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Abstract: Zebrafish embryos and larvae have emerged as an excellent model in cardiovascular
research and are amenable to live imaging with genetically encoded biosensors to study cardiac
cell behaviours, including calcium dynamics. To monitor calcium ion levels in three to five days
post-fertilization larvae, we have used bioluminescence. We generated a transgenic line expressing
GFP-aequorin in the heart, Tg(myl7:GA), and optimized a reconstitution protocol to boost aequorin
luminescence. The analogue diacetyl h-coelenterazine enhanced light output and signal-to-noise
ratio. With this cardioluminescence model, we imaged the time-averaged calcium levels and beat-
to-beat calcium oscillations continuously for hours. As a proof-of-concept of the transgenic line,
changes in ventricular calcium levels were observed by Bay K8644, an L-type calcium channel
activator and with the blocker nifedipine. The β-adrenergic blocker propranolol decreased calcium
levels, heart rate, stroke volume, and cardiac output, suggesting that larvae have a basal adrenergic
tone. Zebrafish larvae treated with terfenadine for 24 h have been proposed as a model of heart
failure. Tg(myl7:GA) larvae treated with terfenadine showed bradycardia, 2:1 atrioventricular block,
decreased time-averaged ventricular calcium levels but increased calcium transient amplitude, and
reduced cardiac output. As alterations of calcium signalling are involved in the pathogenesis of
heart failure and arrhythmia, the GFP-aequorin transgenic line provides a powerful platform for
understanding calcium dynamics.
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1. Introduction

Cardiovascular diseases are the leading cause of death worldwide and are among the
most challenging to diagnose and treat due to the complexity of their pathophysiology.
Ca2+ plays a pivotal role in the excitation–contraction coupling of the heart and alterations
in Ca2+ cycling and its associated proteins and pathways may trigger pathological disor-
ders [1,2]. Ca2+ handling has been extensively studied, mainly in isolated cardiomyocytes
obtained from animals or from differentiated human pluripotent stem cells [3–6]. While this
approach provides a detailed insight of the Ca2+ fluxes, the interaction between different
heart cells, other organs, and the nervous and endocrine systems is lost. Thus, to fully
understand pathological processes, in vivo animal models are crucial.

The zebrafish has emerged as an excellent model in cardiovascular research because
of its high genetic tractability, ex-utero embryonic development, and transparency [7–13].
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The zebrafish heart is composed of only two chambers, the atrium and ventricle. Despite
this anatomical difference, zebrafish heart physiology, heart rate (HR), and action potential
resemble those of humans [14–16], although some of the ionic channels and regulation are
not identical [17,18].

Non-invasive Ca2+ imaging techniques in zebrafish embryos and larvae contribute to
our understanding of Ca2+ handling and its relationship with cardiac diseases. Genetically
encoded Ca2+ indicators, like the single-fluorophore GCaMPs, have been successfully used
to image Ca2+ dynamics in the embryonic heart [11,19–21]. They require uncoupling of
contraction from Ca2+ changes either by using morpholino oligomers against troponin
T [22] or with myosin II inhibitors like para-amino blebbistatin [23] to avoid motion imaging
artifacts. We have previously used ratiometric biosensors, which call for special optical
components to acquire two emission images simultaneously to correct these artifacts [24].
Fluorescent biosensors provide excellent temporal and spatial resolution of the cardiac
Ca2+ transients, but suffer from some pitfalls, particularly for imaging the heart. The fast
HR necessitates acquiring time-lapse images with minimal interval between them so that
the dynamics of the Ca2+ transients may be recorded. In practice, this limits the duration
of an experiment to a few seconds at a time, depending on the instrumentation, to avoid
excessive photobleaching. A solution is the use of low-light-level techniques like light sheet
microscopy, which is less harmful to the cells than widefield microscopy [20,25], but more
costly. A second drawback is the autofluorescence of the vitello, adjacent to the heart, or of
commonly used drugs like para-amino blebbistatin.

These technical issues prompted us to explore aequorin bioluminescence to image
heart Ca2+ continuously for hours, acquiring all emitted photons during that time. By
contrast with fluorescence, bioluminescence does not need excitation light. The photopro-
tein aequorin has been widely employed to measure Ca2+ in many cell types and animal
models [26–28] and has been demonstrated to be biocompatible in zebrafish [29–32]. The
functional photoprotein is formed when apoaequorin binds the substrate coelenterazine
(CTZ) [26]. In our previous work, aequorin fused with GFP (GA) [33] was used to visualize
cytoplasmic and mitochondrial Ca2+ in skeletal muscle of zebrafish embryos for hours [32].
Despite its low photon yield compared with fluorescence, we hypothesized that GA could
be used to measure the synchronized Ca2+ transients without the need to stop heart beating,
thus, conserving the physiological mechano-electrical feedback mechanisms. However, we
anticipated that it might be challenging to achieve sufficient reconstitution with aequorin’s
substrate CTZ in the presence of constant Ca2+ cycling, since aequorin is consumed once it
emits light.

In this study, we have generated a transgenic zebrafish line expressing GA to image
continuously ventricular Ca2+ levels in vivo (cardioluminescence). Ca2+ was measured
as the heart was performing its mechanical function in three-, four-, and five-days post-
fertilization (dpf) larvae. To improve the efficiency of aequorin reconstitution with CTZ,
a protocol was devised to decrease temporarily Ca2+ cycling in the heart. The zebrafish
line Tg(myl7:GA) allowed imaging both the time-averaged levels and the systolic Ca2+

transients continuously for several hours in control conditions, in response to drugs, and
in a model of heart failure induced by terfenadine.

2. Materials and Methods
2.1. Zebrafish Husbandry

Fish used in this study were housed under standard conditions as previously described [32].

2.2. Generation of Tg(myl7:GA) Zebrafish Line

The Ca2+ biosensor GFP-aequorin (GA) [33] was cloned into the pT2A-Tol2-myl7-
MCS transposon vector (0.8 kb myl7 promoter), using XhoI and EcoRI restriction sites. To
generate stable transgenic zebrafish, tol2-myl7:GA plasmid (12.5 ng/µL) was co-injected
with transposase mRNA (12.5 ng/µL) in fertilized eggs of Tübingen zebrafish. Injected
embryos were screened by fluorescence for GA expression in the heart and grown to
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adulthood (F0). The adult F0 generation was outcrossed to wild-type zebrafish to identify
founders with insertions in the germline. F2 Tg(myl7:GA) heterozygous larvae were used
throughout the study.

