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Objective: Gliomas are the most common primary tumors in the central nervous system
with a bad prognosis. Pyroptosis, an inflammatory form of regulated cell death, plays a vital
role in the progression and occurrence of tumors. However, the value of pyroptosis related
genes (PRGs) in glioma remains poorly understood. This study aims to construct a PRGs
signature risk model and explore the correlation with clinical characteristics, prognosis,
tumor microenviroment (TME), and immune checkpoints.

Methods: RNA sequencing profiles and the relevant clinical data were obtained from the
Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA), the Repository
of Molecular Brain Neoplasia Data (REMBRANDT), and the Genotype-Tissue Expression
Project (GTEx-Brain). Then, the differentially expressed pyroptosis related genes (PRGS)
were identified, and the least absolute shrinkage and selection operator (LASSO) and
mutiCox regression model was generated using the TCGA-train dataset. Then the
expression of MRNA and protein levels of PRGs signature was detected through
gPCR and human protein atlas (HPA). Further, the predictive ability of the PRGs-
signature, prognostic analysis, and stratification analysis were utilized and validated
using TCGA-test, CGGA, and REMBRANDT datasets. Subsequently, we constructed
the nomogram by combining the PRGs signature and other key clinical features. Moreover,
we used gene set enrichment analysis (GSEA), GO, KEGG, the tumor immune dysfunction
and exclusion (TIDE) single-sample GSEA (ssGSEA), and Immunophenoscore (IPS) to
determine the relationship between PRGs and TME, immune infiltration, and predict the
response of immune therapy in glioma.

Results: A four-gene PRGs signature (CASP4, CASP9, GSDMC, IL1A) was identified and
stratified patients into low- or high-risk group. Survival analysis, ROC curves, and stratified
analysis revealed worse outcomes in the high-risk group than in the low-risk group.
Correlation analysis showed that the risk score was correlated with poor disease features.
Furthermore, GSEA and immune infiltrating and IPS analysis showed that the PRGs
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Pyroptosis Related Gene Signature in Glioma

sighature could potentially predict the TME, immune infiltration, and immune response in

glioma.

Conclusion: The newly identified four-gene PRGs signature is effective in diagnosis and
could robustly predict the prognosis of glioma, and its impact on the TME and immune cell
infiltrations may provide further guidance for immunotherapy.

Keywords: pyroptosis, glioma, gene signature, prognosis, tumor microenvironment, immunity

INTRODUCTION

Gliomas are the most common primary tumors in the central
nervous system (CNS), accounting for 81% of intracranial
malignancies (Ostrom et al, 2019). Gliomas can be
categorized into four grades by according to the 2016 World
Health Organization (WHO) classification, among which grade I
and II belong to low-grade, grades III and IV indicate high-grade
glioma (HGG) (Louis et al., 2016) Glioblastoma (GBM) is the
most common type of high-grade glioma (Lara-Velazquez et al.,
2017). Despite combing aggressive surgical recession,
chemotherapies, and radiotherapy, the prognosis of GBM
remains poor, with median overall survival (OS) of
14.6 months (Osuka and Van Meir, 2017). Moreover, the
complete resection of GBM is arduous due to the high
proliferative rate, heterogeneity of tumor cells, and high
infiltrating abilities (Ferguson and Mccutcheon, 2018; Savage,
2018). Recently, more and more molecular markers have been
identified that can be used for better diagnosis, treatment and
prognostic assessment of glioma patients., including mutations in
isocitrate  dehydrogenase (IDH), O6-methylguanine-DNA
methyltransferase (MGMT) methylation, deletion of the short
arm of chromosome 1 and the long arm of chromosome 19 (1p/
19q), and various signaling pathways involved in tumor
suppression, proliferation, and migration (Wang et al., 2013;
Molenaar et al, 2014; Zeng et al, 2015). Over the past
decades, numerous therapies have been developed to treat
cancers; however, few of them could effectively use in glioma.
Despite the blood-brain barrier, unique structure in the CNS
(Oberoi et al., 2015), glioma cells adapted various strategies to
escape the immune system also play an essential role (Ghouzlani
et al., 2021).

Pyroptosis is pro-inflammatory regulated cell death. It is
characterized by nuclear condensation, pore formation, cellular
swelling, the release of pro-inflammatory cytokines (Shi et al.,
2017; Nirmala and Lopus, 2020). Pyroptosis is mediated by
gasdermin (GSDM) family proteins. The most studied protein
in the GSDM protein family is GSDMD. After being activated by
inflammasomes, caspase-1, -4, -5, and -11 can cleave GSDMs into
the gasdermin-N and gasdermin-C domains. The gasdermin-N
domain (also known as the pore-forming domain) will
oligomerize and form pores in the cell membrane (Rathinam
and Fitzgerald, 2016). Pyroptosis was first identified in host
immune defenses responses. However, supported by a growing
number of studies, it gradually became a consensus that
pyroptosis also plays an essential role in carcinogenesis and
may be a potential anti-tumor target (Munn and Bronte, 2016;

Yu et al, 2021; Zhibin Zhang et al, 2021). Pyroptosis could
promote anti-tumor inflammatory responses and tumor
regression; however, on the contrary, other studies found that
pyroptosis may also facilitate the supportive tumor
microenvironment. (Hergueta-Redondo et al., 2014; Gao et al,
2018; Wang et al,, 2018; Tan et al., 2020; Wang et al., 2021a;
Loveless et al., 2021). Thus, the role of pyroptosis remains
inconclusive and may differ in different tumors.

