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Simple Summary: Two fields of artificial intelligence and nanomedicine are very effective tools in
moving towards the goal of personalized medicine. Combination of these fields, i.e., nanoinformatics,
enables better access to patient data as well as better nanomaterials design. An ongoing challenge in all
forms of drug administration for cancer patients is that drug synergy at any point in treatment is time-
dependent, dose-dependent, and patient-specific. Moreover, high heterogeneities of intra-tumor and
interpatient make it hard to rationally design diagnostic and dug delivery systems, as well as analyze
their results. Integration of artificial intelligence methods (especially data mining, neural networks, and
machine learning) can fill these gaps by using classification algorithms and pattern analysis to improve
the accuracy of diagnosis, drug delivery, and treatment. In this study, the basic concepts in artificial
intelligence are explained and the contributions of nanoinformatics in cancer treatment are reviewed.

Abstract: Application of drugs in high doses has been required due to the limitations of no specificity,
short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result
of high dosage administration of drug molecules that increase the side effects of the drugs. Recently,
nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications,
has made many advancements in the areas of cancer diagnosis and therapy. To overcome the
challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial
intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial
nanotherapy. Al has become a tool for researchers to manage complicated and big data, ranging
from achieving complementary results to routine statistical analyses. Al enhances the prediction
precision of treatment impact in cancer patients and specify estimation outcomes. Application of Al
in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, Al can be coupled with
nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore,
by the advancements in the nanomedicine field, Al-based combination therapy can facilitate the
understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are
to discuss the current developments, possibilities, and future visions in naoinformatics, for providing
more effective treatment for cancer patients.
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1. Introduction

Nanomedicine is applying nanotechnology for healthcare, covers a wide range of
clinical applications from diagnosis of various diseases such as cancer at one end of the
spectrum, to the formulation of carriers for gene and drug delivery applications at the other
spectrum of nanoscience in medicine. According to the development in nanotechnology,
drug-loaded nanoparticles or nanocarriers have the potential to improve controlled release
drug delivery systems (CRDDSs). CRDDSs reduce side effects to the surrounding tissues by
delivering a drug to the tumor site [1-4]. Moreover, solid tumors have certain characteristics
that make drug delivery to them very complicated and difficult. These characteristics,
which are known as physical obstacles of drug transport in solid tumors, include elevated
interstitial fluid pressure, dense extracellular matrix, hyper-permeable blood microvessels,
and dysfunctional lymphatic system [5-8]. On the other hand, most current drug-loaded
nanocarriers cannot be used for cargo transport and release, localized delivery, and tumor
penetration due to the lack of capabilities for controllable navigation and self-propulsion.
To address these limitations, several solutions are suggested, including manipulation
the physicochemical properties of nanocarriers, multifunctional nanoconstructs, using
internal/external field for drug release from nanoparticles, multi-stage drug delivery
systems, application of micro-/nano-robots for drug delivery, to name a few [2,3,9-12].
Emerging micro-/nano-robots, as an appealing type of delivery carriers that can reduce
systemic side effects of highly toxic drugs and improve the therapeutic efficacy, have been
recently developed [13]. Nanorobotics, as a new area of nanotechnology, is about dealing
with the cellular, molecular, or atomic structures of devices. Nanorobots can be designed
for various applications such as the diagnosis and treatment of lethal diseases as well as
identification of target molecules by their unique sensors [14,15].

The field of nanomedicine has significantly improved the diagnosis and therapy of
many diseases such as cancer. For instance, imaging agents and nanoparticle-modified
drug compounds have noticeably enhanced contrast efficiency and treatment outcomes.
The emergence of Al presents an attainable opportunity for pharmaceutical application
including drug discovery, drug delivery, and nanomedicine for cancer treatment [16-20].
Al can play an important role in developing nanomedicine-based treatment outcomes [1].
The integration of Al with nanotechnology (i.e., nanoinformatics) leads to considerable
improvements in drug delivery to solid tumors. Nanoinformatics developments and
the use of machine learning (ML) and data mining, as a result of advancement in the
nanotechnology field, has led to development of methods for predicting the structural
and functional properties of nanoparticles. Data mining and ML can be utilized for
prediction of biological properties of different nanoparticles related to their biomedical
applications. These include the effect of particle physicochemical properties on cellular
uptake, cytotoxicity, molecular loading, and molecular release considering manufacturing
properties like nanoparticle size and polydispersity [21].

In this review paper, an overview of the methods of Al, which can improve the field
of drug delivery to solid tumor and cancer nanomedicine, is proposed. The roles of Al in
nano-sized drug delivery systems (i.e., nanomedicine), integration of AI with nanorobots
used for drug delivery, and Al-guided therapy in the clinical applications are the major
areas that will be investigated in detail.

2. Al and Drug Delivery

Recently, the progress of novel systems for targeted drug delivery with minimum side
effects and high efficiency has attracted increasing attention. In this regard, researchers
have focused on controlled drug delivery in facing the challenges related to traditional drug
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delivery systems such as narrow therapeutic index, systemic toxicity, and controlling the
doses of drugs in long-term therapy [22,23]. Utilization of the microfabrication technology
to produce implantable microchips has a promising effect in controlled drug delivery [24].
Further, integrators, differentiators, intelligent control system, neural networks, and fuzzy
logic have been involved in designing the control systems.

CRDDSs such as injectable, transdermal, implantable and oral systems present many
advantages in comparison with conventional dosage forms. Improved patient compliance
and diminished dosing frequency, reducing in vivo fluctuation of drug concentrations and
keeping drug concentrations in an expected range, restricted side effects, and localized
drug delivery are some of these advantages [25]. However, as a result of the sophistication
of formulations, it is necessary to maintain the desired release rates; thus, CRDDS faces
huge challenges during the developmental phase. Generally, during the development
stage of these systems, the correlation between the process variables, formulation and
characteristics are not well understood. Therefore, a statistical approach like response
surface methodology (RSM) has been used for the formulation and development of CRDDS,
but it has not performed effectively in the development of CRDDS due to some limitations.
Artificial neural network (ANN) is a novel statistical approach for CRDDS development.
It is beneficial when there is not a noticeable functional dependence between the inputs
and outputs [26]. In addition, sophisticated biological data and nonlinear systems can
be modeled by using ANNs. Solving the problems of multi-response and multi-variate
systems, classifying cancer and predicting the secondary structures of proteins are other
applications of ANNSs [14,27]. The correlation between CRDDS drug release profiles as
well as process factors and formulation is not implicit and linear. Hence, related networks
can be utilized along with different types of ANN models. The association between the
process variables and the formulation and response, like in vitro drug release profiles, can
be represented by related ANN models. These networks, for example, can be utilized in
in vitro drug release profiles of novel formulations. Response prediction can be performed
by these formulations, which are formulated with various manufacturing and composition
processes. Besides, the best possible process parameters and formulations can be selected
by ANNSs through the optimization of purposes. ANNs also have some applications in the
CRDDS design. These applications, like the processes of manufacturing and optimization
of formulations, are restricted but promising. A great number of them are useful in the
field of oral CRDDS, such as in designing the pre-formulation stage of oral controlled
release dosage forms. Moreover, optimization and prediction of various controlled release
formulations like transdermal formulations and control released tablets, osmotic pumps,
pellets, beads, microspheres, and nanoparticles can be conducted by ANNs [3,13,15].

2.1. Al Algorithms for Drug Delivery

The mathematical foundations of Al are used to describe the structure and parameters
of various Al algorithms. More precise interpretation, management and analysis of com-
plex functions or data are the result of using Al algorithms. In this regard, biological-based
approaches (e.g., neural networks), probability theories, computational intelligence, and
statistical pattern recognition methods are combined with AL In drug delivery, predicting
pharmacokinetics of novel therapeutics including their quantitative structure-activity rela-
tionship (QSAR) or quantitative structure—property relationship (QSPR), in vivo response,
skin- or blood-brain barrier permeability, and proper dosing can be performed by Al tools.
According to the significance of predicting the pharmacokinetic profiles of drug candidates,
use of in silico tools may lead to cost reduction and increased efficiency. On this basis, ML
techniques such as Gaussian process, support vector machine, k nearest neighbor, random
forest, naive Bayes classifier, regression tree and classification would be beneficial. ANNs can
also be used for choosing the optimum gradient conditions in chromatography, designing the
pre-formulations, analyzing the multi-variate nonlinear relationships in pharmaceutical area,
predicting the drugs behavior, and creating nonlinear input-output mappings [14]. Table 1
presents a summary of some Al algorithms that are exploited in drug delivery research.
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Table 1. Al algorithms that are used in drug delivery research and their applications.

Algorithm Application in Drug Delivery Mathematical Equation Reference
No Nh Ni
vi=fo ):1 bo + h21 Wio fi <bh + ,ZO WihXi)}
0= = 1=
Predicting profile of drug dissolution, design of controlled X;, y;: the primary input and output, fo(-), fh(-): output and
Multilayer perceptron (MLP) release applications, optimization of the drug release profile  hidden functions, respectively, Wy, Wy, (i=1,2,... ,Ni, 0=
and formulations 1,2, ..., No): weights of connections between hidden and
output units, and input and hidden units, respectively, b,, by;:
biases of the output and hidden units
Recurrent neural networks (RNNs) Modeling or characterizing drug rfelease from controlled B (28]
release formulations
Artificial neural networks & Genetic Optimization .of .the .formulatlons such as contrc?lled rel.ea.sed
. ones, and optimization of the method of detection of similar — [29,30]
algorithm (ANN&GA) bi .
iophenols in blood
n n
9= X yiexp(=D(x,x;))/ ¥ exp(=D(x,x;))
i=1 i=1
) — P P xi /o2
Dependable estimation of drug behavior in vivo and ) D xi) = fol [x] xz(aJ o
General regression neural network (GRNN) compensation of dissimilarities in the drug release kinetics D: distance between the point of prediction and training [31,32]

under various conditions

sample that is applied to elucidate the mechanism by which
training samples
show the prediction position (using o as
smoothness parameter)




Cancers 2021, 13, 2481

50f23

2.2. Al Applications for Drug Delivery

Some mechanisms of drug delivery systems may contain multiple steps and the
release rate of each step is different. Furthermore, drug release is a kinetic procedure
and the loaded drug may be affected by the amount of the released drug. Thus, to attain
the appropriate release, the optimization of loading and release drug procedures in drug
delivery systems should be conducted simultaneously. Besides, the functional dependence
between the release and loading process is not intelligible. According to a study in 2018,
integration of nonlinear generalized-artificial neural network (G-ANN) methods and
experimental design has been proposed to optimize these processes concurrently. During
the investigations, Curcumin and the functionalized PEGylated KIT-6 ([3-CD@PEGylated
KIT-6]) nanoparticles have been determined as drug and nanocarrier, respectively. G-ANN
has been exploited to optimize the curcumin release by inspecting the reaction of the
loading step. The archived optimal parameters in the release procedure are 120 h of release
time, 5.70 of pH and 1.80 of the weight ratios of drug to nanocarrier as well as 2.2 of weight
ratio of drug/nanocarrier in the loading process and 43 h of loading time (Figure 1a). In
spite of some methods like response surface methodology, there is no requirement of an
explicit equation between the release amount and the factors in this method. This is the
principal advantage of this approach [33].

