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Abstract

Dysregulation of hypoxia-inducible transcription factors HIF-1a and HIF-2a correlates with
poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these
factors in cancer biology have been observed. Adding to this complexity is that HIF-1a appar-
ently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations
or even homozygous deletion of HIF1A in certain human cancers. As a step towards under-
standing this complexity, we employed 8-week intermittent induction of a stable HIF-1a
variant, HIF1a(PP), in various cancer cell lines and examined the effects on malignant pro-
gression in xenografts of immunocompromised mice in comparison to those of HIF2a(PP).
Although 8-week treatment led to eventual loss of HIF1a(PP) expression, treated osteosarco-
ma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior
treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse
brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1a on malig-
nant progression are specific because neither HIF2a(PP) nor 3-galactosidase yielded similar
effects. By contrast, transient expression of HIF1a(PP) in U-87 MG cells or constitutive ex-
pression of HIF1a(PP) but not HIF2a(PP) in a patient-derived glioma sphere culture inhibited
tumor growth and spread. Our results indicate that intermittent induction of HIF-1a produces
lasting effects on malignant progression even at its own expense.

Introduction

Malignant tumors encounter conditions of low oxygen and nutrient deprivation as they prog-
ress. These adverse conditions, albeit detrimental to tumor growth, are associated with tumor
progression and resistance to chemo- and radiotherapies. Since its initial discovery as a nuclear
factor that binds to the human erythropoietin gene [1], the hypoxia-inducible transcription
factor HIF-1 has been recognized as a major regulator that enables cells to overcome the severe
microenvironmental stress in tumor development [2-9].
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HIF-1 is a heterodimer consisting of HIF-1o. and ARNT (aryl hydrocarbon receptor nuclear
translocator) [10], and its activation depends primarily on the oxygen-sensitive HIF-1o sub-
unit [11,12], which is degraded through the ubiquitin—proteasome pathway upon recognition
by the von Hippel-Lindau (VHL) protein as part of the E3 ubiquitin ligase [13-17]. The VHL
protein binds to HIF-1o and its paralog HIF-20 by recognizing two highly conserved, hydrox-
ylated proline residues (HIF-1o Pro-402 and Pro-564, and HIF-20 Pro-405 and Pro-531) for
polyubitylation [18-20]. Hypoxia inhibits prolyl hydroxylation, thereby preventing HIF-1o
degradation. Subsequently, stabilized HIF-1o. and HIF-20 undergo nuclear translocation, di-
merization with ARNT, and recruitment of the transcription coactivators p300/CBP, resulting
in transcriptional activation of a series of genes for angiogenesis, metabolism, and survival.

Whereas HIF-1a is ubiquitously expressed, HIF-20. expression seems restricted to certain
tissues in development and physiology [21,22]. The abundance of HIF-1a as well as HIF-2a. is
frequently detected in the vast majority of human cancers [2-7,23]. Although these transcrip-
tion factors were initially thought to share overlapping functions in tumor progression, each
seems to possess unique and sometimes opposing activities through specific target gene activa-
tion and differential interactions with other proteins [24-26]. Specifically, their opposing activ-
ities have been shown in the regulation of cell cycle and DNA repair: Whereas HIF-1o. inhibits
cell-cycle progression and DNA repair by antagonizing c-Myc activities, HIF-20. does the re-
verse by enhancing c-Myc activities [26-28].

Furthermore, the roles of HIF-1oe and HIF-201 in cancer seem context dependent. Whereas
HIF-20. acts as a tumor suppressor in glioma, non-small cell lung cancer, and hepatocellular
carcinoma [29-31], it drives tumorigenesis and growth of VHL-deficient renal clear-cell carci-
noma [32]. In keeping with this, EPASI (encoding HIF-2a) polymorphisms have been identi-
fied as one of the two susceptibility loci in renal cell carcinoma [33]. In addition, somatic, gain-
of-function mutations in HIF-20 have been linked to the development of paraganglioma and
somatostatinoma in patients [34]. Likewise, HIF-1o has been implicated as a tumor suppressor
especially in kidney cancer [35], even though substantial evidence in the literature support a
critical role of HIF-1o. in progression and metastasis [7]. The tumor-suppressing activity of
HIF-1o.is strongly indicated by the genetic evidence that focal, homozygous deletions of
HIFIA gene are found in many VHL-deficient renal clear-cell carcinoma cell lines and the
functional evidence that HIF-1o inhibits cell proliferation and tumor growth [35]. All these
studies suggest complex roles for HIF-1o and HIF-2a in cancer.