Currently, the contribution of pyroptosis related genes (PRGs)
as the biomarker for the diagnosis and prognosis of glioma
remains unclear. Therefore, we performed a systematic study
using multiple expression-level datasets to explore the functional
association of PRGs in the prognosis, immune
microenvironment, and the response to immunotherapy for
glioma patients. This PRGs-based model can predict the
prognosis of GBM patients and may further guide the clinical
treatment and improve patient survival.

METHODS

Data Collection

All data used in this study are from public datasets. The RNA
sequencing data and corresponding clinical characteristics of
glioma patients and RNA-seq data of normal brain tissues
were obtained from a combined cohort of The Cancer
Genome Atlas (TCGA) and The Genotype-Tissue Expression
(GTEx) samples in UCSC Xena project (https://gtexportal.org/
home/). The validation datasets were extracted from the Chinese
Glioma Genome Atlas (CGGA. http://www.cgga.org.cn/),
including mRNAseq_693, mRNAseq_325, and the Repository
of Molecular Brain Neoplasia Data (REMBRANDT) dataset. The
transcript expression in TCGA-LGG, TCGA-GBM, and GTEx-
Brain was recomputed through RNA-Seq by Expectation-
Maximization (RSEM) using UCSC TOIL RNA-seq. Gene
expression data from CGGA and REMBRANDT were
normalized and batched using the R package “limma.”

Identification of Differentially Expressed

Genes

A total of 58 PRGs (listed in Supplementary Table S1) were
collected from the MSigDB (https://www.gsea-msigdb.org/gsea/
msigdb) and previous literature (Ju et al., 2021; Lin et al., 2021;
Shao et al., 2021; Ye et al,, 2021). Differentially expressed genes
between gliomas and normal brain tissues was identified using
“limma” package with p-value < 0.001. The differentially
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expressed genes (DEGs) are notated as follows: * if p < 0.05, ** if
p < 0.01, and *** if p < 0.001. A Protein-protein interaction
network and the Gene Ontology (GO) enrichment analysis of
candidate genes were performed based on the Metascape online
tool (Zhou et al., 2019).

Consensus Clustering Analysis of

Pyroptosis Related Genes

Consensus clustering was applied to explore the connections
between the expression of the PRGs and glioma subtypes by
the k-means method (Hartigan and Wong, 1979). R packages
“ConsensusClusterPlus” and “limma” were used to determine the
number of clusters. The correlations between each cluster and
clinical characteristics, including OS, were analyzed using the
“survival” package. The results were presented by heatmaps and
Kaplan-Meier (KM) graphs using R packages “pheatmap,”
“survival,” and “survminer.”

Construction and Validation of a Pyroptosis

Related Genes Signature

Sequencing and clinical data from the TCGA were randomly
divided into a training set and a testing set according to 1:1 via the
function “createDataPartition” in the “caret” package. Univariate
Cox analysis was first performed to assess the association between
the expression of each PRGs and the OS of patients in the TCGA
training dataset. p-value cutoff was set to 0.05. Then the least
absolute shrinkage and selection operator (LASSO) analysis was
performed using the R package “glmnet”. Then a prognostic risk
formula was constructed by Multivariate Cox regression analysis.
The forest plot was performed using the R package “survminer.”
The risk scores for each patient were calculated as follows:

Risk score = z (Coefx;)

i=1

In addition, we accessed the IHC images for each candidate
PRGs in glioma and normal tissue samples from the Human
Protein Atlas database, and the staining intensity was evaluated
according to the standard of HPA database (HPA, https://www.
proteinatlas.org/). The Kaplan-Meier curve for each candidate
PRGs was generated by using the R package “survminer” to
compare the OS between the expression level of these genes.

Cell Culture

Human cell lines HA1800, U87, T98G, U118, A172, U251, and
HMC3 were purchased from ScienCell Research Laboratory,
Cell Bank of the Chinese Academy of Sciences and ATCC, and
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
medium (Invitrogen, Thermo Fisher Scientific, Inc., the
United States). All the culture media was supplement by
10% fetal bovine serum (FBS) (Gibco), Penstrep (Gibco),
GlutaMAX (Gibco), and MEM non-Essential Amino Acids
(MEM-NEAA) (Gibco) following the instruction of the
manufacturer. These cells were all cultured in an incubator
with 5% CO, at 37°C.