2.3. Synthesis of Diacetyl CTZ-h

CTZ-h was synthesized using the procedures in a previous report [34]. h-CTZ (73.2 mg,
0.180 mmol) and DMAP (60.0 mg, 0.491 mmol) in acetic anhydride (2.50 mL, 26.4 mmol)
were stirred overnight at 20 ◦C under a N2 atmosphere. After removal of all the volatiles,
the residue was dissolved in ethyl acetate and washed with 2 M HCl, saturated aqueous
NaHCO3, and brine, with the organic layer then dried over Na2SO4, filtered, and evapo-
rated in vacuo. The residue was purified by silica gel column chromatography using 5–10%
ethyl acetate in dichloromethane as eluent to afford diacetyl h-CTZ as a yellow-brown solid
(64.3 mg, 0.131 mmol, 73%). 1H NMR (500 MHz, CDCl3): δ 7.87 (d, J = 9.0 Hz, 2H), 7.73 (s,
1H), 7.84 (d, J = 7.5 Hz, 2H), 7.30–7.20 (m, 8H), 7.15 (d, J = 9.0 Hz, 2H), 4.60 (s, 2H) 4.18 (s,
2H) 2.29 (s, 3H), 2.12 (s, 3H). MS (ESI+) Calcd for [M + H]+, 492.19; found 492.19.

2.4. Aequorin Reconstitution with Coelenterazine

A stock of diacetyl h-CTZ was prepared at 7.4 mM in dimethyl sulfoxide (DMSO).
The stocks of native-, hcp-, fcp-, h-, and f -CTZ analogues (Biotium, Fremont, CA, USA)
were prepared at 5 mM in methanol. All CTZ were stored at −80 ◦C in 5 µL aliquots
and were used at 50 µM final concentration. For aequorin reconstitution, Tg(myl7:GA)
zebrafish larvae at 3, 4, and 5 dpf were rinsed in nominally zero Ca2+ E3 (E30Ca) medium
(E30Ca medium: 5 mM NaCl, 0.17 mM KCl, 0.33 mM MgSO4, 0.002% methylene blue,
pH 7.4 in double distilled H2O). Subsequently, larvae were incubated in 1 mL of E30Ca
medium containing 25 µM nifedipine for 30 min at room temperature in the dark (nifedipine
period). Larvae whose heart was completely stopped after this treatment were washed out
five times to remove nifedipine and incubated in E30Ca medium containing 50 µM CTZ
for 2 h at room temperature in the dark (CTZ incubation period). Finally, the larvae were
incubated in complete E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM MgSO4, 0.33 mM
CaCl2, 0.002% methylene blue, pH 7.4 in double distilled H2O) for 30 min at 28.5 ◦C (heart
recovery period).

2.5. Bioluminescence Imaging

After aequorin reconstitution, Tg(myl7:GA) larvae were embedded in 100 µL of 0.3%
low melting point agarose prepared in E3 medium and transferred to an 8-well glass
bottom plate (ibidi, Gräfelfing, Germany). When the agarose solidified, 100 µL of E3
medium was added and a small portion of agarose surrounding the heart was cut out
to improve diffusion of drugs or Triton X-100. Bioluminescence images were acquired
as previously described [29] with a custom-built microscope (Low Light Microscope [35])
equipped with an EM-CCD camera (512 × 512 pixels, EMC9100-13, Hamamatsu Photonics,
Hamamatsu, Japan). All microscope components were acquired from Thorlabs GmbH
(Dachau, Germany). A 4× CFI PlanApo Lambda air objective (Nikon, Tokyo, Japan) was
used as the tube lens, and an air 20×Nikon CFI PlanApo Lambda (0.75 NA) as the objective.
The magnification of these combined lenses (f tube lense/f objective lens) was 5×. This
microscope was equipped with a LED lamp for transmitted light. The microscope was
housed in a light-tight box to maintain complete darkness during bioluminescence imaging.
The larvae were maintained from 26 to 28 ◦C during imaging. The bioluminescence images
were acquired continuously in 16 bits with 4×4 binning, 255 EM gain, at a rate of 25, 17,
12, 9, 2, or 1 Hz (frames/s). With this configuration, the resolution of the images was
12.8 µm × 12.8 µm/pixel. For the signal-to-noise ratio (SNR) calculation, bioluminescence
images were acquired at 9 Hz for 1 min. For longer recordings, drugs were added after
1–10 min basal tracking of luminescence. At the end of every recording, Triton X-100
(5%) was added to break embryo membranes. The released aequorin, in contact with
extracellular Ca2+, emits all remaining luminescence counts.
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2.6. GCaMP Fluorescence Imaging

Tg(myl7:GCaMP)s878 adult zebrafish were outcrossed to wild-type strain and fer-
tilized eggs at 1-cell stage were injected with 2 ng of the morpholino oligomer tnnt2a
(5′-CATGTTTGCTCTGATCTGACACGCA-3′). Larvae at 24 h post-fertilization were placed
in 0.003% N-phenylthiourea to prevent pigmentation. For nifedipine titration, 3 dpf larvae
were incubated in E3 or E30Ca medium containing 10, 25, or 100 µM nifedipine for 30 min.
Then, larvae were embedded in 1% low melting point agarose and transferred to an 8-well
glass bottom plate (ibidi, Gräfeling, Germany). To study the recovery of Ca2+ dynamics
with GCaMP, the aequorin reconstitution protocol described above was applied to 3 dpf
larvae, without addition of CTZ. Fluorescence images were acquired at a rate of 200 Hz
with a CSU X1 spinning disc confocal microscope (Carl Zeiss, Oberkochen, Germany)
equipped with a Hamamatsu ORCA Flash4.0 sCMOS camera (Hamamatsu Photonics,
Japan) in 16 bits with 2×2 binning.

2.7. Reagents

Chemical compounds were dissolved in DMSO to prepare stocks of 10 mM nifedipine
(Sigma-Aldrich N7634, Darmstadt, Germany), 20 mM Bay K8644 (Tocris 1544), 10 mM
propranolol (Sigma-Aldrich P0884, Darmstadt, Germany), 50 mM terfenadine (Tocris 3948),
and 7.5% N-phenylthiourea (Sigma-Aldrich, Darmstadt, Germany).

2.8. Heart Failure Induced by Treatment with Terfenadine

Embryos at 24 h post-fertilization were placed in 0.003% N-phenylthiourea in E3
medium to prevent pigmentation. At 3 dpf, larvae were transferred to a 6-well plate,
10 larvae per well, with 5 mL of N-phenylthiourea solution containing 10 µM terfenadine
or 0.02% DMSO, for 24 h. For bioluminescence experiments, aequorin reconstitution was
done during the last 3 h of terfenadine or DMSO treatment.

