must be ensured. Therefore, the resource management of microservice
applications in edge computing networks is a crucial issue [17].

Edge computing microservice resource management is currently facing two major
challenges [18,19]: (1) how to manage the computing resource requirements of various
microservice programs effectively, and (2) how to determine the priority of processing
various microservices based on available resources. To solve the first problem, several
edge computing service management platforms have adopted an auto-scaling algorithm,
which is the primary resource management method for cloud computing application
services [20–22]. Auto-scaling includes three basic strategies: automatic, predictive, and
event-reactive scaling [23]. During the automatic scaling of a scheduling program, the
corresponding rules for system time and the resource deployment scale should be written
in advance; thus, this technique can only be used in a network environment in which the
number of service requirements and time conditions are stable. Predictive scaling requires
additional learning costs, and it exhibits poor performance in emergencies. Although event-
reactive scaling can respond in time to the current resource usage requirements, it cannot
achieve the same performance as that which it displays in a cloud computing network
when it is applied to a delay-sensitive edge computing network with limited computing
resources. The second challenge primarily involves controlling the use of edge node
resources [24–26]. The available resources are constantly changing in an edge network. In
contrast with a cloud computing network, which has nearly unlimited computing resources,
edge computing networks tend to limit the use of services due to their limited computing
resources. Each service has a priority; thus, using an optimal method to determine the
priority of processing services based on available resources is essential. To address these
two challenges, in this study, we present the design of an edge computing fuzzy-based
microservice resource management platform.

In traditional network service resource management methods, researchers usually
design various computing resource management algorithms or mechanisms to manage the
computing resources of the program. These management algorithms and mechanisms eval-
uate the resource expansion requirements of applications or microservices based on metrics
such as the resources usage amount of the programs. Accordingly, the algorithms calculate
that more or less computing resources are to be allocated to applications and microservices.

However, the amount of computing resources used or required is usually based
on a vague vocabulary. In particular, the network topology of the edge computing net-
work changes rapidly, and the operating status of the computing nodes and running
microservices in the edge computing network also changes frequently. These factors have
caused many ambiguities and uncertainties in microservice resource management require-
ments [27]. If these vague and uncertain requirements are used as input parameters for
traditional resource expansion algorithms, people have to design very complex equations,
algorithms, and system architectures to cope with managing complicated service resources
in an edge computing network. Furthermore, complex algorithms require more computing

Sensors 2021, 21, 3800 3 of 24

resources and computing time. The complex resource management software system ar-
chitecture also has the problems of difficulty in system development and poor scalability.
These problems reduce the performance of traditional resource management algorithms
and mechanisms in edge computing networks.

Fuzzy theory models the process of human subjective thinking or judgment. Designing
fuzzy logic systems based on fuzzy theory does not require an accurate mathematical model
of the controlled object. Instead, fuzzy sets are used for quantitative processing. Fuzzy
theory has been widely used in various products that combine computers and human
subjectivity [28]. Fuzzy theory makes the control mechanism and strategy easy to accept
and understand.

Compared with traditional algorithmic systems, fuzzy logic systems are simple in
design and easy to apply. The fuzzy logic system can simplify the complexity of system
design and is especially suitable for non-linear, time-varying application systems. However,
the fuzzy-based resource management method still has some shortcomings [29]. For
instance, a comprehensive and systematic design method is needed to design a service
resource management system based on fuzzy theory, and this is a challenge for designers.
For different application fields, it is necessary to customize the design of fuzzy rules
and the membership functions of fuzzy logic systems, and there is no unified standard
approach. Moreover, the form of fuzzy rule bases and membership functions has a great
influence on the performance of the fuzzy logic system, which also increases the difficulty
of system tuning.

In this study, we use the advantages and characteristics of fuzzy theory to improve
the resource management methods for edge computing network microservices. We focus
on designing and implementing a prototype of an edge computing microservice resource
management platform, which includes a fuzzy-based microservice computing resource
scaling (FMCRS) algorithm. FMCRS represents the state of computing resources of mi-
croservices running on edge computing nodes in the form of fuzzy sets and evaluates the
scaled extent of computing resources of microservices based on 27 fuzzy rules. The major
contributions of this work are summarized as follows.

(1) In this study, we design and implement a prototype of an edge computing network
microservice resource management platform. This platform can provide a solution to
cloud computing service providers and edge computing system users for realizing
the effective resource management of each microservice in an edge computing net-
work. The system prototype designed in this work provides users of edge computing
networks with a new option to meet the increasingly complex network application re-
quirements.

(2) We design a fuzzy-based microservice computing resource scaling (FMCRS) algorithm
that can dynamically control the resource expansion scale of microservices to meet
their resource consumption requirements in a timely manner. FMCRS can ensure the
lowest availability of various microservices.

(3) We apply the particle swarm optimization (PSO) algorithm to optimize the proposed
fuzzy inference system for microservice resource management to achieve the best
resource expansion strategy for various microservices in an edge computing network.

(4) To verify the effectiveness and performance of the proposed platform and algorithm,
we perform extensive experiments in six scenarios of the Internet of Vehicles edge
computing network. The experimental results show that the proposed approach
improves microservice resource management efficiency in terms of reaction time and
reduces surge burdens.

The remainder of this paper is organized as follows. Section 2 discusses the research
background and the related literature. Section 3 presents the system model and proposed
FMCRS. Section 4 describes the system architecture, microservice resource management
platform, and system implementation in detail. Section 5 evaluates the proposed platform
and algorithm through extensive experiments. Section 6 concludes the study and proposes
some suggestions for future work.

Sensors 2021, 21, 3800 4 of 24

2. Background and Related Work

In this section, we first introduce the research background for the issues to be ad-
dressed in this paper. Subsequently, we review and discuss two major approaches in
the related literature, namely, system architecture/framework and management mecha-
nism/algorithm.

The resource management of microservices has always been an important research
topic in academia and industries [27–30]. Taherizadeh and Stankovski [31] presented a sur-
vey of the taxonomy and challenges related to auto-scaling applications in edge computing.
They investigated various types of edge computing applications and their auto-scaling
challenges when dynamic workloads occur. The authors discussed nine major technologies
related to the auto-scaling application of edge computing: the cloud framework, virtu-
alization technology, monitoring approach, operational behavior, adjustment capability,
architecture support, adaptation interval, scalability technique, and image delivery. Their
work identified several research challenges that should be considered and addressed to
enhance the performance of applications in edge computing. Qu et al. [32] investigated
various microservice deployment strategies on the edge computing platform. They imple-
mented microservices with Docker containers and conducted comprehensive experiments
on four cases to explore the performance of microservice deployment strategies. Their
experimental results showed that the computing resources of microservices in an edge
computing network, such as CPU and memory, will vary dramatically as the service
scenario changes. Deploying microservices in edge computing networks will face the
problems of operating and managing microservices. Therefore, edge computing networks
require flexible and diverse microservice management methods to cope with complex
network environments.

Designing new network architectures and system frameworks to improve edge com-
puting microservice resource management efficiency is an important research approach.
Gand et al. [33] proposed a serverless architecture for cluster container applications in edge
computing. They designed and implemented a traffic management scheme as a proof of
concept to improve the performance of deploying microservices across clusters. They also
implemented their serverless architecture and evaluated the performance of the architecture
in terms of the memory and CPU usages of clusters, message round-trip time, and function
invocation time. The simulation results showed that their proposed architecture exhibits
advantages, including reusability, scalability, and interoperability. In [34], Taherizadeh et al.
proposed a capillary computing architecture for dynamically orchestrating microservices
from edge devices to fog and cloud service providers. Their architecture consists of an
edge/fog/cloud monitoring system and a capillary container orchestrator. The authors
implemented all the necessary microservices as Docker containers and used a car equipped
with a special communication hardware system as an edge computing node that could
connect to a fog and cloud computing server. The experiment results showed that their
proposed capillary computing architecture achieved a high quality of service (QoS) with a
faster service response time. Alam et al. [35] developed a modular and scalable computing
architecture based on lightweight virtualization. They combined Docker orchestration with
a distributed deployment system to provide modularity. Their proposed architecture was
able to minimize the effect of the failure of devices and microservices by quickly masking
application logic across different layers. They tested the proposed architecture through
experiments, and the results showed that it exhibited advantages such as fault tolerance
and microservice deployment availability across different system architecture layers.

Yan et al. [36] presented a 5G satellite edge computing framework based on the mi-
croservice architecture to reduce delays and expand network coverage. Their framework
consisted of edge computing microservices and embedded hardware platforms in satel-
lites. All the computing resource nodes were virtualized into a resource management
platform for deploying microservices in the framework. The authors performed a series
of experiments to validate their proposed framework, which exhibited broad network
coverage, as well as less delay and a lower packet loss rate than the ground 5G network.

Sensors 2021, 21, 3800 5 of 24

Forestiero, et al. [37] presented a novel ant-inspired self-organizing framework for service
discovery and composition with an evolutionary-based approach, which can broadly be
used in the Internet of Things and edge computing network. They proposed an algorithm
for reorganizing and discovering service descriptors. Their algorithm can intelligently
collect and reorganize service discovery requests to achieve the discovery of multiple basics
services with a single query. The authors verified its performance in terms of the capacity
of reorganizing service descriptor keys and service discovery operations via extensive
simulation experiments. The experiment results showed that the designed framework and
algorithm was indeed able to effectively reduce the number of service explorations in the
Internet of Things and edge computing networks, shortening the time of the service search
and reducing the network load.

Some researchers have attempted to design various novel mechanisms and policies to
tackle the issues related to managing microservice computing resources in edge computing.
Cicconetti et al. [38] designed two mechanisms for dynamically allocating microservices in
edge computing networks at short timescales. They adopted the multi-access edge com-
puting (MEC) standard of the European Telecommunications Standards Institute (ETSI)
and implemented their proposals with open-source tools. The authors compared three
microservice allocating operation approaches, namely, static, centralized, and distributed
assignments, through experimental evaluations. They pointed out that the auto-scaling
mechanism performs well when it has a systemic view of the usages of all the MEC hosts
and demands. The authors also indicated that proposing a solution that can fit all the con-
ditions in serverless edge computing is extremely difficult. Pallewatta et al. [39] designed a
decentralized microservice placement policy for heterogeneous and resource-constrained
fog computing environments. In their proposed policy, microservices are placed as close
as possible to the data source to minimize latency and network usage. The authors also
attempted to address the challenges of microservices related to service discovery and load
balancing. They evaluated their policy through simulations, and the results showed that
their proposed microservice placement policy achieved an 85% improvement in network
latency and usage compared with the cloud-only placement approach.

The deployment of containerized microservices in edge computing has become in-
creasingly important in recent years. Most current studies have focused on designing new
system architectures or new microservice deployment methods. To date, however, discus-
sions on providing efficient solutions to the service resource management of microservices
in edge computing remain minimal. The current work presents an innovative prototype
of an edge computing network microservice resource management platform. In contrast
with the aforementioned studies, we designed and implemented a microservice resource
management fuzzy inference system based on fuzzy theory and PSO.