Bias
a
Amount of
loaded drug
-~ Drug
Time © release

Input layer Hidden layer Output layer

Temperature
Time

Modeling DOX release by
artificial intelligence techniques

DOX Loading to

poly(NIPAAm-co-AAc)-PEG IPN hydrogel

Figure 1. (a) Architecture of G-ANN in the analysis of release procedure. (b) Using ANNs, SVR and
LS-SVM models for modeling the release behavior of DOX from temperature and pH responsive
poly(NIPAAm-co-AAc)-PEG IPN hydrogel [34].

In the procedure of drug release, prediction of the drug release kinetic of stimuli-
responsive hydrogels with enough accuracy is very difficult. The reason is some envi-
ronmental variables of the body like temperature and pH. However, modeling of the
drug release behavior of these kinds of drug transporter materials has increasingly gained
importance in industry and academic research. In a study reported by Boztepe et al., poly
(NIPAAm-co-AAc)-PEG IPN hydrogels have been synthesized using free radical polymer-
ization. These hydrogels have indicated rapid temperature- and pH-responsive deswelling
behavior. Scanning electron microscopy (SEM) has been used for characterization of the
surface morphology and textural properties of the hydrogels. It has shown that they have
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a porous microstructure. After loading the doxorubicin (DOX) to the hydrogels, increasing
the release of this drug has been analyzed as a function of temperature, time and pH. The
obtained experimental results have shown that the released amounts of DOX from the
poly (NIPAAm-co-AAc)-PEG IPN systems are changeable depending on the mentioned
factors. ANNSs, support vector regression (SVR) and least squares support vector machine
(LS-SVM) models have been applied to obtain the experimental DOX release data. As a
result, ANNs have shown superior performance in modeling the complex and nonlinear
release behavior of DOX from the IPN hydrogels. Therefore, ANN is an authentic method
for studying the behavior of drug release from immensely swellable temperature and
pH-responsive hydrogels (Figure 1b) [34].

Cell-penetrating peptides (CPPs) are a group of transporter systems that are often
used to deliver different therapeutic agents into the cells [35]. These peptides can transport
different types of particles and macromolecules into the cells [36]. For example, in the
cancer research area, they can be exploited for tumor drug delivery. In this application,
they can transport drugs to the deep regions of the tumor. According to a study, an
innovative ML application has been developed to determine the interaction/insertion
potential of CPPs into three different phospholipid monolayers. An ANN model has been
developed, trained and tested after running tests on the experimental data. This neural
network has accurately predicted the maximal change in surface pressure of different
CPPs when administered below the membrane models. The ANN model can make a
considerable depletion in cost and time. Thus, the insertion potential of different CPPs
can be investigated before in vivo or experimental testing by using this tool. In conclusion,
ANN s can pave the way for the process of designing the efficient gene and intracellular
drug delivery systems [35].

Table 2 represents a summary of several studies, above mentioned and some other
studies, exploiting Al for drug delivery. In addition to studies related to cancer, some target
patients with other diseases like diabetes and obesity.
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Table 2. A summary of some studies utilizing AI methods for drug delivery.

Target Patients AI Method Study Focus Year Reference
Asthmatic patients taking . . .\ .. . .
monodisperse aerosols of ANNs Estimating lung c.leposmon, preletlng aerosol behzf1V10}', and modeling the 2010 [37]
correlation between the in vitro data and in vivo effects
salbutamol sulphate
Type 1 diabetic patients ANNs Identifying the glycemic regulation and patient dynamics 2012 [38]
. . Realizing the causes of obesity, averting obesity or diminishing its morbidity
Obese patients Fuzzy logic models and mortality, and enhancing the quality of patient’s life 2012 (391
Patients with colorectal cancer An Al model Determlmr}g the prerequisite for fur.ther surgery subsequent to the endqscoplc 2018 [40]
resection of tumor and predicting the risk of lymph node metastasis
— G-ANNs Optimizing the curcumin release by inspecting the reaction of the loading step 2018 [33]
Mellitus type 2 diabetic patients ANNs Designing the sustained-release matrix tablets carrying Vaccinium myrtillus 2018 [41]
leaf extract
_ Machin learning (ML) Determining the interaction/ insertion potential of CPPs into three different 2019 [35]
phospholipid monolayers
_ ANNs, SVR and LS-SVM models Modeling the complex and nonlinear release behavior of DOX from the 2020 [34]

IPN hydrogels
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3. How AI Can Transform Nanomedicine

Currently, as cancer treatment methods are insufficient, advanced technologies are
needed to detect, carry out drug delivery and treat cancer. The rapid growth of nan-
otechnology in nanomedicine is very promising for improving cancer treatment strategies.
Nanomedicine promotes sophisticated targeting strategies and optimizes the effective-
ness of existing anticancer compounds. Nanomedicine improves drug delivery, thereby
reducing the side effects of anticancer drugs while increasing their effectiveness [42—44].

Synergistic drugs can be facilitated by optimizing drug combinations to improve the
clinical efficacy of cancer therapy. However, optimization is complex because it entails
selecting the right combination of drugs, dosage, and dose frequency to boost effectiveness
and reduce unexpected toxic effects. Moreover, these effects may occur by the combination
of drugs due to the complexity of biological systems. Therefore, combining Al and cancer
nanomedicine can overcome the above challenges and increase the efficacy of cancer
treatment [21].

Al methods have emerged in response to the need for unsupervised classifiers and
predictors. Therefore, Al methods are widely used in nanomedicine, usually for accurate
prediction. Due to the continuous growth of nanomedicine, Al methods can be applied
to develop approaches to predicting the structural and functional properties and then
optimizing therapeutic methods. The methods sought to predict the various properties,
size, adhesion, molecular release, molecular loading, cytotoxicity, and cellular uptake.

Although AI methods are in the spotlight, the limitations of this approach should
not be overlooked. The Al-based methods are data-intensive, which is a severe limita-
tion in medicine. Overfitting and related constraints should always be considered in
generalization processes.

Al methods have been extensively developed on the nanotechnology level through
the pharmaceutical industry. Design, classification, monitoring, diagnosis, process control,
scheduling, planning, and generation of options are the application areas of Al methods in
nanotechnology [45]. Al methods have applications in nanomaterials, nanophysics, and
nanomedicine as some fields of nanotechnology [46].

Generally, the integration of nanotherapy and Al can be promising to improve person-
alized medicine. As a computational platform of Al, the quadratic phenotypic optimization
platform (QPOP) identifies the effective drug combinations efficiently. The ratios and
drug dose optimization in these combinations can be performed by this platform [47]. For
example, in a study reported by Rashid et al., a QPOP has been developed to investigate
an optimum combination from 114 FDA-approved drugs such as dactinomycin decitabine
(Dec), mitomycin C (MitoC), and mechlorethamine. They want to treat bortezomib-resistant
multiple myeloma according to this approach. The Al-guided optimization indicated that
to treat this type of cancer, MitoC, Dec, and mechlorethamine was the superior three-drug
combination. MitoC and Dec were the superior two-drug ones [48]. As an Al platform
consisting of parabolic personalized dosing (PPD), CURATE AI helps select optimal doses
given to patients during treatment. Moreover, using this platform, the risk of clinical
execution decreases by circumventing the conventional design of clinical trials and transla-
tion of innovative nanotherapies and combinations [47]. In this regard, to treat metastatic
castration-resistant prostate cancer, a CURATE.AI was utilized to guide the dosing of
ZEN-3694 (a bromodomain inhibitor) and enzalutamide that were used in combination to
treat metastatic castration-resistant prostate cancer to lessen serum prostate-specific antigen
(PSA) levels. Al platform decreased prostate-specific antigen and stopped disease progres-
sion [49]. Therefore, the technologies are improved at every stage, from drug development
to real-time in-human treatment by nanoparticles and carriers like nanodiamonds (NDs).
Besides, the most effective integration of drugs and nanoparticles can be determined by
some technologies like feedback system control (FSC) at every stage for use in nanoth-
erapy [47]. For example, a feedback system control was developed to standardize drug
dose combinations comprising one unmodified drug and three ND-modified drugs that
would provide maximum cytotoxicity. These combinations were investigated on several
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breast cancer cell lines. The results represented a better performance of the nanomedicine
drug combinations that were optimized using Al than an optimized unmodified drug
combination and ND monotherapy or unmodified drug administration (Figure 2a) [50].
Although nanotechnology and nanotherapy have been beneficial in related areas, they
are still critical before prevalent and usual clinic usage. ND-mediated therapy may be
manifestly enhanced by the unique capabilities provided by Al [47].