2.9. Data Analysis

Videos in TIFF format were analysed in Fiji-ImageJ (U.S. National Institutes of Health,
Bethesda, MD, USA) [36]. For GCaMP image analysis, regions of interest (ROI) were drawn
in the atrium and in the ventricle to obtain mean intensity values. An exponentially
weighted moving average smoothing with a factor of 0.7 was applied and data was
transformed into ∆F/F0:

∆F/F0 = (Ft − F0)/F0,

where Ft is the fluorescence at a given time and F0 is the minimum diastolic fluorescence
value of the whole recording. For characterization of the Ca2+ transients, ∆F/F0 data were
analysed with Clampfit 10.7 (Molecular Devices, San José, CA, USA) to determine peak am-
plitude ((Fsystole − F0)/F0), rise time 10% to 90%, and decay time 90% to 10% (Figure S2D).

For bioluminescence image analysis and calculation of SNR, a time-projection of the
image stack was performed to draw the ROIs over the ventricle and atrium (Signal). Then,
ROIs of identical size were placed in six different locations far from the larva to obtain
average background intensity values (Background) and their SD. The SNR for each frame
was calculated as:

SNR = (Signal − Background)/SD Background.

Luminescence Signal (in relative light units, RLU) was transformed into Luminescence
rate (L, in counts per second). The Total counts (Ltotal, in RLU) were obtained as the sum
of luminescence along the experiment. Lconsumed, the sum of all L values from time zero
to any given time point, was calculated. It represents the aequorin that has already been
spent in each time point. Finally, Lmax was calculated as Ltotal − Lconsumed at each time
point. Lmax represents the aequorin available at each time point: the sum of counts from
that time point to the end of the experiment.
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The hemodynamic parameters were analysed in Fiji-ImageJ by measuring the major
and minor diameters (D), and the area (A) on the ventricular cavity at end-systole and end-
diastole in three transmitted light or fluorescence images in each larva, as indicated. The
major and minor diameters were measured in the longitudinal and transverse directions
of the ventricle, respectively. Images were acquired at 50 Hz in a wide-field fluorescence
microscope (DMIRE-2, Leica Microsystems, Wetzlar, Germany). Ventricular fractional
shortening (FS) was calculated from major or minor end-diastolic (Ddiastole) and end-
systolic (Dsystole) diameters, as:

FS = (Ddiastole − Dsystole)/Ddiastole.

Fractional area change was calculated as:

FAC = (Adiastole − Asystole)/Adiastole.

End-systolic volume (ESV) and end-diastolic volume (EDV) were calculated as the
volume of an ellipsoid of revolution, as reported [37]:

Volume = (π/6) × (major diameter) × (minor diameter)2

The stroke volume and cardiac output were:

Stroke volume = (EDV) − (ESV).

Cardiac output = stroke volume × HR.

2.10. Statistics

The Shapiro–Wilk statistic was used to test for normality. Differences between two
groups were analysed using the unpaired or paired two-tailed t-test, as indicated. One-
way ANOVA and two-way ANOVA with Holm–Sidak post hoc correction for multiple
comparisons and multiple t-tests were used where indicated. Correlation between two
datasets was analysed using linear regression. Datasets of total counts were transformed
into log10 values. Data are presented as mean± SD and p < 0.05 was considered statistically
significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. N indicates the number of
embryos or larvae used per dataset. Data were analysed in Graphpad Prism 6 (GraphPad
Software, Inc.; La Jolla, CA, USA).

3. Results
3.1. Tg(myl7:GA) Zebrafish Line Generation

We generated a transgenic zebrafish line expressing GA under the control of the
cardiomyocyte-specific promoter myl7. Upon Ca2+ binding to aequorin, there is energy
transfer between the excited state of CTZ and the GFP so that light emission is shifted to the
green (Figure 1A) [27,33,38]. The reporter GA is bifunctional: GFP fluorescence is used to
determine its localization and expression level, while luminescence reports the Ca2+ levels.
The expression of GA was observed in the cardiac tube from 24 h post-fertilization and
no fluorescence was seen in other organs (Figure 1B). The ventricle was brighter than the
atrium at 3, 4, and 5 dpf, due to its thicker wall (Figure 1C). Both the HR and the ventricular
fractional shortening (FS) of heterozygous GA larvae were like those observed in wild-type
siblings (Figure 1D,E), suggesting that the expression of GA did not affect cardiac function.
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CTZ and its excited state product. (B) GFP fluorescence of a 3 dpf Tg(myl7:GA) zebrafish larva. (C) Superimposed GFP 
fluorescence and transmitted light images of a 3 dpf Tg(myl7:GA) zebrafish larva. The inset shows the atrium (A) and 
ventricle (V). (D) HR of GA heterozygous and wild-type siblings at 3, 4, and 5 dpf. Data are shown as mean ± SD (n = 17 
for 3 and 4 dpf; n = 10 for 5 dpf). (E) Ventricular fractional shortening (FS), measured with the major diameter, of GA 
heterozygous and sibling larvae at 3, 4, and 5 dpf. Data are shown as mean ± SD (sibling n = 8 for 3, 4, and 5 dpf; GA n = 7 
for 3, n = 8 for 4 dpf and n = 9 for 5 dpf). Statistical analysis was performed using an unpaired t-test in (D) and (E) and no 
statistical differences were found between GA-expressing and sibling larvae (p > 0.05). The bar scale in (B) and (C) indicates 
250 µm and 150 µm, respectively. 
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ous Ca2+-dependent bioluminescence from the heart was not detected (Figure 2A). Triton-
X100 (5%), added to break membranes and bring aequorin into contact with extracellular 
Ca2+, released few counts. We reasoned that, as Ca2+ rises during each systole, the rate of 
aequorin consumption might be faster than the reconstitution rate. Therefore, we hypoth-
esized that limiting Ca2+ transients during aequorin reconstitution would improve light 
output. 

3.2.1. Suppressing Ca2+ Rise in the Heart with an LTCC Blocker 
A protocol was devised to blunt Ca2+ transients by incubating larvae with 25 µM ni-

fedipine in nominally zero Ca2+ E3 (E30Ca) medium (Figure 2B). Figure S1 shows the opti-
mization of this treatment with different concentrations of nifedipine, with and without 
Ca2+ in the fish water. After 30 min in nifedipine, non-beating larvae were transferred to a 
plate containing 50 µM CTZ in E30Ca medium for 2 h (Figure 2B). At the end of this period, 
the heart remained motionless in 84% of the larvae. Then, larvae were placed in complete 
E3 medium for 30 min to allow the heartbeat to recover. The Ca2+ levels during this pro-
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line (Figure 2C). The Ca2+ transients were indeed abrogated by the treatment with nifedi-
pine and restored after the heart recovery period. 