Pyroptosis Related Gene Signature in Glioma

Validation of the Pyroptosis Related Genes
Signature by Quantitative Real-Time PCR

Total RNA from the above cell lines was extracted using Trizol
(Beyotime, Shanghai, China). The mRNA concentrations
were measured by NanoDrop oneC (Thermo Fisher
Scientific, Inc., the United States), next cDNA was
synthesized by Hifair® Il first Strand cDNA Synthesis
SuperMix for qPCR(YEASEN Biotech Co., Ltd., China).
Quantitative PCR was performed using QuantStudioTM
5 Real-Time PCR System with Hieff ® qPCR SYBR Green
Master Mix (YEASEN Biotech Co., Ltd., China). The real-time
qPCR was performed as previously described (Zhang et al.,
2020a; Zhang et al., 2021d). The corresponding mRNA levels
were normalized to GAPDH as an internal control by the
27%4C" method. The primers used in this study were
synthesized by TsingKe biological technology (Beijing,
China). The sequence of primers used in this study was
listed in Supplementary Table S2.

Internal and External Validation of the

Pyroptosis Related Genes Signature

TCGA datasets, CGGA datasets, and REMBRANDT datasets
were used for internal and external validation. The risk scores
were calculated for patients with glioma using the formula
shown above. Patients were divided into the high- and low-
risk groups using the median risk scores as the cutoff value.
The time-dependent receiver operating characteristic (ROC)
curve was utilized to evaluate the prediction accuracy of PRGs
Signature via the “timeROC” package. The Kaplan-Meier
curve was generated using the R package “survminer” to
compare the OS between the high- and low-risk groups.
Principal component analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) were performed to
explore and visualize the separation the low- and high-risk
groups using the “Rtsne” package (Zhou et al., 2019). All these
validations were used in the training and validation datasets
simultaneously.

Construction of a Predictive Nomogram
Univariate and multivariate cox regression analyses were
performed for the TCGA and CGGA datasets to determine
the independent prognostic factors. Next, these
clinicopathologic factors were utilized to construct a
nomogram to investigate the probability of 1-, 3-, and 5-
year OS of patients with glioma using the “rms” package. The
C-index, calibration curve, and time-dependent ROC were
used to evaluate the consistency and prognostic accuracy of
the nomogram.

Gene Set Enrichment Analyses

The DEGs between the high-risk and low-risk groups were
identified with the absolute value of 1og2FC > 1 and the FDR <
0.05. Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis were performed via the R package “clusterProfiler,”
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FIGURE 1 | The workflow chart of this study.

“org.Hs.eg.db” and “enrichplot” (Yu et al., 2012). Moreover,
in TCGA and CGGA datasets, we wused the
c2.cp.kegg.v7.4.symbols.gmt and c¢5.go.v7.4.symbols.gmt for
gene set enrichment analysis (GSEA) to identify the molecular
mechanism that indicated a worse prognosis between the two
subgroups (Subramanian et al., 2005).

Glioma Microenvironment Immune

Infiltration Analysis

To investigate the immune microenvironment of glioma, the
ESTIMATE algorithm was applied to calculate the immune
scores and stromal scores for each sample via the R package
“estimate” (Yoshihara et al., 2013). Moreover, the scores of
infiltrating immune cells and activity of immune-related
pathways were quantified through Single sample gene set
enrichment analysis (ssGSEA) of the “gsva” package, which
contains 29 immune infiltration-related information.

Immune Response Prediction

Finally, spearman correlation analysis was used to access the
relationship between risk scores and the expression levels of
common immune checkpoints, including programmed cell
death 1 (PD1), programmed cell death-ligand 1 (PD-L1),
cytotoxic T-lymphocyte associated protein 4(CTLA-4),
Lymphocyte Activating 3 (LAG-3), T-cell immunoglobulin
and mucin domain-containing protein 3 (TIM-3), B7-
H3(CD276), T-cell immunoglobulin and ITIM domain
(TIGIT) (Ghouzlani et al,, 2021; Yang et al., 2022) and two
newly biomarkers APOBEC3B and TNFSF13 (Zhang et al,,
2021a; Zhang et al., 2021c). Then, we investigated the role of

Pyroptosis Related Gene Signature in Glioma

PRGs signature in predicting glioma immunotherapeutic
response by the tumor immune dysfunction and exclusion
(TIDE) algorithm (http://tide.dfci.harvard.edu). A higher
TIDE score indicates a worse response to immunotherapy
(Jiang et al., 2018). Meanwhile, we use the
immunophenoscore (IPS) downloaded from The Cancer
Immunome Atlas (TCIA) (https://tcia.at/home) to predict
immune checkpoint blockade (ICB) responses in the
TCGA-GBM cohort. IPS is a reliable predictor of anti-
cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-PD-1
antibody responses (Charoentong et al., 2017). Generally, IPS
are positively correlated to the ICB response. We recalculated
the risk score of patients from the TCGA-GBM cohort
according to the PRGs risk model and redivided them into
high- and low- relative risk groups based on the median
risk score.