DOy

ND-DOX ND-BLEO ND-MTX PAC

Level of concentration
No-oox DN
No-mTx NI
NosLEOMN [ ’
e Cancer cells:
prmm—— * MDA-MB-231
«BT20
STAGE 1 STAGE 2 STAGE 3
Nanodiamond modified Biological assay Response surface mapping
combinatorial therapy and optimization
b Globally-Optimized Combination Nanothera

Simultaneously Optimized Nanotherapeutic Selection and
Nanotherapeutic Dosing

EFFICACY/SAFETY INDEX

DRUG 1 DOSE S DRUG 2 DOSE

Figure 2. (a) The structure of feedback system control. Stage 1: Loading of bleomycin (BLEO), mitoxantrone (MTX), and
DOX onto NDs was performed using physisorption, forming uniform and stable colloidal solutions, and combinations
were designed. Stage 2: Using customized liquid handling robotic procedures, the drug combinations were applied to
several types of cancers and control cells. The viability of cancer cell lines and control cell lines were utilized to feed into
the informatics system. Stage 3: The informatics system provided cellular response surfaces by regression analysis with
the customized statistic model on the combinations. Global combinatorial optimization was performed by differential
evolution on the surface of the therapeutic window. Then the predicted randomized and optimum combinations were
experimentally verified to confirm mapping accuracy [50]. (b) Make use of AI for nanomedicine optimization. A schematic
doublet nanotherapy drug interaction map is present. Using rationally designed combination nanotherapy arrangements
for initial calibration experiments [21].
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The field of nanomedicine is also considering a group of adoptable carriers to enhance
the localization of drug delivery and the targeting of disease sites. These carriers are
helpful for combinatorial nanotherapy. In the future, they can increase the efficiency of
treatments by simultaneous investigation of multiple disease pathways. Simultaneously,
combination therapy could face some challenges such as enhanced targeting efficiency,
rationally designed drug exposure, and preservation of drug synergy. The first promising
step to promote treatment outcomes is reaching drug synergy. A combination therapy
design presents multiple doses and drug parameter spaces that will be beneficial to opti-
mize treatment globally. Furthermore, patients vary considerably regarding the dosages
required to achieve drug synergy and the degree of drug exposure needed to achieve
optimal treatment outcomes. Additionally, for the same patient, these parameters change
over time. The appearance of Al can pave the way for accommodating this space into an
actionable response for treatments. Combination therapy will be notably progressed with
nanotechnology-modified therapeutics (Figure 2b) [21].

3.1. Clinical Treatment with AI

Nanomedicine is used in a variety of compounds in clinical cancer care. Being stud-
ied in clinical trials of patients with solid tumors, nanomedicine therapeutics include
viral vectors, drug conjugates, lipid-based nanocarriers, polymer-based nanocarriers, and
inorganic nanoparticles.

In addition to nanomedicine-based combination therapy design, AI would play a
significant role in optimizing the administration of nanotechnology-modified as well as
unmodified drug combinations. Al methods have been explored for clinical decisions to
manage treatment in the clinic that have included big data-driven approaches, where elec-
tronic medical records of patient treatment outcomes, genetic and broader-omics profiling,
and other information have been used for drug selection. These strategies collectively
represent an important first step towards using valuable information databases to refine
the regimen design process, which may improve broader patient population efficacy and
safety. However, when regimens are selected, changing synergies and evolving patient
responses to therapy still remain key challenges.

Al methods and computer vision have contributed to enhancing numerous aspects of
human visual perception to detect meaningful clinical patterns. For example, imaging data
have various applications, including segmentation of medical images, production, classi-
fication, and prediction of clinical datasets. Currently, Al methods are used in extensive
academic research laboratories, technology companies, and biotechnology corporations in
three main fields:

1. ML to predict the medicinal properties of molecular combinations and the targets of
drug discovery [51];

2. Applying pattern segmentation and recognition techniques on medical images (in-
cluding body surfaces and pathology slides, retinal scans, internal organs, and bones)
for rapid diagnosis and tracking of the progression of diseases, as well as generative
algorithms for computationally enhancing existing clinical and imaging datasets [52];

3. Development of Al methods in multimodal data sources, including clinical and
genomic data, to identify novel predictive models [53].

The use of Al in formulating nanotheranostics can provide an overview (Figure 3).
To understand the molecular onset of cancer, nanomedicine enters the fray by providing
many tools for the diagnosis and treatment of cancer. Nanomaterial-based delivery systems
in theranostics (combination of diagnostics and therapy in one platform) provide better
penetration of diagnostic and therapeutic agents into the body, which reduces the risk
compared to conventional therapies. Predictive Al algorithms can be used to predict
encapsulation efficiency (EE%) if there is a need to load imaging agents and drugs into the
particle. For instance, a QSPR model was employed to determine if molecules are capable
of being loaded into liposomes with more than 90% accuracy due to encapsulation process
conditions and their chemical structure. Several algorithms were used to implement this
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model, such as decision tree, SVM, and iterative stochastic elimination (ISE). An identical
approach was applied to predict the cytotoxicity of metal oxide NPs (MONPs). If this
approach is also applied to other NPs, the effects of NP surface labeling for imaging on their
biocompatibility can be investigated. Image analysis should also include the contribution
of Al when medical imaging is discussed [54]. Al algorithms are improved for the detection
and characterization, as well as continuous monitoring, of the reproducibility and accuracy
of tumors to spare time and enhance the diagnostic capabilities of medical personnel. Our
understanding of therapeutic efficacies and particle biological distribution profiles can be
enhanced by implementing the above algorithms in imaging from nanotheranostics.

Membrane Enteractions Bio-fluide Interactions

Size and Charge Encapsulation Efficiency Drug Release Kinetics

Figure 3. Computational methods promote different aspects of NP design. Available computational
models and ML algorithms allow the prediction of NP charge and size, drug EE%, engaging with
biomembranes, biofluids, and drug release kinetics; adapted from [55].

The shared fields of computer science and medicine, the proactive regulatory per-
spective, and the accessibility of large datasets have examined applications, testing, and
provide promising treatments to patients using advanced Al techniques (Figure 4).
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Figure 4. Applications of Al, computer vision, and ML in clinical development; adapted from [56].

Computation has a potentially significant effect on nanomedicine by improving the
modeling and processing of information in nanomedicine [57]. Nanotechnological ad-
vances and computational resources make computation and informatics a key instrument
to measure nanoscale toxicity. Nanoinformatics applications in nanomedicine include
the analysis of nanoparticle-based pharmaceuticals for structure-activity relationships.
Computational and theoretical ab-initio tools can deal with biomaterial nanosafety at such
a scale since approximately all physicochemical properties, e.g., concentration, shape, size,
surface area, or electrostatic properties, can influence their interaction with the media
nearby [58]. This offers a benefit in that it can be employed to create a targeted interaction
with a certain biological medium; however, further research is still required to monitor
nanotoxicity. New informatics instruments must be built and applied to effectively un-
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derstand such interactions. Literature data may be utilized in modern computational
techniques to demonstrate the connection between NP physical properties and biological
interactions and, consequently, its toxicity [59]. Due to their small dimensions, certain
concerns may be raised about their particular chemical, electrical, and optical properties.
However, the mechanism of action (MOA) and dosage may lead to NP toxic therapy in cer-
tain situations [60]. A database of toxicity that is capable of being shared is needed to create
successful nanoinformatics models. The Oregon Nanoscience and Micro-technologies Insti-
tute and National Institute for Occupational Safety and Health (NIOSH) are two examples
of these databases [61]. Databases can be utilized to replicate the toxicity process and feed
nanoinformatics models, thus minimizing the time spent translating NPs and drugs from
the test phase to clinical use. Nanoscale data integration poses a range of challenges. These
include the creation of NP toxicity databases and central repositories, information exchange
and storage criteria, nano-oncology domain, and decision-making support tools [62].

3.2. Physicochemical Properties of Nanomedicine

Physicochemical properties of nanomedicine include cell uptake, cytotoxicity, molec-
ular loading and molecular release. In addition to the properties mentioned, structural
properties, such as nanoparticle size, adhesion and the polydispersity of nanoparticles
determine the therapeutic activity of nanomedicines [63]. In this section, the effect of
the application of machine learning and data mining on the prediction of nanomedicine
properties is investigated.

3.2.1. Cellular Uptake

Cellular uptake of nanoparticles overcome the plasma membrane because this mem-
brane separates the space inside the cell from outside. It is important to know how these
nanoparticles enter the cell because the intracellular fate and biological response depends
on the proper uptake of nanoparticles. One of the first examples of machine learning and
statistical modeling to predict the properties of nanomedicine by Puzyn et al. was a simple
one-parameter linear regression model [64,65].

The use of nano-QSAR predictive models is very effective in cellular uptake because
the cost of developing new nanoparticles is very high. QSRAs are a way to build com-
putational mathematical models using the methods of GA, multivariate linear regression
(MLR), and partial least squares regression (PLS). This model predicts properties through
molecular descriptors and their coefficients [66]. Cellular uptake of nanoparticles occurs by
a process known as endocytosis and is influenced by the physical and chemical properties
of nanoparticles such as shape, size and chemical surface. As mentioned, one of the most
important barriers to anticancer drugs is the inability to cross the plasma membrane, which
is an effective barrier responsible for protecting living cells, severely restricts the entry
and exit of macromolecular substances and may cause the drug to be blocked or restricted
in a cell [64]. Nanoparticles are able to enter living cells through endostatic pathways,
and also these nanoparticles enter directly into the cytoplasm, which is a good choice for
drug delivery (Figure 5). The effect of endocytosis depends not only on the size of the
nanoparticles but also on the amount of charge and surface coverage. Additionally, the
adsorption properties determine the entry and exit of nanoparticles into the cell membrane.
In order to improve cell uptake for targeted intracellular drug delivery, optimization of
physical and chemical parameters is required [67]. Using nanoparticles of gold in different
sizes, Wang et al. presented a report that used 34 nanoparticles and 29 types of descriptors.
The k-nearest neighbors (k-NN) algorithm was also used in this model to improve cellular
uptake in human lung and kidney cell cancers.
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Figure 5. Cellular uptake with endocytosis pathways.