3. System Models

This section consists of two parts: the description of the model and the content of the
FMCRS algorithm. First, we define the membership functions and calculation methods of
the fuzzy management system for edge computing microservice resource management.
Then, we separately describe the four core components of FMCRS, including the generation
of fuzzy sets and rules, the optimization of fuzzy system membership functions, horizontal
scaling, and vertical scaling mechanisms.

3.1. Description of Models

We assume that the resource status data of microservices running on an edge comput-
ing network are n pairs of data. Each pair of data includes a z-dimensional input and a
k-dimensional output. If the number of rules of the resource fuzzy inference system of a
microservice is m, then a certain rule l in the fuzzy inference system can be expressed as
Equation (1) [40]:

If x1 is H1
l and . . . and xi is Hi

l ,
then y1 is Ml

1 and . . . and yj is Ml
j ;

(1)

Sensors 2021, 21, 3800 6 of 24

where Hi
l , i ∈ {1, . . . , z} and Ml

i , j ∈ {1, . . . , k} are fuzzy sets that define the input
and output of our microservice fuzzy resource management inference system. Hi

l des-
ignates the computing resource information related to microservices running on edge
computing nodes, e.g., CPU and memory usages. Ml

i signifies the extent of microservice
resource scaling. We assume that the shapes of the membership functions of fuzzy sets Hi

l ,
i ∈ {1, . . . , z} and Ml

i , j ∈ {1, . . . , k} are Gaussian. Then, the Gaussian membership func-
tion of the microservice resource fuzzy sets can be defined according to Equation (2) [41]:

µMl
J
(x) = exp

−1
2

(
x− µl

σ2
i

)2
 (2)

where µl and σi denote the center and width of the lth fuzzy set Ml
i , respectively. If the fuzzy

set of the CPU loading of a microservice is Ã and the fuzzy set of its memory loading is B̃,
then the membership function of the microservice resource management fuzzy inference
system is calculated using Equation (3):

θ = µÃ∩B̃(x) = ∧
[
µÃ, µB̃

]
= min

[
µÃ, µB̃

]
(3)

This fuzzy system integrates all the rules and defuzzifies them with a weighted
average method to obtain a clear fuzzy system output value θ, as shown in Equation (4),
where wi is the fitness of each rule.

θ =

n
∑

i=1
wi × θi

n
∑

i=1
wi

, where wi = µÃi
(x) ∧ µB̃i

(x) (4)

3.2. FMCRS Algorithm

In this study, we design the FMCRS algorithm on the basis of fuzzy theory. The FMCRS
algorithm consists of four major steps: (1) generating fuzzy sets and rules, (2) optimizing
the fuzzy membership function, (3) horizontal scaling, and (4) vertical scaling.

3.2.1. Generation of Fuzzy Sets and Rules

Through some open-source tools, network users can easily detect and collect the com-
puting resource usage data of each microservice running on an edge network’s computing
nodes. We use CPU and memory usages as the input of fuzzy sets. The use of CPU and
memory by microservices is divided into three levels: high, medium, and low. The scaling
extent of the computing resources of microservices is the output of the fuzzy inference
system. We define the scaling extent as the amount of computing resource capacity that
needs to be properly expanded when the computing resources of a certain microservice are
insufficient in the edge computing network environment. The scaling extent is a percentile
measurement. In the fuzzy inference system, the scaling extent is converted into a format
that conforms to the definition of the fuzzy rules, and it is converted into three levels—high,
medium, and low—according to its percentage value. The scaling extent is calculated using
the FMCRS algorithm designed in this article. Therefore, the designed fuzzy sets include
two input parameters, one output parameter, and seven fuzzy rules. Table 1 provides the
fuzzy rules for the proposed microservice resource scaling management.

Sensors 2021, 21, 3800 7 of 24

Table 1. Fuzzy rules of the microservice resource scaling management fuzzy inference system.

Rule Number CPU Loading Memory Loading Scaling Extent of Computing Resource
1 High High High
2 Medium High Medium
3 High Medium Medium
4 Medium Medium Medium
5 Low Medium Medium
6 Medium Low Medium
7 Low Low Low

Figure 1 presents the Gaussian membership functions of our microservice resource
management fuzzy sets. The Gaussian membership function is often used to represent
vague and linguistic expressions, such as “increases” or “increases little”. The Gaussian
membership function of the microservice resource fuzzy sets is given in Equation (2),
where µl and σi are the center and width of the lth fuzzy set, respectively. Membership
values are computed for each input value in x. The subgraph in the upper part of Figure 1
presents the distribution of the Gaussian membership values of the microservice CPU
loading. This subfigure shows the distribution of the Gaussian membership values when
the CPU loading of the microservice is high, medium, and low, respectively. The middle
subgraph in Figure 1 shows the distribution of the corresponding Gaussian membership
values when the loading of the microservice memory is high, medium, and low. The
lower subgraph in Figure 1 shows the three distributions of Gaussian computing resources
scaling extent when the CPU and memory loadings of the microservice are high, medium,
and low respectively.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 25

needs to be properly expanded when the computing resources of a certain microservice
are insufficient in the edge computing network environment. The scaling extent is a per-
centile measurement. In the fuzzy inference system, the scaling extent is converted into a
format that conforms to the definition of the fuzzy rules, and it is converted into three
levels—high, medium, and low—according to its percentage value. The scaling extent is
calculated using the FMCRS algorithm designed in this article. Therefore, the designed
fuzzy sets include two input parameters, one output parameter, and seven fuzzy rules.
Table 1 provides the fuzzy rules for the proposed microservice resource scaling manage-
ment.

Table 1. Fuzzy rules of the microservice resource scaling management fuzzy inference system.

Rule Number CPU Loading Memory Loading Scaling Extent of Computing Resource
1 High High High
2 Medium High Medium
3 High Medium Medium
4 Medium Medium Medium
5 Low Medium Medium
6 Medium Low Medium
7 Low Low Low

Figure 1 presents the Gaussian membership functions of our microservice resource
management fuzzy sets. The Gaussian membership function is often used to represent
vague and linguistic expressions, such as “increases” or “increases little”. The Gaussian
membership function of the microservice resource fuzzy sets is given in Equation (2),
where μl and σ i are the center and width of the lth fuzzy set, respectively. Membership
values are computed for each input value in x. The subgraph in the upper part of Figure
1 presents the distribution of the Gaussian membership values of the microservice CPU
loading. This subfigure shows the distribution of the Gaussian membership values when
the CPU loading of the microservice is high, medium, and low, respectively. The middle
subgraph in Figure 1 shows the distribution of the corresponding Gaussian membership
values when the loading of the microservice memory is high, medium, and low. The lower
subgraph in Figure 1 shows the three distributions of Gaussian computing resources scal-
ing extent when the CPU and memory loadings of the microservice are high, medium,
and low respectively.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 25

Figure 1. Gaussian membership function of the microservice resource management fuzzy sets.

Figure 2 shows a use case of our fuzzy inference system for microservice resource
management. When the CPU loading of a microservice is 87% and the memory loading is
93%, our fuzzy inference system estimates the resource scaling extent of this microservice
to be 79.99%.

Figure 2. Use case of the microservice resource management fuzzy interference system.

3.2.2. Optimization of the Fuzzy Membership Function
PSO is an algorithm developed by Kennedy and Eberhart [42] to observe the foraging

behavior of birds. In the PSO algorithm, a particle represents an individual in a flock of
birds. Each particle has a “memory” and refers to the “messages” of other particles to
determine the direction of its movement. The behavior of a single particle may be assumed
as unpredictable, but each particle refers to the information of other particles, and thus
the behavior of the group is actually predictable. This condition is attributed to particles
which correct the direction of their movement after determining that other particles are
better than them, and thus refer to these particles and learn from others. Therefore, we
can assume that all particles will gradually move in a better direction. The PSO algorithm
can be used to solve the optimization problem. The mathematical expression of the PSO
algorithm is provided in Equation (5):

τ+ = × + × × −

+ × × −

1
1

2

() ()
() ()

t t t
i i i i

t
i

v v c rand p x
c rand g x

 (5)

Figure 1. Gaussian membership function of the microservice resource management fuzzy sets.

Sensors 2021, 21, 3800 8 of 24

Figure 2 shows a use case of our fuzzy inference system for microservice resource
management. When the CPU loading of a microservice is 87% and the memory loading is
93%, our fuzzy inference system estimates the resource scaling extent of this microservice
to be 79.99%.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 25

Figure 1. Gaussian membership function of the microservice resource management fuzzy sets.

Figure 2 shows a use case of our fuzzy inference system for microservice resource
management. When the CPU loading of a microservice is 87% and the memory loading is
93%, our fuzzy inference system estimates the resource scaling extent of this microservice
to be 79.99%.

Figure 2. Use case of the microservice resource management fuzzy interference system.

3.2.2. Optimization of the Fuzzy Membership Function
PSO is an algorithm developed by Kennedy and Eberhart [42] to observe the foraging

behavior of birds. In the PSO algorithm, a particle represents an individual in a flock of
birds. Each particle has a “memory” and refers to the “messages” of other particles to
determine the direction of its movement. The behavior of a single particle may be assumed
as unpredictable, but each particle refers to the information of other particles, and thus
the behavior of the group is actually predictable. This condition is attributed to particles
which correct the direction of their movement after determining that other particles are
better than them, and thus refer to these particles and learn from others. Therefore, we
can assume that all particles will gradually move in a better direction. The PSO algorithm
can be used to solve the optimization problem. The mathematical expression of the PSO
algorithm is provided in Equation (5):

τ+ = × + × × −

+ × × −

1
1

2

() ()
() ()

t t t
i i i i

t
i

v v c rand p x
c rand g x

 (5)

Figure 2. Use case of the microservice resource management fuzzy interference system.

3.2.2. Optimization of the Fuzzy Membership Function

PSO is an algorithm developed by Kennedy and Eberhart [42] to observe the foraging
behavior of birds. In the PSO algorithm, a particle represents an individual in a flock of
birds. Each particle has a “memory” and refers to the “messages” of other particles to
determine the direction of its movement. The behavior of a single particle may be assumed
as unpredictable, but each particle refers to the information of other particles, and thus
the behavior of the group is actually predictable. This condition is attributed to particles
which correct the direction of their movement after determining that other particles are
better than them, and thus refer to these particles and learn from others. Therefore, we
can assume that all particles will gradually move in a better direction. The PSO algorithm
can be used to solve the optimization problem. The mathematical expression of the PSO
algorithm is provided in Equation (5):

vt+1
i = τ × vt

i + c1 × rand()× (pi − xt
i)

+c2 × rand()× (g− xt
i)

(5)

xt+1
i = xt

i + vt+1
i (6)

where vt+1
i is the velocity of the ith particle at time t+1, and xt

i is the position of the ith
particle at time t. pi is the best position that the ith particle has ever traveled. g is the best
position that all the particles have ever traveled. c1 is the weight of individual experience,
and c2 is the weight of group experience. The calculation method for the latest position of
particle i at time t+1 is provided in Equation (6). The PSO algorithm uses a fitness function
to determine where the particles should go, i.e., the best position, being the position with
the most food sources for birds.