Figure 1. Expression of GA in the heart of zebrafish larvae. (A) DNA construct of the chimera GA and scheme of Ca2+-
dependent bioluminescence. BRET, bioluminescence resonance energy transfer. Light and dark brown ovals represent
CTZ and its excited state product. (B) GFP fluorescence of a 3 dpf Tg(myl7:GA) zebrafish larva. (C) Superimposed GFP
fluorescence and transmitted light images of a 3 dpf Tg(myl7:GA) zebrafish larva. The inset shows the atrium (A) and
ventricle (V). (D) HR of GA heterozygous and wild-type siblings at 3, 4, and 5 dpf. Data are shown as mean ± SD (n = 17
for 3 and 4 dpf; n = 10 for 5 dpf). (E) Ventricular fractional shortening (FS), measured with the major diameter, of GA
heterozygous and sibling larvae at 3, 4, and 5 dpf. Data are shown as mean ± SD (sibling n = 8 for 3, 4, and 5 dpf; GA n = 7
for 3, n = 8 for 4 dpf and n = 9 for 5 dpf). Statistical analysis was performed using an unpaired t-test in (D) and (E) and no
statistical differences were found between GA-expressing and sibling larvae (p > 0.05). The bar scale in (B) and (C) indicates
250 µm and 150 µm, respectively.

3.2. Aequorin Reconstitution Protocol

Apoaequorin needs to be reconstituted with its substrate CTZ in the presence of
oxygen to yield the Ca2+-sensitive photoprotein [39]. However, when 3 dpf Tg(myl7:GA)
zebrafish larvae were incubated in 50 µM diacetyl h-CTZ in E3 medium for 2 h, spontaneous
Ca2+-dependent bioluminescence from the heart was not detected (Figure 2A). Triton-
X100 (5%), added to break membranes and bring aequorin into contact with extracellular
Ca2+, released few counts. We reasoned that, as Ca2+ rises during each systole, the rate
of aequorin consumption might be faster than the reconstitution rate. Therefore, we
hypothesized that limiting Ca2+ transients during aequorin reconstitution would improve
light output.

3.2.1. Suppressing Ca2+ Rise in the Heart with an LTCC Blocker

A protocol was devised to blunt Ca2+ transients by incubating larvae with 25 µM
nifedipine in nominally zero Ca2+ E3 (E30Ca) medium (Figure 2B). Figure S1 shows the
optimization of this treatment with different concentrations of nifedipine, with and without
Ca2+ in the fish water. After 30 min in nifedipine, non-beating larvae were transferred
to a plate containing 50 µM CTZ in E30Ca medium for 2 h (Figure 2B). At the end of this
period, the heart remained motionless in 84% of the larvae. Then, larvae were placed in
complete E3 medium for 30 min to allow the heartbeat to recover. The Ca2+ levels during
this protocol were monitored with the Ca2+ biosensor GCaMP in the Tg(myl7:GCaMP)s878

zebrafish line (Figure 2C). The Ca2+ transients were indeed abrogated by the treatment
with nifedipine and restored after the heart recovery period.
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Figure 2. Limiting Ca2+ transients in the heart with nifedipine and aequorin reconstitution protocol. (A) Representative
luminescence of a beating heart in a 3 dpf Tg(myl7:GA) larva incubated with 50 µM diacetyl h-CTZ in E3 medium for 2 h.
Images were acquired at 9 Hz. The image represents the integrated luminescence of the entire experiment, including Triton
X-100. Regions of interest (ROI) from heart and background are shown. (B) Scheme of the aequorin reconstitution protocol
comprising a 30-min incubation with nifedipine in E30Ca medium to block Ca2+ transients, 2 h for aequorin reconstitution
with CTZ, and 30 min for recovery of the Ca2+ transients in Ca2+-containing E3 medium. (C) Representative Ca2+ transients
of a 3 dpf Tg(myl7:GCaMP)s878 larva in basal conditions incubated with 25 µM nifedipine for 30 min in E30Ca medium, and
after the heart recovery period. The fluorescence images were acquired at 200 Hz in a spinning disk confocal microscope;
GCaMP fluorescence was measured in a ROI drawn over the ventricle.

3.2.2. Larvae Treated with the Aequorin Reconstitution Protocol Recovered Heart Function
after Restoring Ca2+ into the Medium

We tested the recovery of cardiac function in Tg(myl7:GA) larvae subjected to the
aequorin reconstitution protocol. The HR was similar before and after the aequorin recon-
stitution protocol in 3 dpf (170 ± 9 bpm before vs. 166 ± 15 bpm after; p = 0.387), 4 dpf
(192 ± 16 bpm before vs. 179 ± 29 bpm after; p = 0.163), and 5 dpf larvae (191 ± 16 bpm
before vs. 181 ± 24 bpm after; p = 0.071) (Figure S2A). In addition, the ventricular FS
was restored after the recovery period at 3 dpf (0.23 ± 0.02 for control vs. 0.24 ± 0.02 for
Aeq protocol; p = 0.832), 4 dpf (0.30 ± 0.04 for control vs. 0.29 ± 0.02 for Aeq protocol;
p = 0.315), and 5 dpf (0.31 ± 0.02 for control vs. 0.31 ± 0.02 for Aeq protocol; p = 0.878)
(Figure S2B). Analysis of Ca2+ transients in 3 dpf Tg(myl7:GCaMP)s878 larvae indicated that
Ca2+ transients and their kinetics were similar in the controls and in larvae subjected to
the aequorin reconstitution protocol (Figure S2C,E,F). These results suggest that the heart
regained normal Ca2+ transients, HR and contractility during the recovery period.