Due to the fact that a large number of parameters in QSAL model are already changed
and the design space is very high, Al and data mining can be used. Winkler et al. studied
cross-linked Iron Oxide (CLIO) nanoparticles using ML for cellular uptake. The data set
contains 108 samples, which are divided into 28 samples for the test set and 78 samples
for the training set. Linear and nonlinear QSAR models were used. The QSAR model was
developed in line with multiple linear regression. The accuracy in this article reached 63,
which was not a good accuracy. Several other articles show these results, which may have
been due to the small size of the nanoparticles or the modification of the nanoparticles.
Using a similar dataset has also caused this [67,68].

3.2.2. Cytotoxicity

Nanoparticle cytotoxicity is defined as the extent to which the interaction of nanopar-
ticles with cells disrupts cellular structures and/or processes essential for cell survival
and proliferation. Cytotoxicity assays are a quick and simple way to perform initial acute
toxicity assessments [69].

Cytotoxicity for healthy cells is a major challenge in drug delivery in the field of
cancer treatment. For nanoparticles used to drug delivery, low toxicity and minimal
environmental impact are prerequisite. One of the most successful and efficient methods
for low toxicity is data mining. There are several parameters to determine the presence or
absence of cytotoxicity in the laboratory. Many articles have discussed this, each exploring
an issue, like different nanoparticles, different methods, and different parameters [70].
Nanoparticles can produce reactive oxygen species (ROS), which affects the concentration
of intracellular calcium, activation of transcription factors, changes in cytotoxins as well as
damage to DNA, interference with the cell pathway and changes in the process of gene
transcription, etc. [71]. Oxidative stress can be a response to cell damage, considering
oxidative stress caused by nanoparticles. It can have several causes: first—ROS can be
used directly when both oxidants and free radicals are also present on the surface of the
particles from the surface where nanoparticles are created [72]; second—Dby entering the
mitochondria. Numerous studies have shown that very small nanoparticles can enter
the mitochondria and physical damage that leads to oxidative stress can be created [73];
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third—activation of inflammatory cells such as macrophages and neutrophils. Air sacs
are involved in the process of nanoparticle phagocytosis. This can produce oxygen, and
reactive species lead nitrogen [74]; fourth—metal nanoparticles (iron, copper, chromium,
vanadium, etc.) can cause ROS production [75].

Horev-Azaria et al. predicted the degree of toxicity by classifying the available data
as toxic and nontoxic, or the condition of cell survival and mouse lung incision using
the decision tree method. The samples consisted of 151 samples and the decision tree
consisted of two layers, and each layer had three offspring that included cell survival.
It was observed that when cell survival was 30%, accuracy was 0.92, when cell survival
was 25%, accuracy was 0.89, and when cell survival was 20%, accuracy was 0.85. This
model showed the most important descriptor used as the nanoparticle concentration. The
input conditions governing this test were cell type and contact time [76]. Winkler et al.
used the Bayesian neural network (BNN) and 3200 data, which were divided into four
categories according to biological conditions and different densities. The two linear and
nonlinear models used in this study show that the nonlinear model performed better
because the result reached an accuracy of 0.90. Finally, they found that apoptosis with
CLIO nanoparticles depends on the type of coating and the surface [68]. Using descriptors
and machine learning, Puzyn et al. were able to detect the cytotoxicity of 17 metal oxide
nanoparticles [64].

3.2.3. Molecular Loading

Molecule loading is an important property for nanoparticles. As mentioned, these
particles have many uses, one of which is drug delivery or imaging, in which the loading
of the molecule is very important. Generally, drug loading involves combining the drug
in a polymeric matrix or capsule, i.e., the drug is released from the solid state and is
prepared for absorption. Drug loading efficiency (DLE) and drug loading content (DLC)
are two important factors for nanomedicines that DLC indicates, and DLE indicates the
amount of drug used during the process. Loading capacity means dividing the total
amount of trapped data by the total nanoparticle weight [77].

) , Mass of the drug in nanomedicines
Drug loading content (Weight[Wt|%) = Initial mass of the nanomedicines

x 100% (1)

Drug loading ef ficiency (Weight[Wt]%) = Mass;j;;:zz}izzfézuif;?:?:j;cznes x 100%
O]

In fact, DLC depends on the physical and chemical structure of the substance and DLE
depends on the drug loading mechanism and the amount of drug in the feed and laboratory
conditions. When the drug is loaded through physical absorption, the loading efficiency
is poor, but when it is loaded through covalent bonding, high efficiency is observed. If
the nanocarrier capacity is low, the loading process will not work properly. High loading
is a prerequisite, but not a sufficient condition, for high drug loading efficiency. The
drug loading content may have a greater impact on loading efficiency [78,79]. Winkler
et al. used BNN to study the recovery rate of acetylcholinesterase (ACHE) bound to gold
nanoparticles. The study consisted of 80 samples using 14 dragon descriptors that achieved
80% accuracy, but the researchers said the results were appropriate. Of course, with
more accurate measurements and higher quality data, better results can be achieved [68].
Shalaby et al. used the ANN method in a study. In this study, the input variables were not
accurately measured and were experimentally measured, which included the molecular
weight of the polymer and the ratio of the polymer to the number of blocks. The accuracy
was 91%, which was predicted for the noscapine trap. The results of using ML and data
mining were very satisfactory, but with more data, better results are obtained [80].
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3.2.4. Nanoparticle Adhesion

Often, in the treatment and imaging of cancer and the advantage of extended per-
meability and retention of smaller nanoparticles, researchers limit the size of synthesized
nanoparticles to 200-300 nm. This is not necessarily the best strategy for expanding the new
therapeutic approach because there are many limitations to the treatment based on devel-
oped and penetrated therapy. Additionally, if nanoparticles are used to treat noncancerous
diseases, they will not succeed on the basis of vascularization because the specificity of this
method is to treat cancer. The nanoparticles are designed in studies to adhere to the walls
of the patient’s blood vessels and prevent the excretion of hydrodynamic forces. Useful
datasets are provided for data mining and ML to predict nanoparticle adhesion. Boso et al.
used ANN to predict adhesion of fluorescent polystyrene nanoparticles to the vessel wall
as a function of wall shear velocity and diameter of nanoparticles. This is important for
developing an optimal structural formulation of nanoparticles to expand their density in
diseased tissue [81]. Bozoyuk et al. were able to predict the size and potential of zeta
in different conditions using artificial neural networks and machine learning. For cell
adhesion by grouping the data, it was concluded that the nanoparticles that have more
potential for zeta cause more adhesion [82].

3.2.5. Polydispersity

One of the challenges and goals of the field of nanomedicine is the ability to produce
finely dispersed nanoparticles. Nanoparticles typically exhibit relatively high disintegra-
tion, leading to several forms, such as nanoparticle mixing with changing loading capacity,
reduced physical stability, variability of release profile and unpredictable degradation and
clearance rate. Ismailzadeh-Gharehaghi et al. predicted the disintegration of chitosan
nanoparticles using four input properties: amplitude of chitosan solution, chitosan solution
sonication time, chitosan solution concentration, and pH of chitosan solution. The dataset
used in this study contains 39 samples. The application of this model to the data evaluation
reports R? equal to 0.84. The data mining technique shows that when the concentration of
chitosan solution increases, the disintegration decreases, and when the pH of the chitosan
solution becomes more or less acidic, the disintegration rate increases [83]. Nanoparticles
generally show a high degree of disintegration. A model with an artificial neural network
was designed with polymer viscosity, contact angle and surface tension as input, and
polydispersity as odor output. This model predicted a particle size between 7 and 400 nm.
The particle prediction percentage was as follows: 2% for training, 4% for validation, and
6% for testing. Finally, it was found that the activity of the polymer surface has the greatest
effect on particle size [84].

4. AI-Based Nanorobots for Drug Delivery

Nanorobotics is a new area of nanotechnology that deals with atomic, molecular, or
cellular structure of devices. Nanorobots can be designed to diagnose and treat lethal
diseases, and they have unique sensors for the identification of the target molecules.
One of the most interesting research areas is the use of nanorobots to treat cancer. The
primary reason for the advancement of nanorobotics is potentially cancer treatment. The
progress of effectively targeted drug delivery to minimize the side effects of chemotherapy
is an important aspect of ensuring effective treatment for patients. As drug carriers for
prompt dosage regimens, nanorobots enable the maintenance, as required, of chemicals
into the bloodstream for a longer period of time. Therefore, they provide the expected
pharmacokinetic parameters for anticancer chemotherapy [13,15,85,86]. For molecular
detection, diagnosis, and destruction in the initial phases of cancer progress of metastatic or
malignant tumor cells, nanorobots often need a biosensing component. Nanorobots would
lead to the development of personalized medicine. The advancement of nanotechnology
has expanded the potential of nanorobots for screening and monitoring health conditions,
and they can also be used for direct intravascular therapy. Nanorobots are also used to
avoid aneurysm rupture and to cure it in critical cases. The intravascular capability of a
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nanorobot will decrease the amount of hemorrhaging by targeted drug delivery, and they
can also be used to diagnose and treat cancer directly [87-89].

In chemotherapy, nanorobots will be used for treating cancer by precise chemistry dose.
A similar approach could be taken to enable nanorobots to provide anti-HIV medicines.
Medical nanorobotics are to be used in early diagnosis and targeted drug delivery for
cancer treatment, tracking of diabetes pharmacokinetics and other health care methods.
The use of injection nanorobots for cellular therapy in future medical nanotechnology
is anticipated [90]. The advancement of micro/nano-electromechanical technologies has
created the possibility of manufacturing implantable robots for a number of tasks, such as
controlled delivery of drug organs. Due to significant developments in nanotechnology, the
production of nanorobots, which are combined with external or internal power supplies,
sensors and Al, has attracted increased interest. Nanorobots are quite promising for toxic
and therapeutic detection. In the automation of molecular processing, the usage of Al
offers the possibility to monitor nanorobots actions or movements. After intravenous
injection, nanorobots are distributed into the bloodstream and their activity is promoted by
bioactuation mechanisms. A new type of controlled drug release system is recommended
for targeted therapy of a variety of disorders, particularly chronic disorders. The use of
this system in personal medicine is extremely important. The successful nanodevices
for drug delivery are magnetoelectric nanorobots. Magnetic fields monitor the position
of these nanocarriers. The effectiveness and elimination of the adverse effects of the
therapeutic agents are enhanced with magnetic resonance imaging (MRI) dependent on
drug delivery systems including MRI propellants and monitoring devices, and control
and nanocapsulates filled with medications. The usage of MRI-guided nanorobotics
systems allows for the inactive targeting process of real-time control of nanocapsules. The
use of ANNs for forecasting and improving the output of nanorobots incorporated with
biosensors and transducers is a promising approach to tumor cell detection and selective
drug delivery, which may have crucial importance in cancer therapy and decreased harmful
drug reactions [14,91].