The membership function of the fuzzy inference system considerably influences the
performance of the system; thus, selecting the best membership function, including the
shape of the function, the number of fuzzy rules, and the parameters of the function,
affects the accuracy of the fuzzy inference system. Accordingly, the current study uses the
PSO algorithm to solve the problem of optimizing the designed fuzzy inference system
of microservice resource management. Let µi and σi be the center value and standard
deviation of the fuzzy variables of the Gaussian membership function. We define a mean
squared error (MSE) fitness function to evaluate the performance of our fuzzy inference
system, as shown in Equation (7), where Si is the real amount of computing resources

Sensors 2021, 21, 3800 9 of 24

scaled by a microservice, and Ŝi is the estimated amount of computing resources that a
microservice needs to scale. When MSE is smaller, the performance of the fuzzy inference
system is better. Therefore, the task of using the PSO algorithm to optimize the fuzzy
inference system for microservice resource management involves using the fitness function
as Equation (7) and continuously and recursively guiding the optimization of the µi and σi
parameters to achieve the best system performance.

MSE =

n
∑

i=1

(
Si − Ŝi

)2

n
∑

i=1
S2

i

(7)

3.2.3. Horizontal Scaling

The horizontal scaling mechanism of the FMCRS algorithm can create new microser-
vices on the same edge computing node without having to migrate microservices that
requiring resource expansion to new edge computing nodes. When a microservice on an
edge computing node needs to expand computing resources, the FMCRS will first check
whether the amount of computing resources required by the microservice is lower than
the computing resources available on the edge computing node where the microservice
is located. If it is lower than the computing resources available to the computing node,
the FMCRS will start the horizontal scaling mechanism, and directly allocate the required
computing resources to the microservice from the computing node where the microservice
is currently located. This mechanism ensures that the microservice application can continue
to execute, and avoids the short interruption caused by the microservice being migrated to
other nodes.

Figure 3 presents an example of the horizontal scaling mechanism. The dotted line
microservice in the figure is the state before the operation, and the solid line microservice
is the state after operation. In Figure 3, edge computing nodes 1 and 2 run microservices
A and B, respectively. The red solid line in the figure indicates that the horizontal scaling
mechanism of the FMCRS algorithm has expanded the computing resources of microservice
A. The solid red line connects the two operating states of microservice A, indicating that
the state of microservice A has changed. The dotted subgraph represents the state before
the horizontal scaling of the computing resource is applied, and the solid line subgraph
represents the state after the horizontal scaling mechanism of the computing resource is
applied. When microservice A requires resource expansion, and the microservice resource
management fuzzy inference system estimates that the resource expansion of microservice
A is 40% and the available computing resources of node 1 are sufficient to meet the resource
expansion demand of microservice A, then FMCRS expands horizontally, creating two
copies of new microservice A on node 1, i.e., microservices A1 and A2, and allocating
new computing resources (CPU: 69%, memory: 51%) for the two new microservices.
The orchestrator is the resource manager of the fuzzy inference system, designed for
microservice resource management. We describe the implementation methods of each
component of the system in detail in Section 4.

3.2.4. Vertical Scaling

Compared with those of cloud computing networks, the computing resources of edge
computing networks are limited, and an increase in hardware computing resources is
inelastic. Differently from the horizontal scaling mechanism, vertical scaling will migrate
microservices that require the expansion of computing resources to new edge computing
nodes. When a microservice on an edge computing node needs to expand the computing
resources, if FMCSR estimates that the required expansion resources are greater than
the remaining available computing resources on the edge computing node where the
microservice is located, the microservice uses the vertical scaling method to perform

Sensors 2021, 21, 3800 10 of 24

the resource expansion. Vertical scaling can reasonably distribute the load of each edge
computing node.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 25

graph represents the state after the horizontal scaling mechanism of the computing re-
source is applied. When microservice A requires resource expansion, and the microservice
resource management fuzzy inference system estimates that the resource expansion of
microservice A is 40% and the available computing resources of node 1 are sufficient to
meet the resource expansion demand of microservice A, then FMCRS expands horizon-
tally, creating two copies of new microservice A on node 1, i.e., microservices A1 and A2,
and allocating new computing resources (CPU: 69%, memory: 51%) for the two new mi-
croservices. The orchestrator is the resource manager of the fuzzy inference system, de-
signed for microservice resource management. We describe the implementation methods
of each component of the system in detail in Section 4.

Figure 3. Horizontal scaling of the FMCRS algorithm.

3.2.4. Vertical Scaling
Compared with those of cloud computing networks, the computing resources of

edge computing networks are limited, and an increase in hardware computing resources
is inelastic. Differently from the horizontal scaling mechanism, vertical scaling will mi-
grate microservices that require the expansion of computing resources to new edge com-
puting nodes. When a microservice on an edge computing node needs to expand the com-
puting resources, if FMCSR estimates that the required expansion resources are greater
than the remaining available computing resources on the edge computing node where the
microservice is located, the microservice uses the vertical scaling method to perform the
resource expansion. Vertical scaling can reasonably distribute the load of each edge com-
puting node.

An application composed of microservices has different priorities at each edge com-
puting node. Thus, when many microservices are required to be migrated to other edge
computing nodes, FMCRS must still determine which microservice should be moved to
the node with a lower resource load based on the priority of each microservice. Equation
(8) is used to define the priority of the adjustment resources of each microservice. μscpu
and μsmemory denote the CPU and memory computing resources occupied by micro-
services. nodecpu and nodememory represent the CPU and memory usage ratios of edge
computing nodes. In practical applications, the priority of microservices can be flexibly
defined in accordance with the needs of users. For example, priority can be defined on the
basis of the purpose and importance of a microservice. FMCRS migrates microservices
with lower priority to other computing nodes with a lower load to ensure that micro-
services with higher priority have sufficient resources to continue running on the original

Figure 3. Horizontal scaling of the FMCRS algorithm.

An application composed of microservices has different priorities at each edge com-
puting node. Thus, when many microservices are required to be migrated to other edge
computing nodes, FMCRS must still determine which microservice should be moved to the
node with a lower resource load based on the priority of each microservice. Equation (8)
is used to define the priority of the adjustment resources of each microservice. cpuµs and
memoryµs denote the CPU and memory computing resources occupied by microservices.
cpunode and memorynode represent the CPU and memory usage ratios of edge computing
nodes. In practical applications, the priority of microservices can be flexibly defined in
accordance with the needs of users. For example, priority can be defined on the basis of
the purpose and importance of a microservice. FMCRS migrates microservices with lower
priority to other computing nodes with a lower load to ensure that microservices with
higher priority have sufficient resources to continue running on the original computing
nodes. After FMCRS creates new microservices on new nodes, it releases the computing
resources originally occupied by the microservices with lower priority.

Priorityµs =
cpuµs ×memoryµs

cpunode ×memorynode
(8)

Figure 4 is an example of the vertical scaling mechanism of FMCRS. There are two
edge computing nodes in the figure. Among them, two microservices, A and C, run
on computing node 1. Microservice B runs on computing node 2. When microservice
C needs to expand computing resources, because the available computing resources of
node 1 are insufficient to meet the resource expansion required by microservice C, this
situation will activate the FMCRS vertical scaling mechanism, as illustrated by the red
solid line in Figure 4. As microservice C has a lower priority than microservice A, FMCRS
migrates microservice C from node 1 to node 2, and at the same time releases the computing
resources occupied by microservice C in node 1.

3.2.5. Algorithm Pseudocode

FMCRS is summarized in Algorithm 1. First, we initialize the fuzzy sets and parame-
ters of the microservice resource computing fuzzy management inference system. When an
iteration occurs, the algorithm calculates the fuzzy membership functions of all the fuzzy
sets for each microservice on all the edge network’s computing nodes (Steps 1 to 3). Then,

Sensors 2021, 21, 3800 11 of 24

FMCRS optimizes the fuzzy membership functions using the PSO algorithm (Step 4). All
the fuzzy rules are integrated and defuzzified to calculate the estimated required scaling
computing resources: srcpu and srmem . If the required resources of a microservice are less
than the computing resources available to the computing node where it is located, then
horizontal scaling is implemented. Otherwise, vertical scaling is performed in accordance
with the priority of the microservice (Steps 5 to 13). If no edge computing nodes for vertical
resource scaling are available, then microservices with lower priority are terminated to
ensure that microservices with higher priority can continue to operate normally.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 25

computing nodes. After FMCRS creates new microservices on new nodes, it releases the
computing resources originally occupied by the microservices with lower priority.

μ μ
μ

×
=

×
s s

s
node node

cpu memory
Priority

cpu memory
 (8)

Figure 4 is an example of the vertical scaling mechanism of FMCRS. There are two
edge computing nodes in the figure. Among them, two microservices, A and C, run on
computing node 1. Microservice B runs on computing node 2. When microservice C needs
to expand computing resources, because the available computing resources of node 1 are
insufficient to meet the resource expansion required by microservice C, this situation will
activate the FMCRS vertical scaling mechanism, as illustrated by the red solid line in Fig-
ure 4. As microservice C has a lower priority than microservice A, FMCRS migrates mi-
croservice C from node 1 to node 2, and at the same time releases the computing resources
occupied by microservice C in node 1.

Figure 4. Vertical scaling of the FMCRS algorithm.

3.2.5. Algorithm Pseudocode
FMCRS is summarized in Algorithm 1. First, we initialize the fuzzy sets and param-

eters of the microservice resource computing fuzzy management inference system. When
an iteration occurs, the algorithm calculates the fuzzy membership functions of all the
fuzzy sets for each microservice on all the edge network’s computing nodes (Steps 1 to 3).
Then, FMCRS optimizes the fuzzy membership functions using the PSO algorithm (Step
4). All the fuzzy rules are integrated and defuzzified to calculate the estimated required
scaling computing resources:

cpurs and
memrs . If the required resources of a microservice are

less than the computing resources available to the computing node where it is located,
then horizontal scaling is implemented. Otherwise, vertical scaling is performed in ac-
cordance with the priority of the microservice (Steps 5 to 13). If no edge computing nodes
for vertical resource scaling are available, then microservices with lower priority are ter-
minated to ensure that microservices with higher priority can continue to operate nor-
mally.