Statistical Analysis

The gene expression differences between the normal brain and
glioma tissues were calculated via the Wilcoxon test. The R
software (4.0.0) with corresponding packages and GraphPad
Prism 8 was used for statistical analyses. p < 0.05 was
considered statistically significant differences.

TABLE 1 | Clinicopathological characteristics of glioma patients in TCGA, CGGA,
and REMBRANDT datasets.

Characteristics Train cohort Validation cohort
TCGA-train TCGA-test CGGA Rembrandt
N =292 N =291 N =715 N =300

Age

Young 158 161 348 NA

Older 134 130 367 NA
Gender

Male 176 164 414 146

Female 116 127 301 92

NA 0 0 0 62
Grade

| 0 0 0 2

I 104 105 186 64

1l 124 109 232 57

vV 64 Vs 297 144
IDH

Wild 107 111 329 NA

Mutation 185 180 386 NA
1p/19q

Codel 66 82 147 12

Non-codel 226 209 568 91

NA 0 0 0 197
Status

Dead 203 210 235 69

Alive 89 81 480 231
MGMT

Methylated NA NA 398 NA

un-methylated NA NA 317 NA
PRS

Primary NA NA 458 NA

Recurrent NA NA 230 NA

Secondary NA NA 27 NA
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Metascape website. (D) Heatmap of all PRGs between the normal brain and glioma tissues. (E) Forest plot of univariate Cox regression of differential expressed PRGs.
(F) The log (lambda) sequence plot of PRGs using LASSO regression. (G) The LASSO coefficient profiles of PRGs in TCGA-train dataset. (H) Forest plot of four
signature genes of PRGs. LASSO, least absolute shrinkage, and selection operator; TCGA, The Cancer Genome Atlas. **p < 0.01, **p < 0.001.
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RESULTS

Characteristics of Patients With Glioma
The workflow chart of this study is shown in Figure 1. Patients
without survival data or histopathological information were

excluded. Eventually, 1,137 normal brain and 1,598 glioma
tissues were obtained from the GTEx, TCGA-LGG, TCGA-
GBM, CGGA, and REMBRANDT datasets. The detailed
clinicopathological features of included glioma patients are
summarized in Table 1.
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Identification of Differentially Expressed

Pyroptosis Related Genes Between Normal

Brain and Glioma Tissues

A total of 58 PRGs were collected for our analyses (Figure 2A).
To further explore the interactions of these differentially
expressed PRGs, we used the Metascape website to construct a
PPI network. GO enrichment analysis was also performed to
investigate the enriched pathways. As expected, these PRGs were

involved in pyroptosis pathways
was performed to compare the

(Figures 2B,C). Wilcoxon test
expression levels of 58 PRGs

between the normal brain and glioma tissues. The results show

that 57 out of 58 were significantly differentially expressed
(p-value < 0.001) (Figure 2D). Three genes (NLRP2, NLRP9,
and GSDMB) were downregulated, while the remaining 54 genes
were upregulated in the glioma group. The RNA levels of these
genes were displayed in heatmaps.

Identification of Glioma Clusters Using
Consensus Clustering

To investigate the correlation between the expression of PRGs
and clinicopathological characteristics, we performed consensus
cluster analysis with 583 glioma patients from the TCGA datasets
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(Supplementary Figure S1A). The Cumulative Distribution
Function (CDF) and delta area under CDF change was
utilized to determine a suitable clustering variable (k) for the
optimum stability of the sample distribution (Supplementary
Figures S1B,C). The patients were divided into two distinct
clusters, and the OS of cluster 1 was significantly better than
cluster 2 (p < 0.001) (Supplementary Figure S1D). Besides, as
shown in the heatmap (Supplementary Figure S1E), except for
the gender, there were significantly differences in
clinicopathologic features between the two clusters, including
the age, grade, IDH status, and 1p19q codeletion (p < 0.001).

Construction of a Prognostic Model Using

the Training Dataset

Patients in the TCGA cohort were randomly divided into a
training group (n = 292) and a testing group (n = 291).
Univariate Cox regression analysis was performed among
these 57 PRGs in the training datasets to screen prognostic
genes, and 41 genes remained for further analysis (p < 0.05).
Among them, 19 were protective genes (hazard ratio <1), and 22
genes were associated with increased risk (hazard ratio >1)
(Figure 2E). Subsequently, the LASSO method was used to
narrow down the candidate genes according to the minimum
penalty parameter (\) (Figures 2F,G). Finally, combined with
Multivariate Cox regression analyses, four PRGs (CASP4, CASP9,
GSDMC, IL1A) were identified as prognostic biomarkers for
glioma patients. The PRGs signature risk model was
formulated as: Risk score = (0.629*CASP4 exp.) + (—0.670*
CASP9 exp.) + (~0.274 * GSDMC exp.) + (0.237* IL1A exp.)
(Figure 2H).