4.1. Use of Robots to Monitor Effectiveness of Treatment

In such cases as recovery, robotics can also be effective for assessing changes in human
efficiency. One field where Al could be used helpfully is to track drug delivery to target
organs, tissues or tumors. When the therapist tries to reach a tumor center which appears
to be less vascular, anoxic but most active delivery problems arise. Researchers have
sought to use a natural agent with the required properties as a supplement for “intelligent”
nanoparticles to eliminate restrictions from mechanical or radioactive robotics. The external
magnetic origin gives initial direction and such nanorobots can be linked covalently with
therapeutic characteristics of nanoliposomes [14,91].

4.2. Intelligent System Design for Bionanorobots in Drug Delivery

Bionanorobots are the smart structures that are utilized for drug delivery, early diag-
nosis, and treatment at the cellular level. The damaging side effects of chemotherapy in
cancer treatment lead to the use of bionanorobots in order to give the drugs directly to the
tumor cells. In this way, the dose of the drug can be controlled, and the negative side effects
can be reduced. Fluid shear stress is a significant factor in targeted drug delivery through
nanorobots. In order to have precise modeling of tracking behavior and data transferring,
some control tools such as Al, neural networks and fuzzy logic must be used. In the treat-
ment of tumor cells, it is suggested to use a fuzzy logic-based intelligent system to decrease
the false-positive rate in the diagnosis and increase controlled drug delivery [92]. In fact,
the inspiration for in vivo applications of bio micro/nanorobots is to deliver precision
drugs with greater speed to the target tumor. The distribution of fluorouracil medicines to
suppress tumor growth in the model of the mice was magnetically driven by nanorobots.
In order to deliver a significant amount of therapeutics in a site-specific of tumor, the drug
release was activated externally [14,93].
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5. AI Ability Compared to Other Methods

The advent of Al techniques can alter and improve the role of computers in engi-
neering and science. In recent years, ML, as a subfield of Al, has evolved rapidly. The
performance of statistical algorithms that are at the heart of ML applications enhances
with training. Scientific models can be generated, tested, and refined using the growing
infrastructure of machine-learning tools. Such methods are proper for addressing com-
plicated problems. These problems may consist of nonlinear processes or combinatorial
spaces where traditional procedures cannot find solutions or can deal with them just at a
great computational cost [94]. ML-based algorithms can reduce a part of the computational
burdens of simulations by partially replacing numerical methods with empiricism. The
demand for massive training datasets is one of the major bottlenecks of ML algorithms.
These datasets are provided by the terabytes of experimental and computational data
gathered over the last few decades. Complex ML systems, like ANN, have the capability
of highly nonlinear predicting with sufficient data. Extracting meaningful features of
scientific value from the data is not always easy and can occasionally be as time-consuming
as the experiments or computations providing them. Hence, sophisticated visualization
techniques, signal processing algorithms, and statistics are essential for this task [95].

Finding a good balance between accuracy and computational resources is one of the
key goals in simulations and computational modeling. ML methods can enhance the
balance between speed and accuracy [95].

6. Challenging Issues and the Potential Solutions

Biomedical nanotechnology is devoted to investigating nanotechnology and nanoscience
for health wellness, with the final aim of personalized health management. According to
the reports of health agencies, technologies play an important role in cancer treatment,
progression management, and monitoring. Additionally, it is proved that the diagnostics
and treatment of a cancer can be more accessible, affordable, and sensitive by the intro-
duction of nanotechnology assisted approaches. In biomedical research, nanosystems are
beneficial for the development and design of therapies regarding patient profiles, which
is personalized health management. Besides, notable features of numerical approaches,
nano-assisted approaches such as Al including deep learning and machine learning, and
bioinformatics can be very effective in the comprehension of predictions and trends [96].

Different problems like nanotechnology-related ones can be solved using Al tools.
Additionally, data interpretation, complex tasks and computations, and drug design with
lower side effects can be conducted using these powerful tools. Successful Al-based
procedures result in development of functional, biocompatible, and stable drug delivery
systems. In spite of advantages of Al methods, like continuous and fast performance of
different tasks, they face several problems including high costs of maintenance, restoring,
lost code recovery and system restoring, recurrent upgrading of software, the reflection of
imprecision in the results, ethical concerns, risk of losing the data and lack of judgment,
creativity, common sense or proper response to the altering environment. The mechanism of
association between variables may not be clarified using ANNs models. Besides, achieving
a reliable ANN-model requires a lot of time, application of sample size and big data for
constructing more precise models. The reliability and performance of AI methods may
negatively be affected by the deficiency of rational elucidation of the biological events.
Some problems such as overtraining, overfitting, and the incorrect model validation can
be overcome utilizing some methods like early stopping, Bayesian regularization, and
training with dropout techniques.

ANN s are able to model complicated datasets and generate predictable models. How-
ever, with the concern of the clinical response to drug products, selecting proper datasets
or algorithms in drug research attempts that are based on ANNs can be completely chal-
lenging. In this condition, the regulatory approval and commercialization of the products
that are related with Al can be promoted by efficient annotation of datasets, application of
appropriate techniques for more precise quantification of errors and uncertainties in the
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experimental procedures, model checkers for approving the performance of Al systems,
computational methods for predicting the biological characteristics of molecules, optimiz-
ing algorithms to improve site-specific drug delivery and the computational efficiency, risk
management, and personalized dosing [14].

Al algorithms also play a significant role in patient classification, optimizing properties
of nanomedicines, and screening patients’ drug suitability. However, there are several chal-
lenges for the clinical implementation of these algorithms. Obtaining massive datasets for
training the algorithms is one of the most essential issues to attain high accuracy in these
computational methods. Thus, for the success of these models in clinics, data standardization
along with data gathering from heterogenic populations of patients is pivotal. Moreover, a
stronger relationship between the specialists in the fields of computer science, medicine, and
nanomaterials and administration of computation in industrial and academic research will be
helpful for clinical relevance and performance optimization [55,97].

7. Discussion and Concluding Remarks

Generally, Al technology has a massive impact on biomedical and biological sciences.
The introduction of Al and related technologies in nanomedicine provides great hope
for early detection of cancer and advanced cancer treatment in an effective way. Al and
related technologies play a vital role in driving drug development in the last phase of
clinical therapy. The use of Al overcomes the low response and failure of clinical trials due
to inappropriate (below optimum) drug composition, thereby increasing the number of
authorized drugs. Nanomedicine is used to increase drug targeting in specific situations
to maintain drug coordination. However, the concentration of drug needed in the target
position may vary from patient to patient. Additionally, drug coordination created with a
particular dose for one patient may have adverse effects for another patient. It is believed
that nanomedicine with Al has gained wide acceptance and has widened the gap between
the information provided in the laboratory environment and the patient. The steady
growth of the field of nanomedicine has led to the development of nanoinformatics and
subsequently the use of data mining and ML to develop nano-QSARs and other methods
to predict both functional and structural properties of nanoparticles. Research articles
focusing on this area of research appear to be published in a wide variety of journals.
The implementation of the predictors of dosing and the efficacy of treatment will aid
nanomedicines to enhance their efficiency in clinical settings. Due to the continuous growth
of nanomedicine, a development is witnessed in nanoinformatics and, thus, application
of ML and data mining to develop approaches to predicting the structural and functional
properties of NPs and then optimizing therapeutic methods.

Overfitting and related constraints should always be considered in generalization
processes. ANN'’s black-box nature is a constraint on ancillary health, where medics resort
to quantitative methods to support their decisions although they cannot yet be replaced.
Bayesian-regularized NNs helped determine the relationships between descriptors and
response variables. They govern model complexity to strike a balance between variance
and bias. In the first case, the model is very simple to record the basic relations between
the data, and in the second case, the model is very complicated and fits the noise and
the underlying bonds. An almost optimal method can be developed based on Bayesian
regularization to regularize nonlinear NN regression models. The use of ML to integrate a
variety of large-scale data provides a way for the prediction of the drug-neutralizing effects
of the underlying molecular networks of the disease or leads to less toxicity. In this way, the
best targets can be selected, and ultimately the efficacy can be predicted. Several ML-based
approaches have been developed to identify the interactions between the target and the
drug, critical for both the discovery of new drugs and the repositioning of drugs. The latest
studies in the shared fields of computer science and medicine, the proactive regulatory
perspective, and the accessibility of large datasets have examined applying, testing, and
providing promising treatments to patients using advanced ML and Al techniques.
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ML and Al grow exponentially and will soon become omnipresent. Two factors, i.e.,
data accessibility and faster processing capacity, have contributed to the global upsurge of
Al There is an exponential growth in the volume of data produced since 90% of the data
have been produced globally only over the previous two years.