As a step towards understanding the complexity of cancer biology, we employed intermit-
tent induction of HIF-1o. and HIF-20. in various cancer cell types and investigated their differ-
ential effects on malignant progression in immunodeficient mice.

Materials and Methods
Plasmid construction and viral production

An oxygen-resistant HIF-10, HIF1o/(PP), with P402A and P564A substitutions [36], was
cloned into pLenti6.3/TO/V5-DEST through homologous recombination reactions (Invitro-
gen, Carlsbad, CA, USA). Similarly, HIF-20/(PP) with P405A and P531A substitutions and a
3xFLAG at the amino terminus was cloned into the same vector. To produce lentiviruses,
293FT cells (Invitrogen) derived from a human embryonic kidney cell line were transfected
with a lentiviral vector and Virapower packaging mix (Invitrogen) using Lipofectamine 2000.
Lentiviral supernatant was harvested 3 days after transfection and filtered through a 0.45-um
sterile syringe filter (VWR, Radnor, PA, USA). The filtered virus was aliquoted and stored at
—80°C. Viral titers were determined according to the manufacturer’s instruction.
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Lentiviral transduction

To establish tetracycline-regulated stable cell lines, we used the ViraPower HiPerform T-REx
Gateway Vector kit (Invitrogen) following the manufacturer’s instruction. Tetracycline regula-
tion in the T-REx system is based on the binding of tetracycline to the tetracycline repressor
and derepression of the promoter controlling expression of either HIF1a(PP) or HIF2a(PP).
Cells were infected at 5 multiplicity of infections (MOIs) with the lentivirus expressing tetracy-
cline repressor and selected with geneticin at 500 ug/ml for U-2 OS, 200 pg/ml for U-87 MG,
and 400 pg/ml for U-118 MG. These cells were then infected at 2 MOIs with a lentivirus de-
rived from any of the pLenti6.3/TO/V5-DEST constructs and selected with blasticidin at 5 pg/
ml for U-2 OS and U-118 MG, and 2 pug/ml for U-87 MG. Selected cells were pooled and used
for further studies.

Cell culture and intermittent induction with tetracycline

U-2 OS, U-87 MG, and U118MG were purchased from the American Type Culture Collection
(Rockville, MD, USA). U-2 OS and U-118 MG cells were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum and penicillin/streptomycin. U-87
MG cells were maintained in minimum essential medium with supplements as above. Cell cul-
ture conditions were maintained at 37°C and 5% CO,. For intermittent induction of the gene
of interest, tetracycline was administered weekly at 1 ug/ml on day 1 and removed on day 4 for
a total of 8 weeks.

Western blot

Cell extract was prepared in a lysis buffer [11] which contains 20 mM HEPES, pH 7.9, 0.42 M
NaCl, 1.5 mM MgCl,, 0.2 mM EDTA, 25% glycerol freshly supplemented with 0.5 mM DTT
and protease inhibitor cocktail (Roche, Mannheim, Germany). Protein concentrations were de-
termined by using Pierce BCA protein assay kit (Pierce, Rockford, IL, USA). Antibodies used
for Western blotting were mouse anti-human HIF-1a (#610959, BD Bioscience, San Jose, CA,
USA), rabbit anti-V5 antibody, and anti-B-tubulin (#V8137 and #T0198, Sigma-Aldrich,

St. Louis, MO, USA). Signals were developed using Super Signal West Pico chemiluminescent
substrate (Cat#34018, Thermo Scientific, Rockford, IL, USA).

Gene expression, cell proliferation, and anchorage-independent growth

For reporter assays, 293T cells were seeded in 24-well plates and transiently cotransfected with
400 ng pEpoE-luc [11] and 200 ng pLenti-HIF10(PP) or pLenti-HIF20(PP), as well as 50 ng
pCMV-EGFP for normalization. pLenti-LacZ was used as a control. Twenty-four hours after
transfection, cells were lysed and assayed for reporter activity in the Bright-Glo Luciferase
assay system (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
Reagents for TagMan gene expression were purchased from Invitrogen and real-time PCR re-
actions were performed according to the manufacturer’s instructions. Assays for cell prolifera-
tion and anchorage-independent growth were described previously [37].