Algorithm 1 Algorithm for fuzzy-based microservice computing resource scaling (FMCRS)
Initialization:
 Edge computing nodes set: ܯ = ሼ1, 2, 3, … , ,ሽܯ 0 < ݅ ≤ ;ܯ

Figure 4. Vertical scaling of the FMCRS algorithm.

Algorithm 1 Algorithm for fuzzy-based microservice computing resource scaling (FMCRS)
Initialization:

Edge computing nodes set: Mi = {1, 2, 3, . . . , M}, 0 < i ≤ M;
CPU usage for edge node set: Micpu , i ∈ M;
Memory usage for edge node set: Mimem , i ∈ M;
Microservices set: Ni = {1, 2, 3, . . . , N}, 0 < i ≤ N;
CPU usage for microservice set: Kicpu , i ∈ N;
Memory usage for microservice set: Kimem , i ∈ N;
Gaussian membership function of fuzzy interference system with standard deviation σ and mean
value µ;
microservice scaled CPU extent set: Srcpu = ∅, r ∈ N;
microservice scaled Memory extent set: Srmem = ∅, r ∈ N.

1: For Each microservice i ∈ N Do
2: For each Kicpu and Kimem Do
3: Calculate Gaussian membership values according to (2) and (3), respectively;
4: Optimize Gaussian membership function according to (5), (6), and (7), respectively;
5: Calculate Srcpu and Srmem according to (4);
6: if Srcpu <

(
1−Micpu

)
and Srmem < (1−Mimem) then

7: Run horizontal scaling;
8: else
9: Calculate the priority of microservice according to (8);
10: Run vertical scaling;
11: end if
12: end for
13: end for
Output: Microservices with the scaled computing resources.

Sensors 2021, 21, 3800 12 of 24

4. System Architecture and Implementation

This section presents the system architecture design and implementation in detail. We
describe the conceptual model and representation of the system with various diagrams.
We also show how our proposed platform is physically built and operated.

4.1. System Architecture and Design

We designed and implemented the edge computing microservice management plat-
form prototype from the perspective of the network operator. The platform can provide
network service operators with multiple microservice resource management mechanisms to
achieve the scalability of computing resources. The platform includes a microservice com-
puting resource fuzzy off-loading system. This system can implement functions, such as
resource monitoring and deployment management, under different microservice resource
usage conditions. The platform architecture is illustrated in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 25

Figure 5. The system architecture of the fuzzy-based microservice resource management platform
for edge computing.

In the designed platform system architecture, the orchestrator is responsible for the
centralized resource management of the entire edge computing network environment. It
provides the most basic centralized operations for each microservice, including resource
allocation, service deployment, and microservice status adjustment. The resource monitor
module contains a variety of microservice operating status detection programs to collect
the operating statuses of microservices, including connection, network delay, and compu-
ting resource occupancy statuses. When the cloud computing network deploys micro-
services to the edge computing nodes in accordance with the client’s requirements, the
resource monitor on the platform monitors the status of each edge computing node in
real-time.

The FMCRS offload system module is responsible for the allocation and management
of the computing resources of each microservice. The designed algorithm is implemented
in this module. This algorithm adjusts the edge network on the basis of the collected data
and triggers the execution control module to issue resource adjustment rules and operat-
ing instructions to each edge computing node. The lower layer in the platform architecture
diagram shows the collection of all the edge network’s computing nodes. Each edge com-
puting node runs the microservices required by the cloud computing network. Here, each
microservice has an “agent” responsible for monitoring and receiving data, and then the
aggregator deployed on each edge computing node periodically collects the status of each
microservice and sends it back to the upper data collector. Microservices use a RESTful
API [46] to communicate autonomously with other microservices.

4.2. System Implementation

Figure 5. The system architecture of the fuzzy-based microservice resource management platform
for edge computing.

Our platform refers to the architectures proposed in the MEC architectural docu-
ments [43–45] published by ETSI. We improve the function of resource control by using
lightweight microservice technology and orchestration agent architecture to reduce the
burden of system management. Our platform uses microservices to deploy applications
that can solve the problem of sensitive edge network delay time. Given the independence
and high flexibility of microservices, they can still be replaced with other microservices of
the same nature when a service failure occurs or a software version update is required.

In the designed platform system architecture, the orchestrator is responsible for the
centralized resource management of the entire edge computing network environment. It
provides the most basic centralized operations for each microservice, including resource
allocation, service deployment, and microservice status adjustment. The resource monitor
module contains a variety of microservice operating status detection programs to collect the

Sensors 2021, 21, 3800 13 of 24

operating statuses of microservices, including connection, network delay, and computing
resource occupancy statuses. When the cloud computing network deploys microservices
to the edge computing nodes in accordance with the client’s requirements, the resource
monitor on the platform monitors the status of each edge computing node in real-time.

The FMCRS offload system module is responsible for the allocation and management
of the computing resources of each microservice. The designed algorithm is implemented
in this module. This algorithm adjusts the edge network on the basis of the collected
data and triggers the execution control module to issue resource adjustment rules and
operating instructions to each edge computing node. The lower layer in the platform
architecture diagram shows the collection of all the edge network’s computing nodes. Each
edge computing node runs the microservices required by the cloud computing network.
Here, each microservice has an “agent” responsible for monitoring and receiving data, and
then the aggregator deployed on each edge computing node periodically collects the status
of each microservice and sends it back to the upper data collector. Microservices use a
RESTful API [46] to communicate autonomously with other microservices.

4.2. System Implementation

To verify the effectiveness of our proposed microservice resource management plat-
form prototype for edge computing, the designed management platform was implemented
on Xen servers. Tables 2 and 3 provide the hardware and software specifications of the
proposed fuzzy-based microservice resource management platform. We implemented our
system with Python and Java programming language.

Table 2. Hardware specifications of the implemented fuzzy-based microservice resource management
platform for edge computing.

Hardware Specification
Server Manufacturer/Model Dell/PowerEdge R1415

CPU AMD Opteron™ Processor 4280
Memory DDR-3 1333 32 GB

Disk Storage WD20EARX 2.0 TB

Network Inference Card Broadcom Corporation NetXtreme II
BCM5716 Gigabit Ethernet

Server Operating System Ubuntu 16.04.4
Edge Computing Nodes Computer Raspberry Pi 3

Edge Node Sensing Device On-Board Diagnostics (OBD) Connector

Table 3. Software specifications of the implemented fuzzy-based microservice resource management
platform for edge computing.

Software Specification
Resource Monitoring Database Prometheus 1.8.2

TCP/HTTP Load Balancer HA Proxy 1.4.27
Network Performance Measurement and Tuning Iperf 3.1.3

Application Server Nginx 1.13.6
Database Server PostgreSQL 9.1

We implemented two resource management mechanisms in the designed edge com-
puting microservice resource management platform prototype. The purpose was to realize
the resource utilization of microservices and reduce resource consumption. For example,
the resource detection and scaling mechanisms in the platform aim to detect the load
situation of the computing resources of microservices in time and realize the automatic
expansion function of computing resources. The purpose of the resource adjustment mech-
anism is to reduce the consumption of microservice computing resources and improve
the rate of obtaining microservice resources. The aforementioned multiple mechanisms,
combined with the FMCRS algorithm, achieve a high degree of autonomy in system and
microservice management. The implementation methods of each system module and
management mechanism are described in detail in the succeeding sections.

Sensors 2021, 21, 3800 14 of 24

The control module in the resource controller component implements common man-
agement functions for microservices, including deployment, scaling, deletion, and configu-
ration. The control module deploys a microservice with specifications, including whether
the type of microservice is single or expandable. The deployment specifications also include
basic initialization setting instructions and microservice external network communication
ports. Moreover, this module is responsible for providing configuration files that should
be downloaded and executed when a microservice is started. All the configuration files
are stored in the form of YAML scripts. A microservice downloads and executes these
configuration files for normal operation.

The status-collecting module is responsible for collecting and storing data related
to microservices. After the resource controller deploys a microservice, this controller
transmits the status data of the microservice to the status-collecting module through an
agent. cAdvisor can be used as the collection agent for the microservice status data. It
accesses container-based microservices and resources on each node, including CPU usage
and memory usage. In the designed status-collecting module, Prometheus is used to access
each cAdvisor actively. Figure 6 shows the components of the status-collecting module
and the associated external components. Figure 6a presents the flowchart of information
exchange between the status-collecting module and cAdvisor. Figure 6b depicts a diagram
of the internal components of the status-collecting module. As shown in Figure 6b, the
status-collecting module includes three functional components: (1) retrieval is responsible
for capturing data from the target, (2) storage is responsible for accessing data, and (3)
PromQL provides the Prometheus query language component. The status-collecting
module is also built on each edge computing node in the form of microservices, and it
actively collects computing resource measurement data from each node and regularly
records data.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 25

container-based microservices and resources on each node, including CPU usage and
memory usage. In the designed status-collecting module, Prometheus is used to access
each cAdvisor actively. Figure 6 shows the components of the status-collecting module
and the associated external components. Figure 6a presents the flowchart of information
exchange between the status-collecting module and cAdvisor. Figure 6b depicts a diagram
of the internal components of the status-collecting module. As shown in Figure 6b, the
status-collecting module includes three functional components: (1) retrieval is responsible
for capturing data from the target, (2) storage is responsible for accessing data, and (3)
PromQL provides the Prometheus query language component. The status-collecting mod-
ule is also built on each edge computing node in the form of microservices, and it actively
collects computing resource measurement data from each node and regularly records
data.

(a) (b)

Figure 6. Components of the status-collecting module and the associated external components. (a) Flowchart of infor-
mation exchange between the status-collecting module and cAdvisor; (b) diagram of the internal components of the status-
collecting module.

We implemented the designed FMCRS algorithm in the FMCRS fuzzy offload system
and requested the resource controller to adjust the corresponding resources of the com-
puting nodes in the edge computing network. The FMCRS algorithm has four important
computing mechanisms: a fuzzy inference system, optimization of the fuzzy system, hor-
izontal scaling, and vertical scaling. These four computing mechanisms are implemented
in the service detecting and scaling modules. These modules periodically read the status-
collecting module data to obtain the latest status of microservices running on each edge
computing node. Then, the FMCRS algorithm is automatically executed in accordance
with the status of the microservices to adjust the resource usage requirements of the mi-
croservices and achieve the efficient use of resources.

The status-collecting module receives the service functions and status data of each
microservice every second and then sends these status data to the service-detecting mod-
ule. The latter analyzes the CPU and memory usages of microservices to calculate the
probability of expanding their computing resources. The calculation method for the CPU
and memory usages of the microservice is provided in Equation (9), where μ ()scpu y and

μ ()smemory y denotes the CPU usage and memory usage of microservices on the edge

Figure 6. Components of the status-collecting module and the associated external components. (a) Flowchart of information
exchange between the status-collecting module and cAdvisor; (b) diagram of the internal components of the status-
collecting module.