3.2.3. Imaging Individual Ventricular Ca2+ Transients in the Heart

We tested the efficiency of the reconstitution protocol by imaging the biolumines-
cence. Zebrafish Tg(myl7:GA) larvae were incubated in 50 µM diacetyl h-CTZ for 2 h
with or without the previous incubation with 25 µM nifedipine. Cardioluminescence,
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the spontaneous bioluminescent flashes due to beat-to-beat Ca2+ oscillations during the
cardiac cycle, was detected only in the ventricle of larvae preincubated with nifedipine
(Figure 3A). The signal-to-noise ratio (SNR) of these recordings, a measure of the sensitivity
of the method (see Section 2) was higher in larvae treated with nifedipine at 3, 4, and 5 dpf
(Figure 3B). Triton X-100 was added to compare the amount of reconstituted aequorin in
each case. Larvae preincubated with nifedipine released 5- to 18-fold more counts than
the controls (Figure 3C). These results confirmed that limiting the Ca2+ transients during
the incubation with CTZ increased the amount of functional GA, such that individual
ventricular Ca2+ transients could be observed. However, spontaneous luminescence from
the atrium was not detected in most larvae (Figure S3A–C). Total counts in the atrium after
Triton X-100 were 6-fold less than those in the ventricle but were detectable (Figure S3D,E),
showing the need to separate spatially the origin of the luminescence. In contrast to pho-
tometry, imaging allowed us to draw ROIs over the atrium and ventricle to discriminate
their contribution.
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Figure 3. Bioluminescence imaging in the heart of 3, 4, and 5 dpf Tg(myl7:GA) zebrafish larvae treated with the aequorin
reconstitution protocol. Diacetyl h-CTZ was used for reconstitution and images were acquired at 9 Hz. (A) Luminescence
of CTZ-incubated larvae either with the aequorin reconstitution protocol or in full E3 medium (control). The black lines
indicate the luminescence in background ROIs drawn out of the larvae; orange and blue lines show ventricular luminescence.
Inset images show the integrated luminescence for 1 min over the heart. The scale bar represents 50 µm and the colour scale
indicates RLU. (B) SNR of the control (orange) and aequorin reconstitution protocol (blue) larvae at 3, 4, and 5 dpf. Data are
shown as mean ± SD (control n = 5 for 3 dpf, n = 6 for 4 dpf, and n = 7 for 5 dpf; aequorin reconstitution protocol n = 17
for 3 dpf; n = 14 for 4 dpf, and n = 18 for 5 dpf). (C) Log10 of total counts released in the control (orange) and aequorin
reconstitution protocol (blue) groups at 3, 4, and 5 dpf. Data are shown as mean ± SD (control n = 5 for 3 dpf, n = 6 for
4 dpf, and n = 7 for 5 dpf; aequorin reconstitution protocol n = 19 for 3 dpf; n = 21 for 4 dpf, and n = 10 for 5 dpf). Statistical
analysis was performed using a two-tailed unpaired t-test in (b) and (c). ** p < 0.01; *** p < 0.001 and **** p < 0.0001.

Decreasing the image acquisition frequency can improve the SNR of low emitting
samples. In fact, a strong inverse correlation was observed between SNR and the ac-
quisition frequency (R2 = 0.911; p = 0.045) (Figure S4A). In contrast, L/Lmax, which is
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proportional to Ca2+ levels, was independent of the image acquisition frequency (R2 = 0.03;
p = 0.824) (Figure S4B).

3.3. Testing Different CTZ Analogues

Different CTZ synthetic analogues afford varying chemical stability, Ca2+ sensitivity
and membrane permeability. We, therefore, tested various analogues (Figure S5) to optimize
larvae cardioluminescence. The Ca2+ sensitivity of h-, f -, fcp-, and hcp-CTZ has been shown
to be 16-, 20-, 135-, and 190-fold higher than that of native-CTZ, respectively [40]. The rate
of reconstitution is also affected by the analogue used: native-CTZ was 7- to 10-fold faster
in cultured cells than f - and h-CTZ, respectively [41]. Furthermore, f -CTZ was reported to
have nearly 2-fold more membrane permeability than native- and h-CTZ [42]. The addition
of protective acetyl groups to h-CTZ was reported to inhibit autooxidation, improving its
chemical stability, and providing a constant supply of substrate [43]. Therefore, we decided
to synthesize this analogue to allow long-term imaging. The SNR and the total counts
obtained in Tg(myl7:GA) larvae from 3 to 5 dpf reconstituted with native-, h-, fcp-, hcp-, f -
and diacetyl h-CTZ were evaluated (Figure 4). Both f - and diacetyl h-CTZ provided the most
cardioluminescence, with robust light output at physiological Ca2+ levels and high SNR.
Therefore, we used diacetyl h-CTZ in further experiments.
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Figure 4. Test of CTZ analogues in 3, 4, and 5 dpf Tg(myl7:GA) zebrafish larvae. (A) SNR from larvae incubated with the
CTZ analogues for 2 h with the aequorin reconstitution protocol. Images were acquired at 9 Hz. (Native-CTZ n = 5, 6, and
3; h-CTZ n = 10, 7, and 10; fcp-CTZ n = 6, 8, and 7; hcp-CTZ n = 4, 4, and 5; diacetyl h-CTZ n = 15, 14, and 18; and f -CTZ
n = 17, 10, and 12; for 3, 4, and 5 dpf, respectively). Data are shown as mean ± SD. (B) Total counts released by the addition
of 5% Triton X-100 in larvae incubated with the CTZ analogues for 2 h. (Native-CTZ n = 8, 6, and 3; h-CTZ n = 7, 8, and 9;
fcp-CTZ n = 6, 4, and 7; hcp-CTZ n = 4, 4, and 5; diacetyl h-CTZ n = 19, 21, and 10; and f -CTZ n = 5, 6, and 5; for 3, 4, and
5 dpf, respectively). Data are shown as mean ± SD of Log10 of total counts.
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3.4. GA Reports the Effect of Drugs Acting on LTCC in the Zebrafish Ventricle

To validate the functionality and sensitivity of the Tg(myl7:GA) line, we used two
drugs known to increase and decrease Ca2+ levels: the LTCC activator Bay K8644 and the
LTCC antagonist nifedipine. Figure 5A shows the rationale and analysis of an aequorin
experiment in a 3 dpf larva recorded at 2 images/s (2 Hz). This low acquisition frequency
was used to track the time-averaged Ca2+ levels. The pharmacological approach in zebrafish
usually requires higher concentration of drugs than single-cell studies, since drugs must
diffuse through the agarose layer, the skin, and tissues to reach the heart. Thus, we used
100 µM Bay K8644 to trigger an increase in luminescence. Then, addition of 5% Triton X-100
caused the release of the remaining aequorin light. It is worth noting that luminescence
values have no meaning in terms of Ca2+ levels until they are transformed into L/Lmax.
This ratio, which is proportional to Ca2+ concentration [28], was independent of the total
amount of functional aequorin in the sample (Figure S6). To record the effect of Bay K8644
on individual ventricular Ca2+ transients, images were acquired at 9 frames/s (9 Hz)
(Figure 5B). The Ca2+ transient amplitude gradually increased after drug addition, as well
as the diastolic and systolic Ca2+ levels. Bay K8644 triggered a similar increase in L/Lmax
at 3, 4, and 5 dpf (21.9-, 18.7-, and 20.8-fold, respectively) (Figure 5C).