The Relationship Between the Expression
Status of the Pyroptosis Related Genes
Signature and the Tumor Grade and
Prognosis

We observed the relationship between the expression status of
the four genes and the tumor grade and prognosis. The results
suggest that high expression of CASP4 and IL1A is associated
with higher WHO classification (Figures 3A,D), in contrast to
CASP9 and GSDMC (Figures 3B,C). For prognosis, high
expression of CASP4 and IL1A was associated with worse
prognosis (Figures 3E,H), while CASP4 and GSDMC were
not (Figures 3F,G). Further, we observed the mRNA
expression of the four genes in different cell lines by qPCR.
Compared with HA 1800 and HMC3 cell lines, the expression
levels of CASP4, CASP9 and GSDMC showed an overall
upward trend, and the IL1A level showed an overall
downward trend in glioma cell lines (Figures 3I-L). In
addition, we explored the proteins express by CASP4,
CASP9, and GSDMC in glioma patients through the
Human Protein Atlas database, and CASP4, CASP9
exhibited higher staining intensity in glioma than normal
brain tissues (Figure 3M-0). The statistical histogram was
shown in Figure 3P.

Pyroptosis Related Gene Signature in Glioma

Internal and External Validation of the

Pyroptosis Related Genes Signature

The risk scores of each patient were calculated based on the
signature constructed. Then, glioma patients were stratified into
the high- and low-risk groups by median risk score. In the TCGA
train group, time-dependent ROC curves were used to evaluate
the sensitivity and specificity of the prognostic model, and the
area under the ROC curve (AUC) for 1-, 3, - and 5-year OS was
0.893, 0.921, and 0.848, respectively (Figure 4A left). Kaplan-
Meier survival curve showed that the OS of patients in the high-
risk group was significantly shorter than the high-risk group (p <
0.001; Figure 4B left). PCA and t-SEN analysis revealed a
satisfactory separation between different risk groups (Figures
4C,D left). The distribution of patients was presented (Figures
4E,F left). Patients in the low-risk group had a lower mortality
rate and longer lifespan. The expression of these four PRGs in
different groups was shown in the heatmap (Figure 4G left).
CASP4 and IL1A were upregulated in the high-risk group, while
CASP9 and GSDMC were downregulated. Subsequently, similar
analyses were performed using TCGA-test, CGGA and
Rembrandt databases (Figures 4A-G right).

Relationship Between the Risk Group of
Pyroptosis Related Genes Signature and
Clinicopathological Characteristics of

Gliomas

Next, we explored the correlation between PRGs signature and
clinicopathological features of gliomas in TCGA and CGGA
datasets. Significant differences were observed between the two
risk subgroups regards to WHO grade (I1, III, IV), age (<47, >47),
IDH status (mutation, wild), and 1p19q codeletion in the TCGA
cohort (Figure 5A). Similar analyses were performed using
CGGA (Figure 5B). Subsequently, we compared the risk score
across patients with different clinicopathological characteristics.
For the TCGA cohort, glioma patients with the
clinicopathological features of age >47 years, higher grade,
IDH wild type, and 1p19q non-codeletion had significantly
higher risk score levels (Figures 5C,G,H,K). In addition, no
significant difference was observed between groups stratified
by gender (Figure 5D). Similar results were observed in the
CGGA cohort (Figures 5E,F,LJ,L,N); besides, MGMT promoter
unmethylated and recurrent subgroups also had significantly
higher risk scores (Figure 5M).

Nomogram

The univariate and multivariate cox regression analyses were
performed to identify PRGs signatures as independent OS-related
predictors. For the TCGA cohort, Univariate Cox regression
analysis demonstrated that the risk scores were associated with
the OS of glioma patients (HR = 6.793, 95%CI = 4.600-10.032, p <
0.001). Multivariate Cox regression analysis revealed that the
risk-score was an independent prognostic factor (HR = 2.048,
95%CI = 1.192 -3.517, p < 0.001). The results were similar in the
CGGA cohort (Supplementary Figure S2A-D). Subsequently, a
nomogram based on clinical characteristics, including age, WHO
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type of primary recurrent or secondary.

Recurrent Secondary

Primary

grade, IDH status, 1p19q codeletion, and risk score in the TCGA
cohort was established (Figure 6A). The area under the ROC
curve (AUC) for 1-, 3-, and 5-year OS was 0.904, 0.933, and 0.899,
respectively (Figure 6B). In addition, the internal assessment
showed a consistency index (C-index) of 0.866, and the
calibration curve showed a satisfactory match between the
actual and nomogram-predicted 1-year, 3-year, and 5-year OS
probabilities (Figure 6C). The same analysis was performed in
the CGGA cohort as an external evaluation. The accuracy of the
nomogram in predicting 1-, 3-, and 5-year OS was 0.826, 0.873,

and 0.877, respectively (Figure 6D). Additionally, the C-index
was 0.744, and calibration curves show a satisfactory match
between the actual and nomogram-predicted probabilities of
1-year, 3-year, and 5-year OS (Figure 6E).