We implemented the designed FMCRS algorithm in the FMCRS fuzzy offload sys-
tem and requested the resource controller to adjust the corresponding resources of the
computing nodes in the edge computing network. The FMCRS algorithm has four impor-
tant computing mechanisms: a fuzzy inference system, optimization of the fuzzy system,

Sensors 2021, 21, 3800 15 of 24

horizontal scaling, and vertical scaling. These four computing mechanisms are imple-
mented in the service detecting and scaling modules. These modules periodically read
the status-collecting module data to obtain the latest status of microservices running on
each edge computing node. Then, the FMCRS algorithm is automatically executed in
accordance with the status of the microservices to adjust the resource usage requirements
of the microservices and achieve the efficient use of resources.

The status-collecting module receives the service functions and status data of each
microservice every second and then sends these status data to the service-detecting module.
The latter analyzes the CPU and memory usages of microservices to calculate the probability
of expanding their computing resources. The calculation method for the CPU and memory
usages of the microservice is provided in Equation (9), where cpuµs(y) and memoryµs(y)
denotes the CPU usage and memory usage of microservices on the edge computing nodes.
cpunode(x) and memorynode(x) are the available CPU and memory usages of the edge
computing nodes.

The service scaling module dynamically adjusts the number of microservices based
on user needs and the calculation results of the service detection module to maintain the
quality of service of the computing system and reduce the deployment cost of network
service providers. This module calculates the number of additional microservices that are
required to be deployed on the basis of the resource usage of microservices in real-time
and then sends the results to the deployment module in the resource controller component
to filter new edge computing nodes for the corresponding microservice deployment. When
the external cloud network accesses the computing nodes in the edge network, the load
balancer delivers the computing services to the corresponding microservices.

CPUusage =
cpuµs(y)

cpunode(x) ,

Memoryusage =
memoryµs(y)

memorynode(x) ,
where 0 < x ≤ node quantity, and 0 < y ≤ microservice quantity.

(9)

5. System Evaluation and Results

To verify that the platform we designed can be effectively applied in the edge comput-
ing environment of the Internet of Things, we examined the use case of Internet of Vehicles
(IoV) cloud computing, with edge computing as the experimental performance analysis
environment. The experimental system architecture diagram is shown in Figure 7. The IoV
cloud computing platform consists of various database servers and application servers.
These application servers provide various IoV application services for connected vehicles,
such as driving behavior analysis and prediction, predictive maintenance, safe driving navi-
gation, UBI insurance, etc. The IoV edge computing network comprises multiple connected
motorcycles. Each motorcycle is an edge computing node implemented with an on-board
diagnostics (OBD) connector and a Raspberry Pi minicomputer. OBD connectors collect
vehicle condition data and driving behavior data. There are more than 30 types of data
collected, including vehicle speed, driving distance, engine revolutions per minute (RPM),
fuel consumption, intake air temperature, etc. The OBD connector transfers the collected
data to the Raspberry Pi mini-computer via Bluetooth. The Raspberry Pi mini-computer
then transmits the collected data to the IoV cloud platform via the wireless network.

Sensors 2021, 21, 3800 16 of 24Sensors 2021, 21, x FOR PEER REVIEW 17 of 25

Figure 7. Experiment evaluation system architecture.

5.1. Experiment 1: Microservice Deployment Time on the Designed Platform
This experiment was used to test the time required to deploy different types of mi-

croservices on the designed platform. We divided the necessary services of IoV applica-
tions into various types of microservices and then deployed them on each computing node
in the edge computing network to test the deployment time of these microservices. The
microservices have 11 types, i.e., three types of database microservices and eight types of
website core function microservices. These microservices are as follows: carts, carts-db,
catalogue, front-end, pay, rabbit, queue, order-db, order, user-db, and the user.

The deployment of all the microservices consists of three steps: scheduling, pulling,
and establishment. In the scheduling phase, the microservices are allocated to the corre-
sponding computing nodes of the edge network in accordance with the deployment algo-
rithm. The pulling phase pulls down the Docker images of various microservices from the
Docker repository to each computing node. During the establishment phase, some basic
functions and configurations are configured to the microservices. The first two of the three
stages take a longer time because the microservice deployment algorithm in the schedul-
ing phase analyzes the resource requirements of each microservice and the available re-
sources of each computing node to determine the deployment location of a microservice.
In the pulling phase, the size of the Docker image of a microservice affects the download
time. The larger the Docker image of a microservice, the longer the pulling time. Com-
pared with the first two stages, the establishment time of microservices is relatively stable
because only the basic parameters of the microservice startup should be initialized, and
thus, the establishment time of each microservice does not differ considerably. As shown
in Figure 8, regardless of which microservice is deployed on the designed microservice
resource management platform, the process can be completed within 10 s. Thus, our plat-
form can quickly deploy various microservices in an edge computing network.

Figure 7. Experiment evaluation system architecture.

The collected data volume is extremely large since the OBD connectors collect vehicle
condition data and driving behavior data per second. To reduce the amount of data sent to
the cloud platform, reduce the cost of cloud computing, and reduce the delays in application
services, we performed edge computing on the Raspberry Pi mini-computer installed on
the motorcycle. We deployed some application microservices of the cloud computing
platform on the raspberry pi mini-computer of the motorcycle. These microservices can
perform filtering, cleaning, and preprocessing of big data, and then send the preprocessed
results to the IoV cloud computing platform. Six experiments were conducted on the
basis of the implemented microservice resource management platform in such an IoV
cloud/edge computing network, and the performance of FMCRS was compared with a
state-of-the-art microservice scaling management method.

We conducted a series of experiments in six scenarios to examine the performance
of our proposed microservice resource management method from three aspects. Experi-
ments 1 to 3 aimed to verify that some necessary microservice computing resource man-
agement functionalities were able to be realized on the platform we designed. Experiments
4 and 5 were designed to test the performance of the proposed horizontal and vertical
scaling mechanism. Experiment 6 compared the performance of the FMCRS mechanism
and the Kubernetes auto-scaling mechanism in the stress test.

5.1. Experiment 1: Microservice Deployment Time on the Designed Platform

This experiment was used to test the time required to deploy different types of mi-
croservices on the designed platform. We divided the necessary services of IoV applications
into various types of microservices and then deployed them on each computing node in
the edge computing network to test the deployment time of these microservices. The
microservices have 11 types, i.e., three types of database microservices and eight types of
website core function microservices. These microservices are as follows: carts, carts-db,
catalogue, front-end, pay, rabbit, queue, order-db, order, user-db, and the user.

The deployment of all the microservices consists of three steps: scheduling, pulling,
and establishment. In the scheduling phase, the microservices are allocated to the cor-
responding computing nodes of the edge network in accordance with the deployment
algorithm. The pulling phase pulls down the Docker images of various microservices from
the Docker repository to each computing node. During the establishment phase, some
basic functions and configurations are configured to the microservices. The first two of
the three stages take a longer time because the microservice deployment algorithm in

Sensors 2021, 21, 3800 17 of 24

the scheduling phase analyzes the resource requirements of each microservice and the
available resources of each computing node to determine the deployment location of a
microservice. In the pulling phase, the size of the Docker image of a microservice affects the
download time. The larger the Docker image of a microservice, the longer the pulling time.
Compared with the first two stages, the establishment time of microservices is relatively
stable because only the basic parameters of the microservice startup should be initialized,
and thus, the establishment time of each microservice does not differ considerably. As
shown in Figure 8, regardless of which microservice is deployed on the designed microser-
vice resource management platform, the process can be completed within 10 s. Thus, our
platform can quickly deploy various microservices in an edge computing network.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 25

Figure 8. Microservice deployment time on the designed fuzzy-based microservice resource man-
agement platform.

5.2. Experiment 2: Computing Resource Scaling Time of Microservices
This experiment was used to test the time it takes to scale up and down different

numbers of microservice computing resources on the designed platform. We tested the
time required to scale up and down one to 20 microservices. As shown in Figure 9, given
that we scaled up the resources of the microservices in a parallel manner, the time to ex-
pand two microservices was not two times but was extremely close to the time of expand-
ing one microservice. In this manner, the time spent on scaling up microservice resources
was considerably reduced.

Figure 9. Computing resource scaling time of microservices on the designed fuzzy-based micro-
service resource management platform.

When microservices require the scaling down of resources, the time required to re-
duce a microservice resource is not equal to the time required to expand a microservice.
Moreover, it may even be four to five times the time required to scale up resources. Sim-
ultaneously scaling down the resources of 20 microservices takes more than 1 min because
our system management platform does not forcefully delete microservices directly. In-
stead, the system adopts a sophisticated microservice termination process. In this process,
microservices can be terminated and restarted at any time in a decentralized computing
environment. When ending and restarting, however, microservices on edge computing

Figure 8. Microservice deployment time on the designed fuzzy-based microservice resource manage-
ment platform.

5.2. Experiment 2: Computing Resource Scaling Time of Microservices

This experiment was used to test the time it takes to scale up and down different
numbers of microservice computing resources on the designed platform. We tested the time
required to scale up and down one to 20 microservices. As shown in Figure 9, given that
we scaled up the resources of the microservices in a parallel manner, the time to expand
two microservices was not two times but was extremely close to the time of expanding
one microservice. In this manner, the time spent on scaling up microservice resources was
considerably reduced.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 25

Figure 8. Microservice deployment time on the designed fuzzy-based microservice resource man-
agement platform.

5.2. Experiment 2: Computing Resource Scaling Time of Microservices
This experiment was used to test the time it takes to scale up and down different

numbers of microservice computing resources on the designed platform. We tested the
time required to scale up and down one to 20 microservices. As shown in Figure 9, given
that we scaled up the resources of the microservices in a parallel manner, the time to ex-
pand two microservices was not two times but was extremely close to the time of expand-
ing one microservice. In this manner, the time spent on scaling up microservice resources
was considerably reduced.

Figure 9. Computing resource scaling time of microservices on the designed fuzzy-based micro-
service resource management platform.

When microservices require the scaling down of resources, the time required to re-
duce a microservice resource is not equal to the time required to expand a microservice.
Moreover, it may even be four to five times the time required to scale up resources. Sim-
ultaneously scaling down the resources of 20 microservices takes more than 1 min because
our system management platform does not forcefully delete microservices directly. In-
stead, the system adopts a sophisticated microservice termination process. In this process,
microservices can be terminated and restarted at any time in a decentralized computing
environment. When ending and restarting, however, microservices on edge computing

Figure 9. Computing resource scaling time of microservices on the designed fuzzy-based microservice
resource management platform.