In contrast with Bay K8644, nifedipine (25 µM) decreased the time-averaged Ca2+

levels in 3 dpf larvae imaged at 1 Hz (L/Lmax 14.34± 6.49 before nifedipine vs. 4.96± 0.50
after nifedipine; p = 0.015) (Figure 5D). As images were acquired uninterruptedly, we
monitored the reversal of the effect of nifedipine by Bay K8644 (100 µM) on the same larva.
The L/Lmax was 4.96 ± 0.50 for nifedipine vs. 98.83 ± 27.33 after Bay K8644 (p = 0.0002)
(Figure 5D,E). As expected, the increase in L/Lmax induced by Bay K8644 was lower in
the presence of nifedipine (7.64-fold ± 2.49 with nifedipine vs. 21.92-fold ± 10.07 without
nifedipine; p = 0.002) (Figure 5F). Therefore, the Tg(myl7:GA) line was sensitive enough
to detect both increases and decreases of Ca2+ levels, as was shown by modulating Ca2+

influx with Bay K8644 and nifedipine.
Figure S7 compares the effect of Bay K8644 in 3 dpf larvae by cardioluminescence

and by fluorescence imaging with GCaMP under similar conditions (heart beating was
not stopped). The former allowed continuous recording whereas for GCaMP two periods
of imaging (of 5 s duration) were acquired to minimize photobleaching. The GCaMP
experiment resolved better the individual Ca2+ transients, although it was affected by
motion artifacts. A shoulder in the decay phase was observed compared to stopped
hearts (cf. Figures S7B and 2C). Bioluminescence of GA allowed us to record Ca2+ for
extended periods; this is a significant advantage as it would be difficult to perform con-
tinuous imaging experiments lasting more than 80 min with fluorescent biosensors under
widefield microscopy.

3.5. Decreasing Adrenergic Tone with Propranolol

We and others reported that the β-adrenergic blocker propranolol decreased systolic
and diastolic Ca2+ levels in 3 dpf zebrafish larvae using fluorescent biosensors [19,24]. We
evaluated the effects of propranolol on cardiac and hemodynamic parameters using the
fluorescence of GA in 4 dpf Tg(myl7:GA) larvae and tested their Ca2+ levels by cardiolumi-
nescence. Figure 6A–D and Table 1 shows that the HR, the ventricular FS and fractional area
change (FAC), the stroke volume, and the cardiac output decreased after 30 min of incuba-
tion with 100 µM propranolol. In agreement with these functional changes, propranolol
reduced the Ca2+ levels (Figure 6E,F). The L/Lmax decreased 46% (56.8 ± 24.5 baseline vs.
26.1 ± 5.7 after propranolol; p = 0.01) (Figure 6G). These results also show that the heart of
4 dpf larvae had some basal adrenergic tone.
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Figure 5. Effect of LTCC activator and antagonist on ventricular Ca2+ dynamics of 3, 4, and 5 dpf
Tg(myl7:GA) zebrafish larvae. (A) Analysis of a bioluminescence experiment (3 dpf larva) in which
100 µM Bay K8644 was added from 2 to 33 min, followed by Triton X-100 incubation to release all
remaining luminescence counts. Upper panel: Luminescence in counts per s (L, cps); middle panel:
remaining counts along the experiment (% of Lmax). Lower panel: L/Lmax, which is proportional
to Ca2+ levels. Images were acquired at 2 Hz. (B) Effect of 100 µM Bay K8644 on the ventricular
Ca2+ levels. Images were acquired at 9 Hz. The lower panels zoom in the baseline (i) and 100 µM
Bay K8644 (ii, min 19). Images of the integrated luminescence during 1 min in baseline and 100 µM
Bay K8644 (min 19–20) are shown below. The scale bar represents 100 µm and the colour scale
indicates RLU. (C) Maximal fold change of the L/Lmax value over basal of larvae treated with
100 µM Bay K8644 at 3, 4, and 5 dpf. Statistical analysis was performed using a one-way ANOVA
with Holm–Sidak post hoc correction for multiple comparisons and multiple t-tests. Data are shown
as mean ± SD (n = 11 for 3 and 4 dpf, and n = 9 for 5 dpf). (D) Representative experiment showing
the effect of 25 µM nifedipine followed by 100 µM Bay K8644 in a 3 dpf larva. Images were acquired
at 1 Hz. (E) Maximal effect of 25 µM nifedipine and 100 µM Bay K8644 on ventricular Ca2+ levels in
3 dpf larvae treated as in (D). Statistical analysis was performed using a repeated measures one-way
ANOVA test. Data are shown as mean ± SD (n = 7). (F) Fold change in Ca2+ (L/Lmax) of 100 µM
Bay K 8644 in the absence (n = 11) or presence (n = 7) of 25 µM nifedipine. Statistical analysis was
performed using a two-tailed unpaired t-test. Data are shown as mean ± SD. All experiments in this
figure were performed with diacetyl h-CTZ. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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Table 1. Hemodynamic parameters and Ca2+ level values of embryos incubated with 100 µM propranolol (30 min) or 10 
µM terfenadine (24 h). 
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Propranolol 
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Figure 6. Effect of the β-adrenergic antagonist propranolol on hemodynamic parameters and ventricular Ca2+ levels in 4 dpf
Tg(myl7:GA) zebrafish larvae. Heart rate (HR) (A), ventricular fractional shortening (FS) measured with the major diameter
(B), stroke volume (C), and cardiac output (D) before (baseline) and after 30 min incubation with 100 µM propranolol. Data
are shown as mean ± SD (n = 20). (E) Representative experiment of the effect of 100 µM propranolol on ventricular Ca2+

levels (L/Lmax) (1 Hz image acquisition frequency). (F) The images show the integrated luminescence from baseline (min
0–10) and propranolol (min 30–40) periods of the experiment in (E). The scale bar represents 100 µm and the colour scale
indicates RLU. (G) Ca2+ levels (L/Lmax) after 30 min of treatment with 100 µM propranolol. Data are shown as mean ± SD
(n = 6). These experiments were performed using diacetyl h-CTZ. Statistical analysis was performed using a two-tailed
paired t-test. ** p <0.01, *** p < 0.001 and **** p < 0.0001.