Functional Enrichment Analyses

To clarify the potentially functional mechanism of the PRGs
and prognosis of patients with glioma, GO, and KEGG
enrichment analyses were conducted to characterize the
biological functions of DEGs between low- and high-risk
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FIGURE 8 | Tumor microenvironment and immunocorrelation analysis of PRGs signature risk group in glioma. (A,B) Heatmap of correlation between different risk
group and different immune infiltration pattern using ssGSEA in TCGA (A) and CGGA (B). (C,D) Correlation analysis between PRGs risk score and expression levels of
immune checkpoints (PD1, PD-L1, CTLA-4, LAG-3, TIM -3, B7-H3, TIGIT, APOBEC3B, and TNFSF13) in TCGA (C) and CGGA (D). (E-H) Correlation analysis between
TIDE evaluation in TCGA(LGG-GBM) datasets. TIDE score (E), dysfunction score (F), Exclusion (G) and Responder (H). (I-L) Correlation analysis between
immunophenoscore of anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-PD-1 blocker and Relative risk of TCGA-GBM datasets. TIDE, Tumor Immune
Dysfunction and Exclusion. PRGs, Pyroptosis Related genes. TCGA, The Cancer Genome Atlas. CGGA, Chinese Glioma Genome Atlas. ssGSEA: single sample gene
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groups. GO analyses in the TCGA cohort showed gene
enrichment in  trans-synaptic  signaling regulation
(Figure 7A), and in CGGA datasets revealed significant
enrichment of immune-related biological processes,
including neutrophil activation, humoral immune response,
and defense response to bacterium (Figure 7B). Similarly,
KEGG pathway analysis showed an enrichment of immune-
related pathways in both cohorts (Supplementary Figures
S3A,B). For instance, cytokine-cytokine receptor interaction
and antigen processing and presentation pathway. To further
verify these results, GSEA was performed in both cohorts. In
the c5.go dataset, both cohorts showed significant enrichment
of immune-related biological processes in the high-risk group,
for instance, activation of the immune response, adaptive
immune response, and adaptive immune response (Figures
7C-F). In the c2.cp.kegg dataset, the high-risk group was also
significantly associated with immune-related pathways, such
as cytokine-cytokine receptor interaction, JAK-STAT
signaling pathway, and chemokine signaling pathway
(Supplementary Figure S3C-F).

Immune Cell Infiltration in the Tumor

Microenvironment

Considering that the enrichment analysis identified multiple
immune-related pathways, we further investigated the
correlation between PRGs signature and immune cell
infiltration in the glioma microenvironment. In both TCGA
and CGGA cohorts, the high-risk group showed significantly
lower tumor purity and higher immune and stromal scores than
the low-risk group (Figures 8A,B). Next, we performed the
ssGSEA analysis to determine the correlation between the
PRGs signature and immune cell infiltration in the tumor
microenvironment. In the TCGA cohort, except for the
neutrophils, natural killer (NK) cells, and Th1 cells, the other
13 immune cells showed significantly higher levels of infiltration
in the high-risk group (Supplementary Figure S4A). In
comparison, all the 16 types of immune cells showed a higher
abundance in the CGGA cohort (Supplementary Figure S4B).
Moreover, the activity of 13 immune-related pathways was higher
in the high-risk subgroup of both TCGA and CGGA cohorts
(Supplementary Figures S4C,D). We further explored the
correlation between the risk score and immune checkpoints
and some newly biomarkers (PD1, PD-L1, CTLA-4, LAG-3,
TIM -3, B7-H3, TIGIT, APOBEC3B, and TNFSF13). The
Spearman analysis showed that the risk score was significantly
correlated with all nine immunotherapy checkpoints. In the
TCGA cohort, the risk score was negatively correlated with
TIGIT, and the other six genes were positively correlated
(Figure 8C). Meanwhile, in the CGGA cohort, all of them
were positively correlated with the risk score (Figure 8D). To
better elucidate the value of PRGs signature in predicting
immunotherapy response, we analyzed TIDE scores in gliomas
patients of TCGA. The results showed that the TIDE and
dysfunction scores were lower in the high-risk group (Figures
8E,F), and exclusion scores showed the opposite trend
(Figure 8G). Moreover, the responder group was positively

Pyroptosis Related Gene Signature in Glioma

associated with risk scores, indicating that patients in the
high-risk group might have a better response to
immunotherapy (Figure 8H). The immunological score could
predict the anti-CTLA-4 and anti-PD-1 antibody response, which
can identify determinants of tumor immunogenicity
(Charoentong et al., 2017). Subsequently, we investigated this
correlation of immunophenoscore in the TCGA- GBM cohort
and found that risk groups in IPS-CTLA4 and IPS had no
significant difference in immunophenoscore (Figures 8L]J).
Whileas, IPS- PD1 and IPS-PD1-CTLA4 blocker scores were
higher in the high-risk group suggesting better
immunotherapeutic benefits (Figures 8K,L).