Author Contributions: Conceptualization, M.S. (Madjid Soltani), EM.K., and M.S. (Mohammad
Souri); methodology, EM.K., M.S. (Mohammad Souri), K.R,, S.Z.H., TH., AK, and M.H.P; inves-
tigation, EML.K., M.S. (Mohammad Souri), S.Z.H., TH., AK., and M.H.P; resources, M.S. (Madjid
Soltani); data curation, M.S. (Mohammad Souri), S.Z.H., TH., AK.,, and M.H.P,; writing—original
draft preparation, EM.K., M.S. (Mohammad Souri), S.Z.H., TH., AK,, and M.H.P,; writing—review
and editing, M.S. (Madjid Soltani), EM.K., and K.R.; visualization, M.S. (Mohammad Souri), S.Z.H.,
T.H., AK,, and M.H.P,; supervision, M.S. (Madjid Soltani); project administration, M.S. (Madjid
Soltani), EM.K., M.S. (Mohammad Souri); funding acquisition, K.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Saman, R.A ; Igbal, M. Nanotechnology-Based Drug Delivery Systems: Past, Present and Future. In Nanotechnology: Applications
in Energy, Drug and Food; Springer: Berlin/Heidelberg, Germany, 2019; pp. 175-185. [CrossRef]

2. Kashkooli, EM,; Soltani, M.; Souri, M.; Meaney, C.; Kohandel, M. Nexus between in silico and in vivo models to enhance clinical
translation of nanomedicine. Nano Today 2021, 36, 101057. [CrossRef]

3. Kashkooli, EM,; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static
and dynamic targeting strategies. J. Control. Release 2020, 327, 316-349. [CrossRef]

4.  Hassanzadeganroudsari, M.; Soltani, M.; Heydarinasab, A.; Apostolopoulos, V.; Akbarzadehkhiyavi, A.; Nurgali, K. Targeted
nano-drug delivery system for glioblastoma therapy: In vitro and in vivo study. J. Drug Deliv. Sci. Technol. 2020, 60, 102039.
[CrossRef]

5. Stylianopoulos, T.; Munn, L.L.; Jain, R.K. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery
and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018, 4, 292-319. [CrossRef]

6.  Dewhirst, M.W.; Secomb, T.W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 2017, 17, 738-750.
[CrossRef]

7. Kashkooli, EM.; Soltani, M.; Rezaeian, M.; Taatizadeh, E.; Hamedi, M.-H. Image-based spatio-temporal model of drug delivery in
a heterogeneous vasculature of a solid tumor—Computational approach. Microvasc. Res. 2019, 123, 111-124. [CrossRef]

8. Kashkooli, EM.; Soltani, M.; Hamedi, M.-H. Drug delivery to solid tumors with heterogeneous microvascular networks: Novel
insights from image-based numerical modeling. Eur. J. Pharm. Sci. 2020, 151, 105399. [CrossRef]

9. Lane, L.A. Physics in nanomedicine: Phenomena governing the in vivo performance of nanoparticles. Appl. Phys. Rev.
2020, 7, 011316. [CrossRef]

10. Wong, C.; Stylianopoulos, T.; Cui, ].; Martin, J.; Chauhan, V.P; Jiang, W.; Popovi¢, Z.; Jain, R.K.; Bawendi, M.G.; Fukumura, D.
Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426-2431.
[CrossRef]

11. Kashkooli, EM.; Soltani, M.; Momeni, M.M.; Rahmim, A. Enhanced drug delivery to solid tumors via drug-loaded nanocarriers:
An image-based computational framework. Front. Oncol. 2021, in press.

12.  Saw, W.S.; Anasamy, T.; Foo, Y.Y.; Kwa, Y.C.; Kue, C.S; Yeong, C.H.; Kiew, L.V.; Lee, H.B.; Chung, L.Y. Delivery of Nanoconstructs
in Cancer Therapy: Challenges and Therapeutic Opportunities. Adv. Ther. 2021, 4, 2000206. [CrossRef]

13. Luo, M,; Feng, Y.; Wang, T.; Guan, ]. Micro-/Nanorobots at Work in Active Drug Delivery. Adv. Funct. Mater. 2018, 28, 1706100.
[CrossRef]

14. Hassanzadeh, P; Atyabi, F.; Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug
Deliv. Rev. 2019, 151-152, 169-190. [CrossRef]

15. Tripathi, R.; Kumar, A. Application of Nanorobotics for Cancer Treatment. Mater. Today Proc. 2018, 5, 9114-9117. [CrossRef]

16. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine
intelligence approach for drug discovery. Mol. Divers. 2021, 1-46. [CrossRef]

17.  Piroozmand, F.; Mohammadipanah, F.; Sajedi, H. Spectrum of deep learning algorithms in drug discovery. Chem. Biol. Drug Des.

2020, 96, 886-901. [CrossRef]


http://doi.org/10.1007/978-3-319-99602-8_7
http://doi.org/10.1016/j.nantod.2020.101057
http://doi.org/10.1016/j.jconrel.2020.08.012
http://doi.org/10.1016/j.jddst.2020.102039
http://doi.org/10.1016/j.trecan.2018.02.005
http://doi.org/10.1038/nrc.2017.93
http://doi.org/10.1016/j.mvr.2019.01.005
http://doi.org/10.1016/j.ejps.2020.105399
http://doi.org/10.1063/1.5052455
http://doi.org/10.1073/pnas.1018382108
http://doi.org/10.1002/adtp.202000206
http://doi.org/10.1002/adfm.201706100
http://doi.org/10.1016/j.addr.2019.05.001
http://doi.org/10.1016/j.matpr.2017.10.029
http://doi.org/10.1007/s11030-021-10217-3
http://doi.org/10.1111/cbdd.13674

Cancers 2021, 13, 2481 21 of 23

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Thakur, A.; Mishra, A.P.; Panda, B.; Rodriguez, D.; Gaurav, I.; Majhi, B. Application of artificial intelligence in pharmaceutical and
biomedical studies. Curr. Pharm. Des. 2020, 26, 3569-3578. [CrossRef]

Waheed, A.; Ashwin, K. Assessing the Role of Artificial Intelligence in the Design of Drug Delivery Systems. Int. J. Med. Sci.
Diagn. Res. 2020, 4, 12. [CrossRef]

Sharma, R.; Singh, D.; Gaur, P; Joshi, D. Intelligent automated drug administration and therapy: Future of healthcare. Drug Deliv.
Transl. Res. 2021, 1-25. [CrossRef]

Ho, D.; Wang, P.; Kee, T. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019, 4, 365-377. [CrossRef]

Maroni, A.; Zema, L.; Del Curto, M.D.; Loreti, G.; Gazzaniga, A. Oral pulsatile delivery: Rationale and chronopharmaceutical
formulations. Int. J. Pharm. 2010, 398, 1-8. [CrossRef]

Staples, M.; Daniel, K.; Cima, M.].; Langer, R. Application of Micro- and Nano-Electromechanical Devices to Drug Delivery.
Pharm. Res. 2006, 23, 847-863. [CrossRef] [PubMed]

Sutradhar, K.B.; Sumi, C.D. Implantable microchip: The futuristic controlled drug delivery system. Drug Deliv. 2014, 23, 1-11.
[CrossRef]

Mobaraki, M.; Soltani, M.; Harofte, S.Z.; Zoudani, E.L.; Daliri, R.; Aghamirsalim, M.; Raahemifar, K. Biodegradable Nanoparticle
for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020, 12, 1232. [CrossRef] [PubMed]

Patel, ].; Patel, A. Artificial Neural Networking in Controlled Drug Delivery. In Artificial Neural Network for Drug Design, Delivery
and Disposition; Academic Press: Cambridge, MA, USA, 2016; pp. 195-218. [CrossRef]

Metwally, A.A.; Hathout, R M. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery. Mol. Pharm.
2015, 12, 2800-2810. [CrossRef]

Petrovi¢, J.; Ibri¢, S.; Betz, G.; Parojci¢, J.; Duri¢, Z. Application of dynamic neural networks in the modeling of drug release from
polyethylene oxide matrix tablets. Eur. J. Pharm. Sci. 2009, 38, 172-180. [CrossRef] [PubMed]

Paixao, P.; Gouveia, L.; Morais, ].A. Prediction of the in vitro intrinsic clearance determined in suspensions of human hepatocytes
by using artificial neural networks. Eur. |. Pharm. Sci. 2010, 39, 310-321. [CrossRef]

Xu, W.-J; Li, N.; Gao, C.-K. Preparation of controlled porosity osmotic pump tablets for salvianolic acid and optimization of the
formulation using an artificial neural network method. Acta Pharm. Sin. B 2011, 1, 64-70. [CrossRef]

Parojci¢, J.; Ibri¢, S.; Djuri¢, Z.; Jovanovi¢, M.; Corrigan, O.I. An investigation into the usefulness of generalized regression neural
network analysis in the development of level A in vitro—in vivo correlation. Eur. J. Pharm. Sci. 2007, 30, 264-272. [CrossRef]
Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568-576. [CrossRef]

Davoudizadeh, T.; Sajjadi, S.M.; Ma’Mani, L. Exhaustive investigation of drug delivery systems to achieve optimal condition of
drug release using non-linear generalized artificial neural network method: Feedback from the loading step of drug. J. Iran. Chem.
Soc. 2018, 15, 1999-2006. [CrossRef]

Boztepe, C.; Kiinkiil, A.; Yiiceer, M. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH
and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. J. Drug Deliv. Sci. Technol. 2020, 57, 101603. [CrossRef]
Damiati, S.A.; Alaofi, A.L.; Dhar, P.; Alhakamy, N.A. Novel machine learning application for prediction of membrane insertion
potential of cell-penetrating peptides. Int. J. Pharm. 2019, 567, 118453. [CrossRef] [PubMed]

Aroui, S.; Kenani, A. Cell-Penetrating Peptides: A Challenge for Drug Delivery. Cheminform. Its Appl. 2020. [CrossRef]

De Matas, M.; Shao, Q.; Biddiscombe, M.E; Meah, S.; Chrystyn, H.; Usmani, O.S. Predicting the clinical effect of a short acting
bronchodilator in individual patients using artificial neural networks. Eur. J. Pharm. Sci. 2010, 41, 707-715. [CrossRef] [PubMed]
de Canete, ].F; Gonzalez-Perez, S.; Ramos-Diaz, J. Artificial neural networks for closed loop control of in silico and ad hoc type 1
diabetes. Comput. Methods Programs Biomed. 2012, 106, 55-66. [CrossRef]

Bouharati, S.; Bounechada, M.; Djoudi, A.; Harzallah, D.; Alleg, F.; Benamrani, H. Prevention of obesity using artificial intelligence
techniques. Int. J. Sci. Eng. Investig. 2012, 1, 146-150.