Tumor transplantation

All animal studies were performed according to the protocol (13-09003) approved by the Uni-
versity of Utah Institutional Animal Care and Use Committee. There were six mice in each
group or otherwise indicated. For subcutaneous injections, treated U-2 OS (5x10°) cells were
suspended in 100 pl of phosphate-balanced saline (PBS) per injection and grafted into the
flanks of 6-8-week-old non-obese diabetic/severe-combined immunodeficient IL-2Rg-null
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(NOD/SCID gamma (NSG)) male mice. Mice were sacrificed and tumor was extracted when
the diameter reached 1 cm. For intracranial implantation, treated U-87 MG or U-118 MG
(7x10°) cells in a total volume of 5 pl were mixed with BD Matrigel basement membrane ma-
trix (BD Biosciences). NSG mice were anesthetized with isoflurane, and injections were posi-
tioned at 2 mm right to the bregma and 1 mm anterior to the coronal suture, with 2 mm depth.
Approximately 5-7 weeks after injection, mice were sacrificed and the brain was extracted for
histological examination.

Bioluminescent imaging

Mice were injected intraperitoneally with a 50 mg/kg D-luciferin and 100 mg/kg ketamine/10
mg/kg xylazine (Sigma) mixture. Images were acquired 10 min after injection with the IVIS
100 or 200 imaging system (Xenogen, Alameda, CA, USA). Quantitative analysis of biolumi-
nescent intensity from the images was performed using LivingImage software (Xenogen).

Glioma Stem Cell Culture, Transduction, and Intracranial Implantation

U-87 MG, U-118 MG, and patient-derived glioma sphere culture cells, GSC20 [38], were main-
tained in DMEM/F12 medium supplemented with B27, 20 ng/ml of EGF and 20 ng/ml of
bFGF (Invitrogen). To maintain spheric growth, fresh medium with bFGF and EGF at ~10-
20% of the total volume was added twice per week. Spheres were triturated with Accutase (Invi-
trogen, Cat: A11105-01) and fed with fresh culture medium with supplement. Lentiviral trans-
duction was performed after trituration at 1 MOL. Intracranial implantation of GSC20 was
performed with 2x10° cells per injection.

Statistical analysis

Statistical differences between groups of data were determined in a t-test of two tails. n = 3
or greater as indicated was used for each data set. Statistical significance was indicated as
*, p-value < 0.05; **, p-value < 0.01; and ***, p-value < 0.001.

Results
Regulated HIF-a expression in various cancer cell lines

To better investigate the role of HIF-o. in cancer, we developed a tetracycline-regulated gene ex-
pression system through lentiviral transduction (Fig 1A) of the cancer cell lines used below.
Prolyl hydroxylation sites (Pro-402 and Pro-564) in HIF-1c. [18-20] were replaced with ala-
nine to generate a stable HIF-1o. variant, HIF10.(PP). The HIF-2a equivalent, HIF20(PP), was
generated similarly. Human cancer cell lines including U-2 OS of osteosarcoma and U-87 MG
and U-118 MG of glioblastomas were used for HIF-o. expression. As a control, a lentivirus ex-
pressing B-galactosidase (B-gal) was included. Cells were pooled after selection and analyzed
for gene expression.

As expected, the addition of tetracycline resulted in robust induction of HIF1a(PP), HIF2a.
(PP), and B-gal in all the cell lines examined by Western blot analysis (Figs 1B and S1). Further-
more, both HIF1a/(PP) and HIF2a/(PP) were transcriptionally active in stimulating an erythro-
poietin reporter gene, EPO-luc, by five- and sixfold, respectively (Fig 1C). Moreover, induction
of HIF1a(PP) upregulated target genes CA9 (carbonic anhydrase IX) [39] and PGK1I (phos-
phoglycerate kinase 1) [40] (3- and 6-fold in U-118 MG and 2- and 5-fold in U-87 MG) (Fig
1D). Similarly, HIF2a/(PP) also increased expression of VEGFA (vascular endothelial growth
factor A) [41] and LOX (lysyl oxidase) [42] by 4- and 16-fold, respectively, in U-2 OS (Fig 1E).
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Fig 1. Tetracycline regulation of HIF1a(PP) and HIF2a(PP) expression and transcriptional activity. (A) Tetracycline regulation is diagrammed where
the addition of tetracycline (tet) results in dissociation of tetracycline repressor (TetR) from the tetracycline operon (TetO) and, in turn, gene activation. (B)
Western blot analysis of transduced cell types, as indicated, for the expression of HIF1a(PP) and HIF2a(PP) after 2-day treatment with tetracycline. (C)
Transcriptional activities of HIF1a(PP) and HIF2a(PP) were tested in a reporter assay in reference to 3-galactosidase (3-gal). ***, p-value < 0.001. (D, E)
The expression of HIF target genes (PGK1, CA9, VEGFA, and LOX) was analyzed in specified cell lines by using real-time PCR after 2-day treatment

with tetracycline.