Sensors 2021, 21, 3800 18 of 24

When microservices require the scaling down of resources, the time required to re-
duce a microservice resource is not equal to the time required to expand a microservice.
Moreover, it may even be four to five times the time required to scale up resources. Simul-
taneously scaling down the resources of 20 microservices takes more than 1 min because
our system management platform does not forcefully delete microservices directly. In-
stead, the system adopts a sophisticated microservice termination process. In this process,
microservices can be terminated and restarted at any time in a decentralized computing en-
vironment. When ending and restarting, however, microservices on edge computing nodes
must first refuse to accept the service requirements of new users, and then microservices are
terminated after the previously processed computing requirements are executed. Therefore,
when microservices perform resource scaling down on our platform, they experience an
exit time of a preset termination period.

The results of the experiment also proved that the time it took one microservice to scale
up computing resources was 2.7 s on our platform. The time it took to scale up resources
for 20 microservices simultaneously was 12.6 s. The scaling-down time of resources for
one microservice was 18.1 s, and that for 20 microservices simultaneously was 62.3 s. The
designed microservice resource management platform system displays the capability to
process the scaling up and down of microservice computing resources rapidly in an IoV
edge computing network environment with relatively insufficient computing resources.

5.3. Experiment 3: Computing Resource Monitoring of Edge Computing Nodes and Microservices

This experiment aimed to verify that the designed platform can monitor the computing
performance status of each computing node in an edge computing network and each
microservice running on that node in real time. In this experiment, we used the open-
source project Prometheus and deployed microservices on each edge computing node.
We preinstalled an export program on each computing node, as shown in Figure 10.
Through these export programs, the real-time collection of microservices on computing
nodes and node resource performance data were stored in time in the created micro
database. Therefore, the system administrator or user of our platform can obtain the
latest computing resource performance status information by accessing only the database
through the PromQL syntax. Our platform also uses the Grafana which is an open-source
composable data visualization software package to deploy the collected computing resource
performance status information on the webserver, enabling users to query it conveniently
as a reference for microservice computing resource management.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 25

nodes must first refuse to accept the service requirements of new users, and then micro-
services are terminated after the previously processed computing requirements are exe-
cuted. Therefore, when microservices perform resource scaling down on our platform,
they experience an exit time of a preset termination period.

The results of the experiment also proved that the time it took one microservice to
scale up computing resources was 2.7 s on our platform. The time it took to scale up re-
sources for 20 microservices simultaneously was 12.6 s. The scaling-down time of re-
sources for one microservice was 18.1 s, and that for 20 microservices simultaneously was
62.3 s. The designed microservice resource management platform system displays the ca-
pability to process the scaling up and down of microservice computing resources rapidly
in an IoV edge computing network environment with relatively insufficient computing
resources.

5.3. Experiment 3: Computing Resource Monitoring of Edge Computing Nodes and
Microservices

This experiment aimed to verify that the designed platform can monitor the compu-
ting performance status of each computing node in an edge computing network and each
microservice running on that node in real time. In this experiment, we used the open-
source project Prometheus and deployed microservices on each edge computing node.
We preinstalled an export program on each computing node, as shown in Figure 10.
Through these export programs, the real-time collection of microservices on computing
nodes and node resource performance data were stored in time in the created micro data-
base. Therefore, the system administrator or user of our platform can obtain the latest
computing resource performance status information by accessing only the database
through the PromQL syntax. Our platform also uses the Grafana which is an open-source
composable data visualization software package to deploy the collected computing re-
source performance status information on the webserver, enabling users to query it con-
veniently as a reference for microservice computing resource management.

Figure 10. Computing resource monitoring architecture of the fuzzy-based microservice resource
management platform.

Figure 11 presents the results of the real-time monitoring of the CPU and memory
resource statuses of the five microservices in this experiment. Figure 12 illustrates the re-
sults of the real-time monitoring of the CPU and memory resource statuses of the three
computing nodes in the edge computing network in this experiment. The results of this

Figure 10. Computing resource monitoring architecture of the fuzzy-based microservice resource
management platform.

Sensors 2021, 21, 3800 19 of 24

Figure 11 presents the results of the real-time monitoring of the CPU and memory re-
source statuses of the five microservices in this experiment. Figure 12 illustrates the results
of the real-time monitoring of the CPU and memory resource statuses of the three comput-
ing nodes in the edge computing network in this experiment. The results of this experiment
indicated that the designed platform can immediately detect the performance status of the
computing resources of each computing node and microservice in the edge computing
network, providing a basis for the dynamic resource management of the FMCRS algorithm.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 25

experiment indicated that the designed platform can immediately detect the performance
status of the computing resources of each computing node and microservice in the edge
computing network, providing a basis for the dynamic resource management of the
FMCRS algorithm.

(a) (b)

Figure 11. Computing usage of microservices monitored on the designed platform. (a) CPU usages of five microservices
monitored. (b) Memory usages of five microservices monitored.

(a) (b)

Figure 12. Computing usage of edge nodes monitored on the designed platform. (a) CPU usages of three edge computing
nodes monitored. (b) Memory usages of three edge computing nodes monitored.

5.4. Experiment 4: Horizontal Scaling of Microservices
This experiment was a continuation of the previous experiment to verify that the de-

signed platform can quickly expand new microservices horizontally when it detects that
microservices require resource expansion. The designed platform has a microservice de-
tection mechanism. Thus, when it detects that the computing resource load of a certain
microservice is too high and will trigger a resource expansion, the designed FMCRS algo-
rithm can calculate the extent of resources that need to be expanded and starts a new mi-
croservice during the time when microservices off-load the computation of microservices
that were originally overloaded.

As shown in Figure 13, our platform detected that the load of the microservice called
“Tiller Deploying” was too high at the 14th second, and thus, it calculated the number of
expanded microservices through the FMCRS algorithm. Thereafter, the FMCRS algorithm
started a new microservice at the 17th second to share the computing traffic of micro-
services that originally required resource expansion. In accordance with the experimental
results, the designed platform can thus detect the resource status of microservices in time
and quickly expand the computing resources of microservices horizontally.

Figure 11. Computing usage of microservices monitored on the designed platform. (a) CPU usages of five microservices
monitored. (b) Memory usages of five microservices monitored.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 25

experiment indicated that the designed platform can immediately detect the performance
status of the computing resources of each computing node and microservice in the edge
computing network, providing a basis for the dynamic resource management of the
FMCRS algorithm.

(a) (b)

Figure 11. Computing usage of microservices monitored on the designed platform. (a) CPU usages of five microservices
monitored. (b) Memory usages of five microservices monitored.

(a) (b)

Figure 12. Computing usage of edge nodes monitored on the designed platform. (a) CPU usages of three edge computing
nodes monitored. (b) Memory usages of three edge computing nodes monitored.

5.4. Experiment 4: Horizontal Scaling of Microservices
This experiment was a continuation of the previous experiment to verify that the de-

signed platform can quickly expand new microservices horizontally when it detects that
microservices require resource expansion. The designed platform has a microservice de-
tection mechanism. Thus, when it detects that the computing resource load of a certain
microservice is too high and will trigger a resource expansion, the designed FMCRS algo-
rithm can calculate the extent of resources that need to be expanded and starts a new mi-
croservice during the time when microservices off-load the computation of microservices
that were originally overloaded.

As shown in Figure 13, our platform detected that the load of the microservice called
“Tiller Deploying” was too high at the 14th second, and thus, it calculated the number of
expanded microservices through the FMCRS algorithm. Thereafter, the FMCRS algorithm
started a new microservice at the 17th second to share the computing traffic of micro-
services that originally required resource expansion. In accordance with the experimental
results, the designed platform can thus detect the resource status of microservices in time
and quickly expand the computing resources of microservices horizontally.

Figure 12. Computing usage of edge nodes monitored on the designed platform. (a) CPU usages of three edge computing
nodes monitored. (b) Memory usages of three edge computing nodes monitored.

5.4. Experiment 4: Horizontal Scaling of Microservices

This experiment was a continuation of the previous experiment to verify that the
designed platform can quickly expand new microservices horizontally when it detects
that microservices require resource expansion. The designed platform has a microservice
detection mechanism. Thus, when it detects that the computing resource load of a certain
microservice is too high and will trigger a resource expansion, the designed FMCRS
algorithm can calculate the extent of resources that need to be expanded and starts a new
microservice during the time when microservices off-load the computation of microservices
that were originally overloaded.

As shown in Figure 13, our platform detected that the load of the microservice called
“Tiller Deploying” was too high at the 14th second, and thus, it calculated the number of
expanded microservices through the FMCRS algorithm. Thereafter, the FMCRS algorithm
started a new microservice at the 17th second to share the computing traffic of microservices
that originally required resource expansion. In accordance with the experimental results,

Sensors 2021, 21, 3800 20 of 24

the designed platform can thus detect the resource status of microservices in time and
quickly expand the computing resources of microservices horizontally.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 25

Figure 13. Horizontal scaling of a microservice on the designed platform.

5.5. Experiment 5: Vertical Scaling of Microservices
This experiment verified that the designed FMCRS algorithm can vertically expand

the computing resources of microservices. When the load of a computing node in an edge
computing network is excessively high, the designed platform detects the abnormal state
of the computing node’s resource usage in time and compares the priority of the compu-
ting node with the computing logic in our algorithm. Low microservices are removed
from the computing node and migrated to other edge computing nodes with a lower load.

Figure 14 present the results of this experiment. In Figure 14a, the 11 microservices
in Experiment 1 were originally running on computing node 12 of the edge network.
However, given that the computing load of node 12 was excessively high, the FMCRS
algorithm migrated two microservices (carts and payment) with lower priority to compu-
ting nodes 14 and 15, which had lower loads. Figure 14b illustrates the vertical scaling of
microservice computing resources, i.e., the result of migrating to other computing nodes.
Therefore, this experiment verified that the designed platform can effectively realize the
rapid vertical scaling of microservice computing resources.

(a)

(b)

Figure 14. Vertical scaling of the FMCRS algorithm. (a) Microservice status before applying vertical scaling of the FMCRS
algorithm. (b) Microservice status after applying vertical scaling of the FMCRS algorithm.

Figure 13. Horizontal scaling of a microservice on the designed platform.

5.5. Experiment 5: Vertical Scaling of Microservices

This experiment verified that the designed FMCRS algorithm can vertically expand
the computing resources of microservices. When the load of a computing node in an edge
computing network is excessively high, the designed platform detects the abnormal state of
the computing node’s resource usage in time and compares the priority of the computing
node with the computing logic in our algorithm. Low microservices are removed from the
computing node and migrated to other edge computing nodes with a lower load.

Figure 14 present the results of this experiment. In Figure 14a, the 11 microservices in
Experiment 1 were originally running on computing node 12 of the edge network. However,
given that the computing load of node 12 was excessively high, the FMCRS algorithm
migrated two microservices (carts and payment) with lower priority to computing nodes
14 and 15, which had lower loads. Figure 14b illustrates the vertical scaling of microservice
computing resources, i.e., the result of migrating to other computing nodes. Therefore, this
experiment verified that the designed platform can effectively realize the rapid vertical
scaling of microservice computing resources.