Ichimasa, K.; Kudo, S.-E.; Mori, Y.; Misawa, M.; Matsudaira, S.; Kouyama, Y.; Baba, T.; Hidaka, E.; Wakamura, K.; Hayashi,
T.; et al. Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal
cancer. Endoscopy 2017, 50, 230-240. [CrossRef] [PubMed]

Kolisnyk, T.Y.; Ruban, O.A.; Fil, N.Y.; Kutsenko, S.A. Application of an Artificial Neural Network for Design of Sustained-Release
Matrix Tablets Containing Vaccinium Myrtillus Leaf Powder Extract. Asian J. Pharm. 2018, 12, 2. [CrossRef]

Sedaghatkish, A.; Rezaeian, M.; Heydari, H.; Ranjbar, A.M.; Soltani, M. Acoustic streaming and thermosensitive liposomes for
drug delivery into hepatocellular carcinoma tumor adjacent to major hepatic veins; an acoustics-thermal-fluid-mass transport
coupling model. Int. |. Sci. 2020, 158, 106540. [CrossRef]

Tehrani, M.H.; Soltani, M.; Kashkooli, EM. Numerical simulation of synergistic interaction of magnetic hyperthermia and
intraperitoneal delivery of temperature-sensitive liposomes. In Proceedings of the 2020 27th National and 5th International
Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26-27 November 2020; pp. 1-6.

Rezaeian, M.; Sedaghatkish, A.; Soltani, M. Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal
delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Deliv. 2019, 26, 898-917. [CrossRef] [PubMed]
Jakupovic, A.; Kovacevic, Z.; Gurbeta, L.; Badnjevic, A. Review of artificial neural network application in nanotechnology. In
Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10-14 June 2018;
pp- 1-4.

Amani, A.; Mohammadyani, D. Artificial Neural Networks: Applications in Nanotechnology; IntechOpen: London, UK, 2011.


http://doi.org/10.2174/1381612826666200515131245
http://doi.org/10.32553/ijmsdr.v4i12.725
http://doi.org/10.1007/s13346-020-00876-4
http://doi.org/10.1039/C8NH00233A
http://doi.org/10.1016/j.ijpharm.2010.07.026
http://doi.org/10.1007/s11095-006-9906-4
http://www.ncbi.nlm.nih.gov/pubmed/16715375
http://doi.org/10.3109/10717544.2014.903579
http://doi.org/10.3390/pharmaceutics12121232
http://www.ncbi.nlm.nih.gov/pubmed/33353013
http://doi.org/10.1016/b978-0-12-801559-9.00010-7
http://doi.org/10.1021/mp500740d
http://doi.org/10.1016/j.ejps.2009.07.007
http://www.ncbi.nlm.nih.gov/pubmed/19632323
http://doi.org/10.1016/j.ejps.2009.12.007
http://doi.org/10.1016/j.apsb.2011.04.002
http://doi.org/10.1016/j.ejps.2006.11.010
http://doi.org/10.1109/72.97934
http://doi.org/10.1007/s13738-018-1397-9
http://doi.org/10.1016/j.jddst.2020.101603
http://doi.org/10.1016/j.ijpharm.2019.118453
http://www.ncbi.nlm.nih.gov/pubmed/31233847
http://doi.org/10.5772/intechopen.91684
http://doi.org/10.1016/j.ejps.2010.09.018
http://www.ncbi.nlm.nih.gov/pubmed/20932900
http://doi.org/10.1016/j.cmpb.2011.11.006
http://doi.org/10.1055/s-0043-122385
http://www.ncbi.nlm.nih.gov/pubmed/29272905
http://doi.org/10.22377/ajp.v12i02.2326
http://doi.org/10.1016/j.ijthermalsci.2020.106540
http://doi.org/10.1080/10717544.2019.1660435
http://www.ncbi.nlm.nih.gov/pubmed/31526065

Cancers 2021, 13, 2481 22 of 23

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Khong, J.; Wang, P.; Gan, T.R.; Ng, J.; Anh, T.T.L.; Blasiak, A.; Kee, T.; Ho, D. The role of artificial intelligence in scaling
nanomedicine toward broad clinical impact. In Nanoparticles for Biomedical Applications; Elsevier: Amsterdam, The Netherlands,
2020; pp. 385—407. [CrossRef]

Rashid, M.B.M.A; Toh, T.B.; Hooi, L,; Silva, A.; Zhang, Y.; Tan, P.F,; Teh, A.L.; Karnani, N.; Jha, S.; Ho, C.-M.; et al. Optimizing
drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci. Transl. Med. 2018,
10, eaan(0941. [CrossRef] [PubMed]

Pantuck, A.J.; Lee, D.K,; Kee, T.; Wang, P; Lakhotia, S.; Silverman, M.H.; Mathis, C.; Drakaki, A.; Belldegrun, A.S.; Ho, C.M.; et al.
Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient
using CURATE. Al an artificial intelligence platform. Adv. Ther. 2018, 1, 1800104. [CrossRef]

Wang, H.; Lee, D.-K.; Chen, K.-Y,; Chen, J.-Y.; Zhang, K.; Silva, A.; Ho, C.-M.; Ho, D. Mechanism-Independent Optimization of
Combinatorial Nanodiamond and Unmodified Drug Delivery Using a Phenotypically Driven Platform Technology. ACS Nano
2015, 9, 3332-3344. [CrossRef] [PubMed]

Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P,; Spitzer, M.; et al.
Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463—-477. [CrossRef]
Rana, A.; Yauney, G.; Lowe, A.; Shah, P. Computational Histological Staining and Destaining of Prostate Core Biopsy RGB Images
with Generative Adversarial Neural Networks. In Proceedings of the 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), Orlando, FL, USA, 17-20 December 2018; pp. 828-834.

Rajkomar, A.; Oren, E.; Chen, K,; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, PJ.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate
deep learning with electronic health records. NPJ Digit. Med. 2018, 1, 1-10. [CrossRef]

Xu, Y,; Hosny, A.; Zeleznik, R.; Parmar, C.; Coroller, T.; Franco, I.; Mak, R.H.; Aerts, H.]. Deep Learning Predicts Lung Cancer
Treatment Response from Serial Medical Imaging. Clin. Cancer Res. 2019, 25, 3266-3275. [CrossRef]

Adir, O.; Poley, M,; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating
artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 2020, 32, €1901989. [CrossRef]

Shah, P.; Kendall, F; Khozin, S.; Goosen, R.; Hu, ].; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning
in clinical development: A translational perspective. NPJ Digit. Med. 2019, 2, 1-5. [CrossRef]

Maojo, V.; Martin-Sanchez, F.; Kulikowski, C.; Rodriguez-Paton, A.; Fritts, M. Nanoinformatics and DNA-Based Computing;:
Catalyzing Nanomedicine. Pediatr. Res. 2010, 67, 481-489. [CrossRef]

Singh, A.V.; Laux, P,; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A.-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in
nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods 2019, 29, 378-387. [CrossRef]
[PubMed]

Lammers, T.; Aime, S.; Hennink, W.E.; Storm, G.; Kiessling, F. Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 1029-1038.
[CrossRef] [PubMed]

Ha, E.; Basu, N.; Bose-O'Reilly, S.; Dérea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the
impact of mercury on human health. Environ. Res. 2017, 152, 419-433. [CrossRef] [PubMed]

Gehlenborg, N.; 1 O'Donoghue, S.; Baliga, N.S.; Goesmann, A.; A Hibbs, M.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider,
R.; Tenenbaum, D.; et al. Visualization of omics data for systems biology. Nat. Methods 2010, 7, S56-568. [CrossRef]

Fadeel, B.; Farcal, L.; Hardy, B.; Vazquez-Campos, S.; Hristozov, D.; Marcomini, A.; Lynch, I.; Valsami-Jones, E.; Alenius, H.;
Savolainen, K. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 2018, 13, 537-543. [CrossRef]
Puzyn, T.; Leszczynska, D.; Leszczynski, ]. Toward the development of “Nano-QSARs”: Advances and challenges. Small 2009, 5,
2494-2509. [CrossRef]

Puzyn, T.; Rasulev, B.; Gajewicz-Skretna, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.-M.; A Toropov, A.; Leszczynska, D.;
Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175-178.
[CrossRef] [PubMed]

Winkler, D.A. Role of Artificial Intelligence and Machine Learning in Nanosafety. Small 2020, 16, e2001883. [CrossRef]
Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, S.Y.; Mumper, R.J.; Tropsha, A. Quantitative Nanostructure—Activity
Relationship Modeling. ACS Nano 2010, 4, 5703-5712. [CrossRef]

Jones, D.E.; Ghandehari, H.; Facelli, ].C. A review of the applications of data mining and machine learning for the prediction of
biomedical properties of nanoparticles. Comput. Methods Programs Biomed. 2016, 132, 93-103. [CrossRef]

Winkler, D.; Burden, E; Yan, B.; Weissleder, R.; Tassa, C.; Shaw, S.; Epa, V. Modelling and predicting the biological effects of
nanomaterials. Sar Qsar Environ. Res. 2014, 25, 161-172. [CrossRef] [PubMed]

Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles. Small 2008, 4, 26—49. [CrossRef] [PubMed]

Stirling, D.A. The Nanotechnology Revolution. Nanotechnol. Revolut. 2018, 281-434. [CrossRef]

Buzea, C.; Pacheco, LI; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17-MR71.
[CrossRef] [PubMed]

Uusitalo, L.M.; Hempel, N. Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and Nanotube
Applications. Int. J. Mol. Sci. 2012, 13, 10660-10679. [CrossRef]