doi:10.1371/journal.pone.0125125.g001

Intermittent induction of HIF-1a transgene leads to eventual loss of
expression

Although hypoxia has long been known to enhance cancer metastatic potential [43,44], inter-
mittent hypoxia, defined as repeated cycles of hypoxia and reoxygenation, seems more effective
than prolonged hypoxia in enhancing spontaneous metastasis [45]. Recent studies indicate in-
termittent hypoxia is a key regulator of the interplay between cancer cell and endothelial cell
for tumor angiogenesis and growth and resistance to chemo- and radiotherapy [46]. Further-
more, HIF-1o levels seem well maintained during the cycling [47].

To reproduce intermittent hypoxia in cancer, we elected to treat the transduced cells with
tetracycline for 3 days and without for 4 days every week for 8 weeks (Fig 2A). Interestingly, at
the end of the treatment most of these treated cells no longer or barely responded to tetracy-
cline (Fig 2B). Specifically, HIF10(PP) expression was essentially lost at protein levels in all cell
lines, while various degrees of HIF20(PP) attenuation were observed. However, -gal expres-
sion remained inducible (S1 Fig). The loss at protein levels correlated with that at transcript
levels. To exclude the possibility of slow recovery, we continued to culture these cells for addi-
tional weeks in the absence of tetracycline and found no recovery of HIF1a/(PP) expression. Al-
though the underlying mechanism requires further investigation, we reasoned that the loss of
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Fig 2. Intermittent induction resulted in loss of of HIF1a(PP) expression. (A) Intermittent induction involves the administration of tetracycline into cell
culture each week on day 1 and removal on day 4 each week for a total of 8 weeks. Afterwards, cells were allowed to expand for further analyses and
injections. (B) After intermittent induction (8W), different types of cells as indicated were induced again with tetracycline for 2 days and analyzed by Western
blotting in reference to those without intermittent induction (OW). (C) Cell proliferation was determined by cell counting after intermittent induction.

*** p-value <0.001.

doi:10.1371/journal.pone.0125125.9002

HIF10/(PP) induction would help us determine the consequence of intermittent induction,
rather than de novo expression, of HIF10(PP) on malignant progression.

U-2 OS cells acquire tumorigenicity in the absence of continued
expression of HIF-1a variant

We first observed that the HIF10(PP)-induced U-2 OS cells grew twofold faster than the

B-gal control without further induction, whereas only a modest increase was detected in the
HIF20/(PP)-induced cells (Fig 2C). Importantly, the former but not the latter became tumori-
genic when injected subcutaneously into the flanks of NSG mice; all 6 injections with the
HIF10(PP) cells resulted in tumor formation, whereas none of the HIF2o(PP) cells did at the
contralateral sites (Fig 3A and 3B). Of note, none of the -gal controls became tumorigenic.
Moreover, the HIF10(PP) tumors grew at an exponential pace (Fig 3C). Histological examina-
tion confirmed the malignant growth of these tumors, as indicated by hypercellularity and ne-
crosis, increased mitosis, and invasion into the dermis and the striated muscle layers (Fig 3D).
Similar data were obtained when CD1 nude mice were used. Thus, we conclude that intermit-
tent induction of HIF1a/(PP), but not HIF2a/(PP), programs the non-tumorigenic U-2 OS cells
for malignant progression independent of its continued expression.
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Fig 3. U-2 OS cells acquired tumorigenicity after intermittent induction of HIF1a(PP). (A) Tumor incidence is shown in 6 NSG mice after bilateral,
subcutaneous injections of the 8-week HIF1a(PP) and HIF2a(PP) cells. (B) Only injections of the HIF1a(PP) cells produced tumors, as indicated by
arrowheads. Scale bar, 1 cm. (C) Tumor volume was calculated based on measurements and plotted as a function of time. ***, p-value < 0.001. (D)
Hematoxylin and eosin staining of the tumor specimens reveals invasion of the dermal layer (a), numerous mitoses (arrowheads) (b), necrosis (N) (c), and
invasion into the striated muscle layer (d). Scale bar, 100 pm.