3.6. Ca2+ Levels in a Terfenadine-Induced Heart Failure Model

It has been reported that the treatment of 3 dpf zebrafish larvae with 10 µM terfena-
dine for 24 h reproduced some features of heart failure, including heart chamber dilatation,
reduced FS, arrhythmia, and apoptosis [44,45], but potential changes in Ca2+ levels were
not assessed. Terfenadine is a potent hERG blocker and can induce prolongation of the
QT interval as well as 2:1 atrioventricular block [46]. We measured the hemodynamic
parameters and Ca2+ levels in this model. The treatment with terfenadine caused brady-
cardia and a decrease in the atrio-ventricular HR ratio (0.51 ± 0.11) in 94% of the larvae,
indicating a 2:1 atrio-ventricular block (Figure 7A). During the missing ventricular ex-
citation, the ventricle remained contracted, suggesting that it was in refractory period
due to a prolonged plateau phase and delayed repolarization. The stroke volume was
higher in terfenadine-treated larvae than in the controls (Figure 7B). However, since the
HR fell markedly, the cardiac output was lower in the terfenadine group than in the con-
trols (Figure 7C). We examined Ca2+ levels by cardioluminescence both at high and low
image acquisition rate. Terfenadine-treated larvae had lower time-averaged Ca2+ levels
than the controls; L/Lmax values were 0.48-fold lower in terfenadine larvae (Table 1 and
Figure 7D). In contrast, the amplitude of the Ca2+ transients increased 2-fold, largely
because of increased systolic Ca2+ levels (Figure 7E,F and Table 1); this change was in
accordance with the enhanced stroke volume.
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Both acute incubation with propranolol (Figure 6) and 24 hr treatment with terfenadine
(Figure 7) caused decreased cardiac output, but by different mechanisms. In propranolol-
treated larvae, the changes observed agree with the expected reduction in adrenergic tone
and the measured decrease in average Ca2+ levels (0.46-fold decrease) (Table 1). While
the end-systolic volume increased 1.29-fold, indicating reduced FAC, the end-diastolic
volume did not change, resulting in lower stroke volume (0.86-fold) and ejection fraction
(0.86-fold) (Table 1). Since the HR also decreased (0.84-fold, negative chronotropic effect),
the cardiac output was 72% of control, and there was no arrhythmia (the atrio-ventricular
HR ratio was 1). In the terfenadine model of heart failure, there was an altered contraction
pattern, since the FS measured with the major diameter decreased, whereas the FS with
the minor diameter increased. Nonetheless, for overall ventricular function the change in
ventricular area (and volume) is more meaningful than the FS along the minor or major
axis. The FAC increased 1.19-fold. In addition, the end-systolic volume did not change but
the end-diastolic volume increased by 1.23-fold, thus, raising the stroke volume (1.31-fold)
(Table 1). As the ventricular HR had fallen to 41% of the control value, the cardiac output
(stroke volume × HR) dropped to 0.52-fold of control, but the ejection fraction was main-
tained. While the average Ca2+ levels (measured at 1 Hz image acquisition) also decreased
(as with propranolol), the amplitude of the Ca2+ transients markedly rose (Table 1). Thus,
propranolol and terfenadine reduced cardiac output, but the defining changes caused by
terfenadine were the 2:1 arrhythmia causing higher end-diastolic volume and enhanced
Ca2+ amplitude and stroke volume.
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Table 1. Hemodynamic parameters and Ca2+ level values of embryos incubated with 100 µM propranolol (30 min) or 10 µM terfenadine (24 h).

FS FS FAC EDV ESV SV HR CO EF A/V
HR Aver.Ca CaT amp Ca syst Ca diast

major diam. minor diam. pL pL pL/beat bpm nL/min L/Lmax L/Lmax L/Lmax L/Lmax

Control
mean 0.28 0.33 0.39 420.9 137.5 283.3 251 72.0 0.67 1.00 56.8 n.d. n.d. n.d.

SD 0.03 0.06 0.05 89.6 39.7 66.0 20 21.3 0.07 0.00 24.5
n 20 20 20 20 20 20 20 20 20 20 6

Propranolol
mean 0.22 0.27 0.34 420.7 177.2 243.5 212 51.8 0.58 1.00 26.1 n.d. n.d. n.d.

SD 0.03 0.06 0.05 94.7 45.2 71.9 15 15.8 0.08 0.00 5.7
n 20 20 20 20 20 20 20 20 20 20 6

p value <0.0001 <0.0001 0.001 0.979 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 0.0139

Fold change Propranolol/
control 0.79 0.81 0.87 1.00 1.29 0.86 0.84 0.72 0.86 1.00 0.46

Control

mean 0.36 0.37 0.39 422.1 109.3 312.8 229.9 72.4 0.74 1.00 58.9 61.0 71.6 10.6
SD 0.04 0.05 0.04 115.3 39.6 84.2 19.1 21.2 0.05 0.00 17.3 28.3 36.0 12.0
n 18 18 18 18 18 18 18 18 18 18 10 16 16 16

Terfenadine
mean 0.27 0.46 0.47 518.7 108.8 409.9 94.1 37.7 0.78 0.51 28.4 121.5 125.1 4.0

SD 0.06 0.05 0.08 127.6 31.7 105.7 12.9 8.7 0.06 0.11 11.8 21.4 21.1 2.4
n 19 19 19 19 19 19 19 19 19 19 9 9 9 9

p value <0.0001 <0.0001 0.0009 0.019 0.96 0.0037 <0.0001 <0.0001 0.38 <0.0001 0.0004 <0.0001 0.0005 0.12

Fold change Terfenadine/
control 0.75 1.25 1.19 1.23 1.00 1.31 0.41 0.52 1.06 0.51 0.48 1.99 1.75 0.38

SD, standard deviation; n, number of larvae; FS, fractional shortening; FAC, fractional area change; EDV, end-diastolic volume; ESV, end-systolic volume; SV, stroke volume; HR, heart rate; CO, cardiac output; EF,
ejection fraction; A/V HR, atrio-ventricular heart rate ratio; Aver.Ca, average Ca2+ level; CaT amp., Ca2+ transient amplitude; Ca syst, systolic Ca2+ level; Ca diast, diastolic Ca2+ level; major diam., ventricle
longitudinal diameter; minor diam., ventricle transverse diameter; bpm, beats per minute; n.d., not determined. Statistical analysis was performed using a two-tailed paired t-test for propranolol, and a two-tailed
unpaired t-test for terfenadine.
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4. Discussion

Imaging the heart of zebrafish larvae with a HR of about 3–4 Hz (180–240 bpm) re-
quires acquiring images at high speed. In a previous report using widefield fluorescence
microscopy with LED illumination at 50 images/s, we obtained excellent SNR and spatial
resolution, but recording was limited to short duration periods (~10 s) to avoid photo-
bleaching [24]. Photobleaching was worse when we used laser illumination in scanning or
spinning disc confocal microscopy. Thus, when studying the effect of slow-acting drugs,
which have to diffuse through the agarose and skin to reach the heart, 10-s imaging periods
were acquired every few minutes [24], which made it difficult to detect random arrhythmic
events. Light sheet fluorescence microscopy has been shown to be much less harmful than
widefield or confocal microscopy, allowing to image cell motion in beating larva hearts, or
Ca2+ levels in non-contracting hearts [20]. Indeed, Ca2+ imaging in the heart with intensio-
metric fluorescence biosensors requires stopping contraction with drugs or morpholinos
against myosin to avoid motion artifacts [19,21]. Another limitation we observed was the
autofluorescence of the vitello, which affected mostly the atrium in 3 dpf larvae [24]. The
antifungal methylene blue, commonly used in the fish water, and drugs like para-amino
blebbistatin also increased autofluorescence. To overcome these issues, here we have used
bioluminescence imaging of aequorin fused to GFP (GA) to monitor continuously Ca2+

levels in experiments of up to 2 h in 3–5 dpf larvae. In these experiments, the heart was
performing its mechanical function and the mechano-electrical feedback was preserved.