5.6. Experiment 6: Comparison of Microservice Computing Resource Scaling

This experiment compared the efficiency of the designed FMCRS microservice re-
source management method with that of another cloud microservice resource management
method, namely, Kubernetes auto-scaling. In this experiment, we applied JMeter which is
an open-source software designed used to design load test functional behavior and measure
performance to simulate a large number of edge node users accessing the cloud computing
platform simultaneously. We used JMeter’s stepping thread group mode to send HTTP
requests to the IoV application server. JMeter provides the interface of the dashboard to
allow users to view the analysis results, such as network traffic. We implemented two
resource management algorithms, namely, the designed FMCRS scaling and Kubernetes
auto-scaling, on the microservice resource management platform and compared their
performance. The parameters of the experimental environment are provided in Table 4.
The initial number of microservices was one, and the maximum number of microservices
deployed on the platform was 20. The total experiment time was 960 s, and JMeter’s service
rate was updated every 180 s. In Figure 15, the X-axis is the experiment time, the Y-axis is
the number of microservices, and the secondary axis of the Y-axis is the pressure of the IoV
application server’s access demand, that is, the request rate (bits/s). The blue line shows
the change in demand for simultaneous access services received by the servers over time.

Sensors 2021, 21, 3800 21 of 24

Sensors 2021, 21, x FOR PEER REVIEW 21 of 25

Figure 13. Horizontal scaling of a microservice on the designed platform.

5.5. Experiment 5: Vertical Scaling of Microservices
This experiment verified that the designed FMCRS algorithm can vertically expand

the computing resources of microservices. When the load of a computing node in an edge
computing network is excessively high, the designed platform detects the abnormal state
of the computing node’s resource usage in time and compares the priority of the compu-
ting node with the computing logic in our algorithm. Low microservices are removed
from the computing node and migrated to other edge computing nodes with a lower load.

Figure 14 present the results of this experiment. In Figure 14a, the 11 microservices
in Experiment 1 were originally running on computing node 12 of the edge network.
However, given that the computing load of node 12 was excessively high, the FMCRS
algorithm migrated two microservices (carts and payment) with lower priority to compu-
ting nodes 14 and 15, which had lower loads. Figure 14b illustrates the vertical scaling of
microservice computing resources, i.e., the result of migrating to other computing nodes.
Therefore, this experiment verified that the designed platform can effectively realize the
rapid vertical scaling of microservice computing resources.

(a)

(b)

Figure 14. Vertical scaling of the FMCRS algorithm. (a) Microservice status before applying vertical scaling of the FMCRS
algorithm. (b) Microservice status after applying vertical scaling of the FMCRS algorithm.

Figure 14. Vertical scaling of the FMCRS algorithm. (a) Microservice status before applying vertical scaling of the FMCRS
algorithm. (b) Microservice status after applying vertical scaling of the FMCRS algorithm.

Table 4. Parameter settings in experiment 6.

Attributes Values
Initial Microservice Instance 1

Maximum Microservice Experiment Time 20
Experiment Time 960 s

HTTP Request Rate Update Frequency 180 s
Maximum HTTP Request Rate 1000 bits/s

CPU Loading High Alarm Threshold 80%
Memory Loading High Alarm Threshold 80%

Sensors 2021, 21, x FOR PEER REVIEW 22 of 25

5.6. Experiment 6: Comparison of Microservice Computing Resource Scaling
This experiment compared the efficiency of the designed FMCRS microservice re-

source management method with that of another cloud microservice resource manage-
ment method, namely, Kubernetes auto-scaling. In this experiment, we applied JMeter
which is an open-source software designed used to design load test functional behavior
and measure performance to simulate a large number of edge node users accessing the
cloud computing platform simultaneously. We used JMeter’s stepping thread group
mode to send HTTP requests to the IoV application server. JMeter provides the interface
of the dashboard to allow users to view the analysis results, such as network traffic. We
implemented two resource management algorithms, namely, the designed FMCRS scal-
ing and Kubernetes auto-scaling, on the microservice resource management platform and
compared their performance. The parameters of the experimental environment are pro-
vided in Table 4. The initial number of microservices was one, and the maximum number
of microservices deployed on the platform was 20. The total experiment time was 960 s,
and JMeter’s service rate was updated every 180 s. In Figure 15, the X-axis is the experi-
ment time, the Y-axis is the number of microservices, and the secondary axis of the Y-axis
is the pressure of the IoV application server’s access demand, that is, the request rate
(bits/s). The blue line shows the change in demand for simultaneous access services re-
ceived by the servers over time.

Table 4. Parameter settings in experiment 6.

Attributes Values
Initial Microservice Instance 1

Maximum Microservice Experiment Time 20
Experiment Time 960 s

HTTP Request Rate Update Frequency 180 s
Maximum HTTP Request Rate 1000 bits/s

CPU Loading High Alarm Threshold 80%
Memory Loading High Alarm Threshold 80%

Figure 15. Comparison of the resource management of microservices between two scaling methods.

We observed that the FMCRS scaling algorithm and the Kubernetes auto-scaling al-
gorithm were able to reflect the demands for the expansion and reduction of microservice
resources on the platform promptly. When the computing load of a microservice CPU or
memory exceeded a high critical value, both algorithms were able to quickly expand mi-
croservice computing resources to achieve the load distribution. However, the resource
expansion response of the Kubernetes auto-scaling algorithm changed drastically. The

Figure 15. Comparison of the resource management of microservices between two scaling methods.

We observed that the FMCRS scaling algorithm and the Kubernetes auto-scaling
algorithm were able to reflect the demands for the expansion and reduction of microservice
resources on the platform promptly. When the computing load of a microservice CPU
or memory exceeded a high critical value, both algorithms were able to quickly expand
microservice computing resources to achieve the load distribution. However, the resource

Sensors 2021, 21, 3800 22 of 24

expansion response of the Kubernetes auto-scaling algorithm changed drastically. The
Kubernetes auto-scaling algorithm suddenly increased the number of scaled microservices
and suddenly shrunk microservices. Kubernetes auto-scaling exhibited drastic changes
in its scaling strategy. In an edge network with limited resources, such changes consume
additional computing resources and affect the stability of the overall computing network.
Compared with Kubernetes auto-scaling, the designed FMCRS scaling method was able to
immediately meet the needs of microservice resource expansion and reduction, and thus,
no drastic change occurred in the microservice resource management strategy. Therefore,
FMCRS scaling is more suitable for the microservice resource management environment in
edge computing networks.

6. Conclusions

In this study, we designed and implemented a prototype of a microservice resource
management platform for edge computing networks. The core of the platform includes a
fuzzy-based microservice computing resource scaling (FMCRS) management algorithm
for microservice resource expansion based on fuzzy theory. This study also introduces
the PSO algorithm for optimizing the fuzzy membership function of the proposed fuzzy
microservice resource management algorithm. In addition, we designed and implemented
two methods for horizontal scaling and vertical scaling in accordance with the available
resources of edge computing network nodes. In this study, we conducted extensive
experiments to verify the effectiveness of the proposed platform and the performance of the
FMCRS algorithm. The results of the experiment proved that the proposed microservice
resource management platform was able to reduce the response time of microservice
resource adjustments and dynamically scale microservices horizontally and vertically.
Moreover, the performance of the proposed FMCRS was similar to that of a currently
widely used cloud computing microservice resource management mechanism, namely,
Kubernetes auto-scaling. However, no dramatic change in the microservice resource
management strategy occurred in FMCRS. FMCRS was able to avoid the sudden surge in
overall network resource allocation, and thus, it is more suitable for the edge computing
microservice management environment. Therefore, the system prototype designed in this
study will provide users of edge computing networks with a new option for meeting the
increasingly complex network application requirements.

In a future study, the proposed microservice resource management platform will be
implemented as a service/software as a service (SaaS) on the various public cloud service
platforms, such as AWS, GCP, and Azure. More IoT edge computing application use cases,
such as smart farming and smart factory, will also be tested on our platform to see what
needs to be improved. We will also study how to combine machine learning and deep
learning models in our FMCRS algorithm to improve the efficiency of microservice resource
management, such as reducing latency and improving the service quality.

Author Contributions: Conceptualization, D.C.L. and C.-T.H.; methodology, C.-T.H.; software,
C.-T.H.; validation, D.C.L., C.-T.H., and C.-W.T.; formal analysis, C.-W.T.; investigation, C.-W.T.;
resources, L.-D.C.; data curation, C.-T.H.; writing—original draft preparation, C.-T.H. and C.-W.T.;
writing—review and editing, D.C.L.; visualization, D.C.L.; supervision, L.-D.C.; project administra-
tion, L.-D.C.; funding acquisition, L.-D.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology (MOST) of Taiwan,
under the contracts MOST 108-2221-E-008-033-MY3, 110-2218-E-415-001-MBK, and 105-2221-E-008-
071-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 3800 23 of 24

References
1. Xhafa, F.; Kilic, B.; Krause, P. Evaluation of IoT stream processing at edge computing layer for semantic data enrichment.

Future Gener. Comput. Syst. 2020, 105, 730–736. [CrossRef]
2. Xhafa, F.; Aly, A.; Juan, A.A. Allocation of applications to Fog resources via semantic clustering techniques: With scenarios from

intelligent transportation systems. Computing 2021, 103, 361–378. [CrossRef]
3. Li, J.; Tan, X.; Chen, X.; Wong, D.S.; Xhafa, F. OPoR: Enabling proof of retrievability in cloud computing with resource-constrained

devices. IEEE Trans. Cloud Comput. 2014, 3, 195–205. [CrossRef]
4. Brunelli, D.; Albanese, A.; d’Acunto, D.; Nardello, M. Energy neutral machine learning based iot device for pest detection in

precision agriculture. IEEE Internet Things Mag. 2019, 2, 10–13. [CrossRef]
5. Poniszewska-Maranda, A.; Kaczmarek, D.; Kryvinska, N.; Xhafa, F. Studying usability of AI in the IoT systems/paradigm

through embedding NN techniques into mobile smart service system. Computing 2019, 101, 1661–1685. [CrossRef]
6. Ferrer, A.J.; Marquès, J.M.; Jorba, J. Towards the decentralised cloud: Survey on approaches and challenges for mobile, ad hoc,

and edge computing. ACM Comput. Surv. 2019, 51, 1–36. [CrossRef]
7. Zhao, H.; Deng, S.; Liu, Z.; Yin, J.; Dustdar, S. Distributed redundancy scheduling for microservice-based applications at the edge.