doi:10.1371/journal.pone.0125125.9003

HIF-1a promotes invasion of glioma cells in the mouse brain

To extend this original observation, we focused on glioma progression and employed an ortho-
topic tumor model through intracranial injections. Unlike their U-2 OS counterpart, the U-87
MG and U-118 MG cells with prior HIF1o.(PP) induction exhibited a similar growth rate in
culture as their controls (Fig 2C), suggesting variation of HIF1a/(PP) effects after intermittent
induction. Furthermore, HIF10((PP)-induced U-87 MG cells showed ~10-fold increase in the
development of tumor spheres but no increase in anchorage-independent growth (S2 Fig). Yet,
a decrease in tumor sphere formation and anchorage-independent growth was observed in
HIF10(PP)-induced U-118 MG cells.

Original U-87 MG cells are tumorigenic after intracranial transplantation. Interestingly,
during a ~5-week monitoring of tumor growth using bioluminescent imaging, we found that
the increase in tumor volume from the B-gal-induced cells was equivalent to, if not greater
than, that from the HIF1o(PP)-induced cells (Fig 4A and 4B). By contrast, tumors derived
from the HIF20(PP) cells grew poorly and failed to expand during the experimental period
(Fig 4C and 4D). The lack of tumor growth from the HIF2a/(PP) cells appears consistent with a
previous report that HIF-2o. acts as a tumor suppressor in glioma [29].

Although prior intermittent induction of HIF1a(PP) had hardly any effect on U-87 MG cell
proliferation in culture and in vivo, it is noticeable that the bioluminescent signals from the de-
rived tumors permeated broadly beyond the frontal lobes of the brain (Fig 4A), indicative of
spreading of tumor cells. Indeed, tumor lesions from the HIF1a/(PP) cells were numerous foci
throughout the brain (Figs 4E and S3B); in addition to the cerebral cortex, invasions were iden-
tified in the hypothalamus, midbrain, hindbrain, and even cerebellum. By contrast, tumor le-
sions derived from the B-gal control tended to be singular, large, and localized to the cerebral
cortex (Fig 4F), even though very few developed more than single lesions with distal invasions
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derived intracranial tumors (A) and HIF2a(PP)-derived intracranial tumors (C). The respective tumor volumes were calculated based on the relative
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presented at 25x and 200x magnifications, with scale bars of 1 mm and 100 um, respectively.

doi:10.1371/journal.pone.0125125.9004

(S3A Fig). Furthermore, only small, singular lesions were found in all HIF20/(PP)-derived tu-
mors (Fig 4F). Histological examination at high magnification revealed aggressive invasion of
round cells in the HIF1a/(PP)-derived tumors, whereas relatively low-density, spindle-shaped
tumor cells were frequently observed interwoven with fibrous tissues in B-gal and HIF2a/(PP)
tumors (Fig 4E and 4F). However, all three cell types appeared indistinguishable in culture.
With respect to U-118 MG, 8-week intermittent induction of HIF1a/(PP) failed to result in
discernible morphological differences in culture but apparently helped tumor maintenance (Fig
5A and 5B), as indicated by the preserved bioluminescent signals throughout a 7-week period of
observation. In contrast, the signals from the -gal control were diminished progressively, re-
sulting in a statistically significant drop in tumor volume (Fig 5B). Tumor incidence of the
HIF10(PP) cells was 5/6, similar to that of the control (4/6). Furthermore, tumors from the
HIF10(PP) cells often had multiple lesions, in contrast to mostly single lesions in the -gal con-
trol group. Therefore, these results further corroborate the long-lasting effects of HIF-1a on ma-
lignant progression and the differential observations between cell culture and animal models.