DISCUSSION

Extensive research on the mechanism of the pyroptosis pathway
has led to a renewed interest in accessing the effect of pyroptosis
for cancer treatment owing to its pro-inflammatory effects (Hou
et al,, 2021). Emerging studies have revealed that pyroptosis-
related gene signatures were associated with anti-tumor
immunity and could be used to predict patient prognosis in a
variety of cancer types. (Ju et al., 2021; Lin et al., 2021; Shao et al.,
2021; Ye et al, 2021). However, no previous study has been
conducted to demonstrate the predictive value of pyroptosis-
related genes in glioma. Considering the emerging role of
pyroptosis in carcinogenesis (Loveless et al., 2021) and the
poor prognosis of glioma, we built a new tool based on
pyroptosis signatures to establish a predictive model for glioma.

In this study, we compared the expression level of 58 PRGs
between glioma and normal brain tissue samples, and we found
that 57 of 58 genes were differentially expressed. To investigate
the prognostic value of the expression of PRGs in glioma, we
performed consensus clustering, which showed that patients
could be divided into two clusters based on different clinical
characteristics. Then we selected 4 PRGs (CASP4, CASP9,
GSDMC, IL1A) based on a signature predictive model via
Univariate Cox proportional hazards regression, LASSO
regression, and multivariate Cox regression. For internal and
external validation datasets, the results suggest the risk model
could accurately predict survival outcomes of patients with
glioma. Combined with other Clinicopathological features
(age, grade, IDH, 1pl19q), we built a nomogram with the
improved capacity to predict the overall survival rate.
Functional enrichment analyses indicated the differences in
immune-related biological processes between high- and low-
risk groups. We further investigated the difference in tumor
immune microenvironment between the two groups. The
results showed that the high-risk group had lower tumor
purity and higher immune and stromal scores. Immune cell
infiltration analysis revealed that risk score was positively
correlated with the level of immune cell and immune-related
pathways. Moreover, PRGs signatures may related to the benefits
of immunotherapy.

Two fundamental and several alternative pathways are
associated with pyroptosis, in which, caspase-lactivates the
canonical inflammasome pathway, non-canonical
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inflammasome pathway via caspase-4/5 (or mouse caspase-11),
and in the alternative pathways, the most reported one is caspase-
3 (Fang et al., 2020; Loveless et al., 2021). GSDM family proteins
consist of an N-terminal pore-forming domain, a C-terminal
regulatory domain, and a linker region that inhibit the
N-terminal domain’s lethal activity (Kuang et al, 2017).
Caspases or granzymes can cleave the linker site, resulting in
the N-terminal domain fragment translocating into cell
membranes. Thus, the N-terminal domain triggers the
oligomerization and forms [ -barrel transmembrane pores,
leading to cytokines released following cell lysis, such as
interleukin-1 B (IL-1 P) and interleukin-18 (IL-18) (Guey
et al., 2014; Ding et al, 2016). The available studies suggest
that 4 PRGs we found (CASP4, CASP9, GSDMC, and IL1A) may
be involved in different pathways of pyroptosis.

In the nonclassical pyroptosis pathway, human CASP-4, -5
and murine orthologues CASP-11 can be directly activated by
cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria
or host-derived oxidized phospholipids. Activated caspase-4/5/11
then cleave GSDMD to generate biologically active GSDMD-NT,
contributing to pyroptotic cell death (Shi et al., 2014; He et al,
2015; Kayagaki et al., 2015; Gao et al., 2018; Wang et al., 2018;
Ahmed et al., 2019; Qiao et al,, 2019). It is reported that GSDMB
could bind to the CARD of caspase-4, trigger its oligomerization,
and increase its enzymatic activity, thereby promoting the
cleavage of GSDMD and inducing non-canonical pyroptosis
(Chen et al, 2019). Our study showed that CASP4 was
negatively correlated with OS and positively correlated with
the WHO grade of glioma patients, suggesting that CASP4
may act as an oncogene in glioma.

CASP9 is a classical initiator of intrinsic apoptosis (Li et al.,
1997). Recent studies showed that GSDME could be activated by
caspase-3/-9 in lung cancer cells and melanoma (Zhou et al.,
2018; Zhang et al, 2019). Mitochondrial dysfunction could
trigger caspase-9 activation and subsequently cleaves and
activates caspase-3. Active caspase-3 then cleaves GSDME to
GSDME-NT, thus leading to pore-formation on the cell
membrane, which is the hallmark for pyroptosis (Wang et al.,
2021b). When GSDME is defective, cells are more prone to
apoptosis. However, in cells with high GSDME expression,
GSDME-mediated pyroptosis may precede apoptosis. (Wang
et al., 2017).