IEEE Trans. Serv. Comput. 2020, 1. [CrossRef]
8. Li, D.C.; Chen, B.H.; Tseng, C.W.; Chou, L.D. A novel genetic service function deployment management platform for edge

computing. Mob. Inf. Syst. 2020, 2020. [CrossRef]
9. Li, D.C.; Chou, L.D.; Tseng, L.M.; Chen, Y.M.; Kuo, K.W. A bipolar traffic density awareness routing protocol for vehicular ad hoc

networks. Mob. Inf. Syst. 2015, 2015. [CrossRef]
10. Thönes, J. Microservices. IEEE Softw. 2015, 32, 116. [CrossRef]
11. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, today,

and tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer: Cham, Switzerland, 2017;
pp. 195–216. [CrossRef]

12. Di Luccio, D.; Kosta, S.; Castiglione, A.; Maratea, A.; Montella, R. Vessel to shore data movement through the internet of floating
things: A microservice platform at the edge. Concurr. Comput. Pract. Exp. 2021, 33. [CrossRef]

13. Yu, G.; Chen, P.; Zheng, Z. Microscaler: Cost-effective scaling for microservice applications in the cloud with an online learning
approach. IEEE Trans. Cloud Comput. 2020, 1. [CrossRef]

14. Miao, K.; Li, J.; Hong, W.; Chen, M. A microservice-based big data analysis platform for online educational applications.
Sci. Program. 2020, 2020. [CrossRef]

15. Wang, S.; Ding, Z.; Jiang, C. Elastic scheduling for microservice applications in clouds. IEEE Trans. Parallel Distrib. Syst. 2020, 32,
98–115. [CrossRef]

16. Samanta, A.; Tang, J. Dyme: Dynamic microservice scheduling in edge computing enabled IoT. IEEE Internet Things J. 2020, 7,
6164–6174. [CrossRef]

17. Liu, C.C.; Huang, C.C.; Tseng, C.W.; Yang, Y.T.; Chou, L.D. Service resource management in edge computing based on microser-
vices. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11
August 2019; pp. 388–392.

18. Jamshidi, P.; Pahl, C.; Mendonça, N.C.; Lewis, J.; Tilkov, S. Microservices: The journey so far and challenges ahead. IEEE Softw.
2018, 35, 24–35. [CrossRef]

19. Esposito, C.; Castiglione, A.; Choo, K.K.R. Challenges in delivering software in the cloud as microservices. IEEE Cloud Comput.
2016, 3, 10–14. [CrossRef]

20. Baškarada, S.; Nguyen, V.; Koronios, A. Architecting microservices: Practical opportunities and challenges. J. Comput. Inf. Syst.
2020, 60, 428–436. [CrossRef]

21. Tseng, F.H.; Tsai, M.S.; Tseng, C.W.; Yang, Y.T.; Liu, C.C.; Chou, L.D. A lightweight autoscaling mechanism for fog computing in
industrial applications. IEEE Trans. Ind. Inform. 2018, 14, 4529–4537. [CrossRef]

22. Xu, J.; Chen, L.; Ren, S. Online learning for offloading and autoscaling in energy harvesting mobile edge computing. IEEE Trans.
Cogn. Commun. Netw. 2017, 3, 361–373. [CrossRef]

23. Srirama, S.N.; Adhikari, M.; Paul, S. Application deployment using containers with auto-scaling for microservices in cloud
environment. J. Netw. Comput. Appl. 2020, 160, 102629. [CrossRef]

24. Qu, C.; Calheiros, R.N.; Buyya, R. Auto-scaling web applications in clouds: A taxonomy and survey. ACM Comput. Surv. 2018, 51,
1–33. [CrossRef]

25. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the internet of things.
IEEE Access 2017, 6, 6900–6919. [CrossRef]

26. Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2017, 5,
439–449. [CrossRef]

27. Li, H.X.; Shou, G.C.; Hu, Y.H.; Guo, Z.G. Mobile edge computing: Progress and challenges. In Proceedings of the 2016 4th IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 29 March–1 April
2016; pp. 83–84. [CrossRef]

28. Ghezzi, A.; Balocco, R.; Rangone, A. A fuzzy framework assessing corporate resource management for the mobile content
industry. Technol. Forecast. Soc. Chang. 2015, 96, 153–172. [CrossRef]

http://doi.org/10.1016/j.future.2019.12.031
http://doi.org/10.1007/s00607-020-00867-w
http://doi.org/10.1109/TCC.2014.2366148
http://doi.org/10.1109/IOTM.0001.1900037
http://doi.org/10.1007/s00607-018-0680-z
http://doi.org/10.1145/3243929
http://doi.org/10.1109/TSC.2020.3013600
http://doi.org/10.1155/2020/8830294
http://doi.org/10.1155/2015/401518
http://doi.org/10.1109/MS.2015.11
http://doi.org/10.1007/978-3-319-67425-4_12
http://doi.org/10.1002/cpe.5988
http://doi.org/10.1109/TCC.2020.2985352
http://doi.org/10.1155/2020/6929750
http://doi.org/10.1109/TPDS.2020.3011979
http://doi.org/10.1109/JIOT.2020.2981958
http://doi.org/10.1109/MS.2018.2141039
http://doi.org/10.1109/MCC.2016.105
http://doi.org/10.1080/08874417.2018.1520056
http://doi.org/10.1109/TII.2018.2799230
http://doi.org/10.1109/TCCN.2017.2725277
http://doi.org/10.1016/j.jnca.2020.102629
http://doi.org/10.1145/3148149
http://doi.org/10.1109/ACCESS.2017.2778504
http://doi.org/10.1109/JIOT.2017.2767608
http://doi.org/10.1109/MobileCloud.2016.16
http://doi.org/10.1016/j.techfore.2015.01.004

Sensors 2021, 21, 3800 24 of 24

29. Toczé, K.; Nadjm-Tehrani, S. A taxonomy for management and optimization of multiple resources in edge computing.
Wirel. Commun. Mob. Comput. 2018, 2018. [CrossRef]

30. Jin, W.; Xu, R.; Lim, S.; Park, D.H.; Park, C.; Kim, D. Dynamic inference approach based on rules engine in intelligent edge
computing for building environment control. Sensors 2021, 21, 630. [CrossRef] [PubMed]

31. Taherizadeh, S.; Stankovski, V. Auto-scaling applications in edge computing: Taxonomy and challenges. In Proceedings of the
International Conference on Big Data and Internet of Thing, London, UK, 20–22 December 2017; pp. 158–163.

32. Qu, Q.; Xu, R.; Nikouei, S.Y.; Chen, Y. An experimental study on microservices based edge computing platforms. In Proceedings
of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON,
Canada, 6–9 July 2020; pp. 836–841.

33. Gand, F.; Fronza, I.; El Ioini, N.; Barzegar, H.R.; Pahl, C. Serverless Container Cluster Management for Lightweight Edge Clouds.
In Proceedings of the 10th International Conference on Cloud Computing and Services Science, CLOSER 2020, Prague, Czech
Republic, 7–9 May 2020; pp. 302–311.

34. Taherizadeh, S.; Stankovski, V.; Grobelnik, M. A capillary computing architecture for dynamic internet of things: Orchestration of
microservices from edge devices to fog and cloud providers. Sensors 2018, 18, 2938. [CrossRef] [PubMed]

35. Alam, M.; Rufino, J.; Ferreira, J.; Ahmed, S.H.; Shah, N.; Chen, Y. Orchestration of microservices for IoT using docker and edge
computing. IEEE Commun. Mag. 2018, 56, 118–123. [CrossRef]

36. Yan, L.; Cao, S.; Gong, Y.; Han, H.; Wei, J.; Zhao, Y.; Yang, S. SatEC: A 5G satellite edge computing framework based on
microservice architecture. Sensors 2019, 19, 831. [CrossRef]

37. Forestiero, A.; Mastroianni, C.; Papuzzo, G.; Spezzano, G. A proximity-based self-organizing framework for service composition
and discovery. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
Melbourne, Australia, 17–20 May 2010; pp. 428–437. [CrossRef]

38. Cicconetti, C.; Conti, M.; Passarella, A.; Sabella, D. Toward distributed computing environments with serverless solutions in edge
systems. IEEE Commun. Mag. 2020, 58, 40–46. [CrossRef]

39. Pallewatta, S.; Kostakos, V.; Buyya, R. Microservices-based IoT application placement within heterogeneous and resource
constrained fog computing environments. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, Auckland, New Zealand, 2–5 December 2019; pp. 71–81.

40. Zimmermann, H.J. Fuzzy sets–basic definitions. In Fuzzy Set Theory—and Its Applications, 4th ed.; Springer: Dordrecht, The
Netherlands, 2011; pp. 11–16.

41. Pieczyński, A.; Obuchowicz, A. Application of the general Gaussian membership function for the fuzzy model parameters
tunning. In Artificial Intelligence and Soft Computing—ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science; Rutkowski, L.,
Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3070. [CrossRef]

42. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural
networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

43. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey of the emerging 5G
network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [CrossRef]

44. Giust, F.; Costa-Perez, X.; Reznik, A. Multi-access edge computing: An overview of ETSI MEC ISG. IEEE 5G Tech. Focus 2017, 1, 4.
45. Sabella, D.; Vaillant, A.; Kuure, P.; Rauschenbach, U.; Giust, F. Mobile-edge computing architecture: The role of MEC in the

internet of things. IEEE Consum. Electron. Mag. 2016, 5, 84–91. [CrossRef]
46. Gao, L.; Zhang, C.; Sun, L. RESTful web of things API in sharing sensor data. In Proceedings of the 2011 International Conference

on Internet Technology and Applications, Wuhan, China, 16–18 August 2011; pp. 1–4.

http://doi.org/10.1155/2018/7476201
http://doi.org/10.3390/s21020630
http://www.ncbi.nlm.nih.gov/pubmed/33477481
http://doi.org/10.3390/s18092938
http://www.ncbi.nlm.nih.gov/pubmed/30181454
http://doi.org/10.1109/MCOM.2018.1701233
http://doi.org/10.3390/s19040831
http://doi.org/10.1109/CCGRID.2010.48
http://doi.org/10.1109/MCOM.001.1900498
http://doi.org/10.1007/978-3-540-24844-6_50
http://doi.org/10.1109/COMST.2017.2705720
http://doi.org/10.1109/MCE.2016.2590118

	Introduction
	Background and Related Work
	System Models
	Description of Models
	FMCRS Algorithm
	Generation of Fuzzy Sets and Rules
	Optimization of the Fuzzy Membership Function
	Horizontal Scaling
	Vertical Scaling
	Algorithm Pseudocode

	System Architecture and Implementation
	System Architecture and Design
	System Implementation

	System Evaluation and Results
	Experiment 1: Microservice Deployment Time on the Designed Platform
	Experiment 2: Computing Resource Scaling Time of Microservices
	Experiment 3: Computing Resource Monitoring of Edge Computing Nodes and Microservices
	Experiment 4: Horizontal Scaling of Microservices
	Experiment 5: Vertical Scaling of Microservices
	Experiment 6: Comparison of Microservice Computing Resource Scaling

	Conclusions
	References