Transient induction of HIF-1a inhibits glioma growth

To test whether transient induction of HIF10(PP) would produce similar effects in vivo, we an-
alyzed tumor growth of U-87 MG cells that had been treated with tetracycline in culture for
only 2 days before intracranial transplantation. Fig 6A shows that transient induction of
HIF10(PP) retarded tumor growth significantly in the brain in reference to that of p-gal. To ex-
tend this finding, we employed a patient-derived, mesenchymal glioma sphere culture, GSC20
[38]. These cells were allowed for constitutive expression of B-gal, HIF1a/(PP), or HIF20(PP)
after lentiviral infection and grown in sphere culture medium for adequate expansion prior to
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Fig 5. Intermittent induction of HIF1a(PP) facilitated intracranial tumor growth of U-118 MG cells. (A)
Bioluminescent imaging analysis of intracranial tumors derived from 8-week treated cells as indicated. (B)
Tumor volumes, plotted in a log scale, from B-gal cells decreased significantly during the course of 49 days,
but those from HIF1a(PP) did not. **, p-value < 0.01. (C) Representative tumor lesions are shown in
hematoxylin and eosin staining from 2 individual mice of each group at 25x and 200x magnifications, with
scale bars of 1 mm and 100 ym, respectively.

doi:10.1371/journal.pone.0125125.g005

intracranial injections. It is noteworthy that while the HIF1a(PP) population expanded slightly
faster than the B-gal control and more readily formed tumor spheres, the HIF20(PP) multi-
plied at an extremely slow rate (Fig 6B).

Contrary to these in vitro findings, injection of the HIF1a/(PP) cells led to the development
of only small, primarily singular tumors in the mouse brain, whereas the other two cell types
yielded much larger, multiple lesions and invasions (Figs 6C and S4). Tumor incidence was
slightly decreased for HIF1a(PP) cells (3/5 vs 4/5 for the other two cell types). Strikingly, tu-
mors derived from the B-gal and HIF2c(PP) cells manifested a multitude of mitoses and multi-
nuclear giant cells, both of which were markedly diminished in HIF10/(PP)-derived tumors
(Figs 6C and S4). Furthermore, vascular proliferation and necrosis, common features of glio-
blastomas [48], were present in tumors derived from the B-gal and HIF20(PP) cells but not the
HIF10(PP) cells (S4 Fig). Taken together, these results suggest that HIF-1o. can also inhibit gli-
oma growth and progression.

Discussion

We provide evidence in this study that intermittent induction of HIF1a(PP) in vitro produced
lasting effects on malignant progression of different cancer cell lines, unexpectedly indepen-
dent of continued expression of the transgene. All these cells eventually lost HIF10(PP)
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doi:10.1371/journal.pone.0125125.9006

expression after continuous culture, yet retained the acquired malignant traits in the in vivo set-
ting. These results indicate that repeated activation of HIF-1a can program cancer cells to ac-
quire perpetual signaling possibly through feed-forward biochemical/metabolic loops or
genetic/epigenetic changes, even though the underlying mechanism requires further investiga-
tion. The study also suggests that HIF-1o. can promote malignant progression at its own ex-
pense, which might account for HIF-1a inactivation in human cancer.

Although repeated cycles of hypoxia and reoxygenation have long been known to promote
tumor progression [45], our experimental system allows us to directly interrogate HIF-1o and
HIF-2a, excluding other possible aspects such as changes in reactive oxygen species, which may
also contribute to malignant progression. It should be noted that the cancer cells treated for 8
weeks in our study, although they no longer expressed HIF10a/(PP), did maintain endogenous
HIF-1o expression under hypoxia, a potential contributing factor to the process and a disadvan-
tage of our experimental system. Interestingly, knockdown of endogenous HIF-1o by short-
hairpin RNA in the cancer cells treated for 8 weeks impeded tumor growth but failed to prevent
invasion, suggesting that intermittent induction of HIF10(PP) in culture is key to programming
glioma cells for invasion whereas endogenous HIF-1o potentially facilitates tumor growth. This
interpretation is consistent with our results that tumors from the control groups, -gal and
HIF20/(PP), exhibited much less invasion despite endogenous HIF-1o expression; however, we
cannot exclude the possibility that endogenous HIF-1o was required for programming cancer

PLOS ONE | DOI:10.1371/journal.pone.0125125  April 20, 2015 10/15



@'PLOS ‘ ONE

Lasting Effect of HIF-1a on Malignant Progression

cells during intermittent induction of HIF1ai(PP). This possibility will be better addressed in
HIF-1o-deficient cancer cells or conditional genetic models.