Singh, N.; Manshian, B.; Jenkins, G.J.; Griffiths, S.M.; Williams, PM.; Maffeis, T.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology:
The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891-3914. [CrossRef]


http://doi.org/10.1016/b978-0-12-816662-8.00022-9
http://doi.org/10.1126/scitranslmed.aan0941
http://www.ncbi.nlm.nih.gov/pubmed/30089632
http://doi.org/10.1002/adtp.201800104
http://doi.org/10.1021/acsnano.5b00638
http://www.ncbi.nlm.nih.gov/pubmed/25689511
http://doi.org/10.1038/s41573-019-0024-5
http://doi.org/10.1038/s41746-018-0029-1
http://doi.org/10.1158/1078-0432.CCR-18-2495
http://doi.org/10.1002/adma.201901989
http://doi.org/10.1038/s41746-019-0148-3
http://doi.org/10.1203/PDR.0b013e3181d6245e
http://doi.org/10.1080/15376516.2019.1566425
http://www.ncbi.nlm.nih.gov/pubmed/30636497
http://doi.org/10.1021/ar200019c
http://www.ncbi.nlm.nih.gov/pubmed/21545096
http://doi.org/10.1016/j.envres.2016.06.042
http://www.ncbi.nlm.nih.gov/pubmed/27444821
http://doi.org/10.1038/nmeth.1436
http://doi.org/10.1038/s41565-018-0185-0
http://doi.org/10.1002/smll.200900179
http://doi.org/10.1038/nnano.2011.10
http://www.ncbi.nlm.nih.gov/pubmed/21317892
http://doi.org/10.1002/smll.202001883
http://doi.org/10.1021/nn1013484
http://doi.org/10.1016/j.cmpb.2016.04.025
http://doi.org/10.1080/1062936X.2013.874367
http://www.ncbi.nlm.nih.gov/pubmed/24625316
http://doi.org/10.1002/smll.200700595
http://www.ncbi.nlm.nih.gov/pubmed/18165959
http://doi.org/10.1201/9781315110837
http://doi.org/10.1116/1.2815690
http://www.ncbi.nlm.nih.gov/pubmed/20419892
http://doi.org/10.3390/ijms130910660
http://doi.org/10.1016/j.biomaterials.2009.04.009

Cancers 2021, 13, 2481 23 of 23

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.
92.

93.

94.

95.

96.
97.

Li, J.J.; Muralikrishnan, S.; Ng, C.-T.; Yung, L.-Y.L.; Bay, B.-H. Nanoparticle-induced pulmonary toxicity. Exp. Biol. Med. 2010, 235,
1025-1033. [CrossRef]

Kim, J.A; Lee, N.; Kim, B.H.; Rhee, W.J.; Yoon, S.; Hyeon, T.; Park, T.H. Enhancement of neurite outgrowth in PC12 cells by iron
oxide nanoparticles. Biomaterials 2011, 32, 2871-2877. [CrossRef]

Horev-Azaria, L.; Baldi, G.; Beno, D.; Bonacchi, D.; Golla-Schindler, U.; Kirkpatrick, J.C.; Kolle, S.; Landsiedel, R.; Maimon, O.;
Marche, PN,; et al. Predictive Toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models
using methods of knowledge discovery from data. Part. Fibre Toxicol. 2013, 10, 32. [CrossRef]

Wu, J; Zhu, Y.-J.; Cao, S.-W.; Chen, F. Hierachically Nanostructured Mesoporous Spheres of Calcium Silicate Hydrate: Surfactant-
Free Sonochemical Synthesis and Drug-Delivery System with Ultrahigh Drug-Loading Capacity. Adv. Mater. 2010, 22, 749-753.
[CrossRef]

Ribeiro, C.A.S.; De Castro, C.E.; Albuquerque, L]J.C.; Batista, C.C.S.; Giacomelli, F.C. Biodegradable nanoparticles as
nanomedicines: Are drug-loading content and release mechanism dictated by particle density? Colloid Polym. Sci. 2017, 295,
1271-1280. [CrossRef]

Trucillo, P.,; Campardelli, R.; Reverchon, E. Supercritical CO; assisted liposomes formation: Optimization of the lipidic layer for
an efficient hydrophilic drug loading. J. Co2 Util. 2017, 18, 181-188. [CrossRef]

E Soliman, M.; Shalaby, K.S.; Casettari, L.; Bonacucina, G.; Cespi, M.; Palmieri, G.F; A El Shamy, A.; A Sammoutr, O. Determination
of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural
networks. Int. |. Nanomed. 2014, 9, 4953-4964. [CrossRef]

Boso, D.P; Ferrari, M.; Decuzzi, P.; A Schrefler, B. Optimizing particle size for targeting diseased microvasculature: From
experiments to artificial neural networks. Int. . Nanomed. 2011, 6, 1517-1526. [CrossRef]

Bozuyuk, U.; Dogan, N.O; Kizilel, S. Deep Insight into PEGylation of Bioadhesive Chitosan Nanoparticles: Sensitivity Study for
the Key Parameters Through Artificial Neural Network Model. ACS Appl. Mater. Interfaces 2018, 10, 33945-33955. [CrossRef]
[PubMed]

Esmaeilzadeh-Gharehdaghi, E.; Faramarzi, M.A.; Amini, M.A.; Moazeni, E.; Amani, A. Processing/formulation parameters
determining dispersity of chitosan particles: An ANNSs study. J. Microencapsul. 2013, 31, 77-85. [CrossRef]

Youshia, J.; Ali, M.E.; Lamprecht, A. Artificial neural network based particle size prediction of polymeric nanoparticles. Eur. |.
Pharm. Biopharm. 2017, 119, 333-342. [CrossRef] [PubMed]

Da Silva Luz, G.V,; Barros, K.V.G.; de Aratjo, FV.C.; da Silva, G.B.; da Silva, P.A.F,; Condori, R.C.I.; Mattos, L. Nanorobotics in
drug delivery systems for treatment of cancer: A review. J. Mat. Sci. Eng. A 2016, 6, 167-180. [CrossRef]

Mir, U,; Sharma, S.; Kar, A K.; Gupta, M.P. Critical success factors for integrating artificial intelligence and robotics. Digit.
PolicyRegul. Gov. 2020, 22, 307-331. [CrossRef]

Loukanov, A.; Gagov, H.; Nakabayashi, S. Artificial Nanomachines and Nanorobotics. In The Road from Nanomedicine to Precision
Medicine, 1st ed.; Jenny Stanford Publishing: Singapore, 2019; pp. 515-532.

Saadeh, Y.; Vyas, D. Nanorobotic Applications in Medicine: Current Proposals and Designs. Am. |. Robot. Surg. 2014, 1, 4-11.
[CrossRef]

Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development.
Drug Discov. Today 2021, 26, 80-93. [CrossRef] [PubMed]

Modi, D.P; Patel, V.P; Patel, R.B.; Patel, ].N.; Bhimani, B.V.; Shah, R.R. Nanorobots: The Emerging tools in Medicinal Applications.
A Review. Int. |. Drug Dev. Res. 2013, 5, 105-119.

Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36-540. [CrossRef] [PubMed]

Fletcher, M.; Biglarbegian, M.; Neethirajan, S. Intelligent system design for bionanorobots in drug delivery. Cancer Nanotechnol.
2013, 4, 117-125. [CrossRef] [PubMed]

Soto, F.; Chrostowski, R. Frontiers of Medical Micro/Nanorobotics: In vivo Applications and Commercialization Perspectives
Toward Clinical Uses. Front. Bioeng. Biotechnol. 2018, 6, 170. [CrossRef] [PubMed]

Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nat. Cell
Biol. 2018, 559, 547-555. [CrossRef]

Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation
2020, 8, 15. [CrossRef]

Kaushik, A. Biomedical Nanotechnology Related Grand Challenges and Perspectives. Front. Nanotechnol. 2019, 1, 1. [CrossRef]
Al Badi, FK.; Alhosani, K.A ; Jabeen, F.; Stachowicz-Stanusch, A.; Shehzad, N.; Amann, W. Challenges of Al Adoption in the
UAE Healthcare. Vis. J. Bus. Perspect. 2021, 0972262920988398. [CrossRef]


http://doi.org/10.1258/ebm.2010.010021
http://doi.org/10.1016/j.biomaterials.2011.01.019
http://doi.org/10.1186/1743-8977-10-32
http://doi.org/10.1002/adma.200903020
http://doi.org/10.1007/s00396-016-4007-3
http://doi.org/10.1016/j.jcou.2017.02.001
http://doi.org/10.2147/IJN.S68737
http://doi.org/10.2147/IJN.S20283
http://doi.org/10.1021/acsami.8b11178
http://www.ncbi.nlm.nih.gov/pubmed/30212622
http://doi.org/10.3109/02652048.2013.805842
http://doi.org/10.1016/j.ejpb.2017.06.030
http://www.ncbi.nlm.nih.gov/pubmed/28694160
http://doi.org/10.17265/2161-6213/2016.5-6.005
http://doi.org/10.1108/DPRG-03-2020-0032
http://doi.org/10.1166/ajrs.2014.1010
http://doi.org/10.1016/j.drudis.2020.10.010
http://www.ncbi.nlm.nih.gov/pubmed/33099022
http://doi.org/10.1016/j.metabol.2017.01.011
http://www.ncbi.nlm.nih.gov/pubmed/28126242
http://doi.org/10.1007/s12645-013-0044-5
http://www.ncbi.nlm.nih.gov/pubmed/26069507
http://doi.org/10.3389/fbioe.2018.00170
http://www.ncbi.nlm.nih.gov/pubmed/30488033
http://doi.org/10.1038/s41586-018-0337-2
http://doi.org/10.3390/computation8010015
http://doi.org/10.3389/fnano.2019.00001
http://doi.org/10.1177/0972262920988398

	Introduction 
	AI and Drug Delivery 
	AI Algorithms for Drug Delivery 
	AI Applications for Drug Delivery 

	How AI Can Transform Nanomedicine 
	Clinical Treatment with AI 
	Physicochemical Properties of Nanomedicine 
	Cellular Uptake 
	Cytotoxicity 
	Molecular Loading 
	Nanoparticle Adhesion 
	Polydispersity 


	AI-Based Nanorobots for Drug Delivery 
	Use of Robots to Monitor Effectiveness of Treatment 
	Intelligent System Design for Bionanorobots in Drug Delivery 

	AI Ability Compared to Other Methods 
	Challenging Issues and the Potential Solutions 
	Discussion and Concluding Remarks 
	References