IL-1a, a pre-stored cytokine of the IL-1family, is a canonical
immune alarmin passively released during cell lysis (Monteleone
etal., 2015). Our study showed that IL1A is negatively correlated
with OS and positively correlated with WHO classification of
glioma patients. Previous studies have demonstrated pro-IL-1a is
bound to the intracellular receptor IL-1R2, which was usually
processed by calpain during necrosis, and can also be cleaved to
its mature form by caspase-5 and -11 in pyroptosis (Zheng et al.,
2013; Wiggins et al., 2019). Batista et al. revealed that IL-1a is
expressed in microglia and ex vivo IL-1a release is dependent on
GSDMD, which promotes protective immunity in brain
inflammation and parasite infection. (Batista et al, 2020).
Under the inhibition of caspase-1, the activation of NLRP3
inflammasome  induces incomplete pyroptosis and is
accompanied by IL-1a release (Chan and Schroder, 2020).

Pyroptosis Related Gene Signature in Glioma

Early studies found GSDMC was highly expressed in
metastatic melanoma cells (Watabe et al., 2001; Miguchi et al.,
2016; Wei et al., 2020). However, GSDMC was downregulated in
GC and esophageal cancer cells and inhibited cell growth (Saeki
et al,, 2009). Recently, Hou et al. reported that GSDMC could be
cleaved and activated in breast cancer cells by caspase 8,
converting TNF-a-induced apoptosis to pyroptosis, leading to
tumor necrosis (Hou et al, 2020). Our study showed that
GSDMC is positively correlated with OS and negatively
correlated with WHO classification of glioma patients,
suggesting that GSDMC may act as a tumor suppressor in
glioma. Considering the complex role of GSDMC in different
tumors, further studies should be conducted to validate the
functional mechanisms of GSDMC in glioma cell and animal
models.

The immunosuppressive and the
resistance to apoptosis are significant factors contributing to
the therapeutic dilemma of the tumor (Loveless et al., 2021).
Cancer cell pyroptosis may promote immune cell activation
and infiltration, eliciting a robust inflammatory response, thus
leading to immunogenic cell death (ICD) (Zhang et al., 2020b).
However, given its inflammatory feature, pyroptosis possibly
induces an immunosuppressive microenvironment in some
conditions, such as pathogen infection or hypoxia (Hou et al.,
2020; Hou et al,, 2021). The effect of pyroptosis may be
determined by the complex interactions between tumor cells
and the surrounding microenvironment. Previous studies have
shown that therapeutic inhibition of IDO, CTLA-4, or PD-L1
in mouse glioma models significantly reduces the number of
tumor-infiltrating Treg cells and substantially improves long-
term survival. (Wainwright et al., 2014). Immune checkpoint
blockade appears to be a promising strategy in the
immunotherapy of glioma. The application of various
immunotherapeutic approaches, especially combination
strategies, has been shown to be efficacious in glioma
(Zhang et al, 2021b; Yang et al, 2022). Currently,
nanoparticles loaded with pyroptosis inducers have been
shown to be effective for treating tumors in both in vivo
and in vitro models and activating immunity in breast
cancer (Wang et al, 2020). In our study, DEGs between
different risk subgroups were enriched in many biological
processes and pathways related to immune responses.
Besides, we found that the high-risk group exhibited lower
tumor purity and higher immune and stromal scores, a higher
abundance of immunosuppressive cells such as Tregs, and
higher expression levels of immune checkpoints. These results
suggested that the PRGs were correlated with the immune
landscape of the glioma microenvironment. Our findings may
provide new ideas and targets for the immunotherapy of
glioma.

Undoubtedly, some limitations must be addressed in the present
study. Firstly, our current results are obtained merely in public
databases, and it is necessary to validate our results in vitro and
in vivo. Secondly, although bulk genomic and transcriptome analyses
provide valuable insights into this study, the information obtained at
the bulk level is averaged over many cells number, often masking
specific subpopulations or cell states. Therefore, the relationship

microenvironment
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between glioma pyroptosis and the local immune microenvironment
may require an in-depth study by techniques such as single-cell
sequencing. Besides, the available samples for qPCR were not
sufficient. In further work, more tissue samples is needed to reach
a robust result.

CONCLUSION

This study built a prognostic model based on PRGs signature. This
model exhibited high accuracy in predicting survival outcomes of
glioma patients and was validated by external data sources. In
addition, the PRGs signature was correlated with immune
infiltration of the glioma microenvironment and was indicative of
different efficacy of immunotherapy to a certain extent. These
findings will offer some valuable insights for subsequent studies
and clinical practice.
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