Reconstitution of apoaequorin with CTZ in single-cells or in vivo is not generally a
major problem [26,29,30,32,47]. However, we failed to obtain luminescence in larval hearts
with standard protocols and hypothesized that aequorin was rapidly consumed during the
reconstitution step as Ca2+ is oscillating continuously. It has been previously reported that
nifedipine-treated larvae restored the frequency and amplitude of heart Ca2+ transients
after drug washout [19]. Therefore, we treated larvae with nifedipine in free-Ca2+ medium
to temporarily abolish Ca2+ transients during reconstitution. No deleterious effects on
heart function were observed after this aequorin reconstitution procedure (Figure S2). A
second possible cause of poor luminescence output was the instability of CTZ in solution.
We synthesized diacetyl h-CTZ, since the acetyl groups have been shown to protect CTZ
from autooxidation and improve luminescence [43]. Thus, an optimized reconstitution
protocol with nifedipine incubation to lower Ca2+ levels, and using diacetyl h-CTZ as the
substrate, resulted in high levels of active aequorin. Notably, diacetyl h-CTZ enhanced the
SNR and total counts compared to h-CTZ (Figure 4), allowing long-term Ca2+ imaging in
the heart of live larvae. Hence, the diacetyl derivative of f -CTZ might further augment
cardioluminescence since f -CTZ was comparable to diacetyl h-CTZ in our results (Figure 4).

As the SNR decreased at high acquisition frequencies (i.e., 25 Hz, Figure S4A), we
chose 9 images/s (9 Hz) to maintain a balance between the ability to resolve individual
Ca2+ transients and the SNR. Lower frame rates (1–2 Hz) increased the SNR and provided
information about the time-averaged Ca2+ levels, as was shown with both nifedipine and
propranolol. This highlights the versatility of GA bioluminescence to monitor oscillatory
Ca2+ transients or averaged levels.

Incubation of 3 dpf zebrafish larvae with the antihistamine drug terfenadine for 24 h
has been reported to induce heart failure [44,45], involving arrhythmia and systolic dys-
function, but potential changes in cytosolic Ca2+ were not investigated. The proarrhythmic
risk of terfenadine may arise from its numerous effects on cardiomyocyte electrophysiology:
block of Na+ and L-type Ca2+ currents that slows ventricular conduction and promotes
non-Torsades de pointes ventricular tachycardia and fibrillation [46]; increased frequency
of spontaneous Ca2+ release from the sarcoplasmic reticulum and enhanced NCX sponta-
neous currents inducing afterdepolarizations [48]; and block of hERG with QT prolonging
effects [46]. In zebrafish, prolonged repolarization results in atrio-ventricular block [49].
Our results indeed showed a 2:1 atrio-ventricular block and decreased ventricular HR
(Figure 7 and Table 1). This caused a decrease in average ventricular Ca2+ levels but
increased Ca2+ transient amplitude, resulting in increased stroke volume. The reduction of
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HR prolongs the diastole, Ca2+ extrusion, and reuptake into the sarcoplasmic reticulum,
and has been shown to decrease diastolic Ca2+ levels [6]. In addition, prolongation of the
plateau phase of the action potential by inhibition of zERG would increase the systolic
Ca2+ levels (Table 1). As a result of the markedly reduced HR, cardiac output decreased. In
contrast with terfenadine, the adrenergic block with propranolol caused reduced average
Ca2+ levels, but a negative inotropic effect (reduced stroke volume).

Since the bioluminescence reaction of aequorin is triggered by three Ca2+ ions [50],
the steepness of the Ca2+-response curve confers it an excellent SNR. However, in Ca2+

microdomains near sarcolemmal Ca2+ channels or ryanodine receptors on the sarcoplasmic
reticulum surface (Ca2+ sparks) [51], a small fraction of total aequorin may be exposed to
very high Ca2+ concentrations. Thus, L/Lmax may be dominated by these microdomains
and may not represent the average cytoplasmic Ca2+ levels. In fact, the experiments
with Bay K8644, which induced a 20-fold change in L/Lmax, suggest the existence of
such microdomains.

The main limitation of aequorin luminescence methods compared to fluorescence
is their low photon yield. The atrium, being thinner than the ventricle, contains fewer
cells and thus, less GA. Therefore, we focused on the ventricular Ca2+ levels because atrial
bioluminescence was under the limit of detection of our imaging system. Nevertheless,
atrial bioluminescence was observed when Ca2+ levels were increased with Bay K8644.
Imaging, in contrast to photometry, allowed us to quantify ventricular Ca2+ by setting
appropriate ROIs, eliminating any contribution from the atrium. Luminescence may also be
close to noise levels when Ca2+ levels decrease by drugs (i.e., nifedipine) or in a pathological
model, precluding accurate measurements. In the future, the sensitivity issue may be
overcome by increasing aequorin’s Ca2+ affinity with mutagenesis or with appropriate
CTZ analogues [27] and by the continuous development of more sensitive detectors.

In view of the above, the choice of a fluorescent (GCaMP, Twitch-4) or a biolumi-
nescent (GA) biosensor would depend on the research question. Bioluminescence would
be preferred when a continuous record of Ca2+ is desired (as depicted in Figure S7), for
instance, when searching for a paroxysmal arrhythmia. A fluorescence experiment would
likely miss these events since short imaging periods of a few seconds every few minutes are
normally acquired to avoid photobleaching. In contrast, to see changes on the shape of the
transients, like the effect of drugs or mutations prolonging action potential, fluorescence
would be better than bioluminescence.

In conclusion, we describe a transgenic model to study Ca2+ physiology and patho-
physiology in the embryonic zebrafish heart by bioluminescence, as a complementary
method to the popular fluorescent Ca2+ biosensors. The devised reconstitution protocol
increased the amount of functional aequorin without causing deleterious heart effects.
Ventricular Ca2+ dynamics in beating hearts were imaged continuously for hours in 3–5 dpf
larvae. Both the time-averaged Ca2+ levels and individual Ca2+ transients were monitored
and, as a proof-of-concept, we studied changes induced by drugs acting on LTCC and sym-
pathetic input. Tg(myl7:GA) larvae also revealed a decrease in time-averaged Ca2+ levels,
but an increase in Ca2+ transient amplitude and stroke volume in a model of heart failure
induced by terfenadine. Fluorescence and luminescence imaging have each particular
benefits and constraints but are orthogonal techniques able to interrogate different aspects
of pathophysiological processes. Cardioluminescence in particular avoids autofluorescence
and photobleaching and allows monitoring heart Ca2+ for longer periods of time.
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protocol, Figure S4: Dependency of SNR and L/Lmax on the image acquisition frequency, Figure S5:
Structure of the coelenterazines used in this study, Figure S6: Correlation of the basal L/Lmax values
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