It is interesting to note that GSC20-derived tumor cells in the control group featured ram-
pant mitoses and numerous giant-sized, hyperchromatic nuclei, indicative of rapid cell prolif-
eration and aberrant DNA replication; however, HIF10(PP) expression not only retarded
tumor growth but also markedly reduced mitosis of tumor cells and diminished multi-
nucleation. These effects are in agreement with the inhibitory roles of HIF-1a, but not HIF-20,
in cell-cycle progression and DNA replication upon transient induction [49-51]. Although
these findings are reminiscent of previous reports that HIF-1c retards tumor growth [52,53],
our data collectively indicate that HIF-1o: has pleotropic effects that are context dependent.

Our study also indicates that HIF-1a is a potent inducer of glioma invasion. This is particu-
larly interesting because investigations of glioma invasion have been hampered by the scarcity
of representative experimental models [54]. Although we have not identified the signaling
pathway leading to glioma invasion, it appears to be independent of the major signaling path-
ways such as PI(3)K-Akt and MAPK after intermittent induction. Glioma aggressiveness is
associated with a mesenchymal phenotype that is regulated by the C/EBPB and STAT3 tran-
scription factors [55]. In addition, CHI3L1 (chitinase 3-like 1), also known as BRP-39/
HCGP39/YKL-40 [56], is considered a reliable gene expression marker for the mesenchymal
subclass and local invasiveness of glioblastomas [57-60]. However, we observed no increase in
STAT3 phosphorylation in HIF10/(PP)-induced U-87 MG cells. Furthermore, we detected de-
creased CHI3L1 expression in the invasive lesions by immunohistochemistry. Therefore, fur-
ther studies are warranted to understand the mechanism by which intermittent induction of
HIF-1o drives malignant progression.

Targeting HIF-1 for cancer therapy was based originally on the critical roles of HIF-1c in
cancer biology, the association of HIF-1o overexpression with increased patient mortality in
various cancer types, and the marked effects on tumor growth by inhibiting HIF- 10 activity in
preclinical studies [3-5,61]. Numerous small-molecule inhibitors therefore have been identi-
fied in preclinical studies to inhibit HIF-1o via targeting various signaling pathways that regu-
late HIF-1o: expression, degradation, dimerization, DNA binding, and transactivation [62].
Despite these advances, caution must be exercised for the use of these inhibitors as a potential
therapeutic strategy owing to the complex role of HIF-1a and HIF-2a in cancer [63]. There-
fore, an in-depth understanding of complex hypoxia biology in cancer will be key to precision
targeting and therapeutic efficacy [64].

Supporting Information

S1 Fig. Loss of HIF10.(PP) expression after 8-week intermittent induction. U-87 MG vari-
ants, as specified, were induced with tetracycline for 2 days and analyzed by Western blotting
with antibodies against V5 and B-tubulin. HIF10(PP) cells post intermittent induction (8W)
no longer responded to tetracycline induction in contrast to those prior to intermittent induc-
tion (OW).

(TTF)

S2 Fig. Analysis of U-87 MG and U-118 MG cells treated for 8 weeks. HIF10(PP)-induced
cells were assayed for tumor sphere formation in reference to the control (Con) (A). Scale bar,
200 um. Tumor spheres > 200 um were quantified and plotted (B). Soft agar assays were per-
formed for in vitro tumorigenicity (C). Scale bar, 200 um. Colonies > 200 um were quantified
and plotted (D).

(TTF)
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S3 Fig. Intracranial tumor lesions derived from U-87 MG variants after intermittent induc-
tion. (A) Invasive lesions were seen occasionally in tumors derived from B-gal cells (XG021),
presented at 25x and 200x magnifications, with scale bars of 1 mm and 100 pm, respectively.
(B) Additional lesions of widespread invasion derived from HIF10/(PP) cells are shown
(XG042). Scale bar, 100 um. Tumor lesions are demarcated in dash lines.

(TIF)

$4 Fig. Additional malignant features of intracranial tumors derived from transduced
GSC20. Invasive lesions were identified in the hindbrain of NSG mice injected with pB-gal-
transduced GSC20 (XG198) and HIF20(PP)-transduced GSD20 (XG205). Tumor lesions also
contained necrosis (XG198) and invasion in the forth ventricle (XG205, arrowhead). Vascular
proliferation and multi-nucleation were observed commonly in these tumor lesions. Images
are presented at 25x and 200x magnifications, with scale bars of 1 mm and

100 pm, respectively.

(TIF)
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