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Abstract: To find novel antitumor agents, a series of 1H-benzofuro[3,2-c]pyrazole derivatives 4a-e
were designed and synthesized. The treatment of 6-methoxybenzofuran-3(2H)-one 3 with LiHMDS
in anhydrous tetrahydrofuran (THF) followed by reaction with 3-substitued phenyl isothiocyanate
gave the thioamide intermediates, which underwent condensation with hydrazine monohydrate in
dioxane/EtOH (1:1) to provide the benzofuropyrazole derivatives 4a–e as well as the unexpected
pyrazole derivatives 5a–e. In tumor cell growth inhibitory assay, all the benzofuropyrazole derivatives
were not active against the breast tumor MCF-7 cell, only 4a was highly active and more potent than
ABT-751 against the leukemia K562 (GI50 = 0.26 µM) and lung tumor A549 cells (GI50 = 0.19 µM),
while other benzofuropyrazoles showed very weak inhibitory activity. In contrast, the pyrazoles 5a-e
were in general more potent than the benzofuropyrazoles 4a–e. Compound 5a exhibited a similar
tendency to that of 4a with high potency against K562 and A549 cells but weak effects on MCF-7 cell.
Both pyrazoles 5b and 5e exhibited high inhibitory activities against K562, MCF-7 and A549 cells.
The most active compound 5b was much more potent than ABT-751 against K562 and A549 cells
with GI50 values of 0.021 and 0.69 µM, respectively. Moreover, 5b was identified as a novel tubulin
polymerization inhibitor with an IC50 of 7.30 µM.
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1. Introduction

Privileged structures are defined as molecular frameworks that are able to provide useful
ligands for multiple types of receptors or enzymes through proper structural modifications.
In combination with their favorable drug-like properties, privileged structures or scaffolds are
widely used in rational drug design to find new lead compounds or drug candidates [1–3]. Pyrazole
derivatives represent one of the most active classes of compounds that possess a wide spectrum of
biological activities, including antibacterial and antifungal [4,5], antitumor [6,7], anti-inflammatory
and analgesic [8,9], antitubercular [10], antiviral [11,12], anti-Alzheimer’s [13,14], α-glucosidase
inhibitory [15], anti-diabetic [16], antileishmanial [17,18], anti-malarial [19], radioimaging [20],
acaricidal and insecticidal [21,22] activities. As a privileged scaffold, pyrazole has been recently
widely used in the design of anticancer agents for a multiple of tumor targets [23].

N-(2-((4-Hydroxyphenyl)amino)pyridin-3-yl)-4-methoxybenzenesulfonamide (ABT-751, 1, Figure 1)
is an orally available sulfonamide tubulin inhibitor under clinical investigations for the treatment of
cancers [24,25]. On its X-ray crystal structures with tubulin, ABT-751 interacted with all the
three pockets of tubulin at the colchicine binding site [26]. Based on the binding mode of 1
with tubulin and the pyrazole pharmacophore, our group designed and synthesized a series of
indenopyrazoles as potential tubulin polymerization inhibitors targeting the colchicine binding
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site [27]. The indenopyrazole analogue 2 (Figure 1) was found to compete with colchicine in binding to
the tubulin colchicine site and inhibit the polymerization of tubulin. In vitro, 2 displayed nanomolar
potency against a variety of tumor cell lines, arrested tumor cells in G2/M phase through
the regulation of cell cycle-related proteins, and induced tumor cell apoptosis through the
activation of caspase pathways. Furthermore, 2 was effective for multidrug resistance tumor cells
and inhibited phosphatase and tensin homolog (PTEN) phosphorylation and PTEN/Akt/NF-
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The synthetic route towards the benzofuropyrazole derivatives was shown in Scheme 1. The 6-
methoxybenzofuran-3-(2H)-one 3 was prepared according to the reported method in three steps [29–
31] (please refer to the supplementary materials). The Hoesch reaction of resorcinol with 
chloroacetonitrile in the presence of anhydrous ZnCl2 and HCl gas generated an imine intermediate, 
which upon hydrolysis, provided 2-chloro-1-(2,4-dihydroxyphenyl)ethanone in 94% yield. 
Treatment of the chloromethyl ketone with a mild base, CH3COONa, gave the cyclized 6-
hydroxybenzofuran-3-(2H)-one (54%). Methylation of 6-hydroxybenzofuran-3-(2H)-one with Me2SO4 
produced the 6-methoxybenzofuran-3-(2H)-one 3 in 86% yield. After the deprotonation of the α-
proton of carbonyls in 3 with lithium hexamethyldisilazide (LiHMDS), the resulting enolates were 
reacted with 3-substitued phenyl isothiocyanates to give the thioamide intermediates, which 
underwent condensation with hydrazine monohydrate in dioxane/EtOH (1:1) to form the 
benzofuropyrazole derivatives 4a–e in 11% to 30% yield. In this process, the partial cleavage of the 
furan ring occurred, a series of 5-methoxy-2-(3-(phenylamino)-1H-pyrazol-5-yl)phenol derivatives 
5a–e were also isolated in 13% to 31% yield. The structures of benzofuropyrazoles 4a–e and pyrazoles 
5a–e were determined by 1H nuclear magnetic resonance (NMR), 13C-NMR and electrospray 
ionization mass spectrometry (ESI-MS). In the 1H NMR spectrum of benzofuropyrazole 4c, the 
pyrazole 1-NH appeared at 11.91 ppm, the aniline NH at 8.05 as a singlet, the amide NH at 8.28 (q, J 
= 4.6 Hz) in corresponding with the N-methyl at 2.77 (d, J = 4.6 Hz). The seven protons at the two 
phenyl rings appeared at 6.42 to 7.82 ppm. In comparison with 4c, in the 1H NMR spectrum of 
pyrazole 5c, there were two additional peaks at 10.23 ppm for the phenol OH, 6.24 ppm for the 
pyrazole 4-H, supporting its estimated structure. 

B
signaling [28]. In vivo, 2 demonstrated its potency in non-small cell lung cancer (NSCLC)
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2. Results and Discussion

2.1. Chemistry

The synthetic route towards the benzofuropyrazole derivatives was shown in Scheme 1.
The 6-methoxybenzofuran-3-(2H)-one 3 was prepared according to the reported method in three
steps [29–31] (please refer to the Supplementary Materials). The Hoesch reaction of resorcinol
with chloroacetonitrile in the presence of anhydrous ZnCl2 and HCl gas generated an imine
intermediate, which upon hydrolysis, provided 2-chloro-1-(2,4-dihydroxyphenyl)ethanone in 94%
yield. Treatment of the chloromethyl ketone with a mild base, CH3COONa, gave the cyclized
6-hydroxybenzofuran-3-(2H)-one (54%). Methylation of 6-hydroxybenzofuran-3-(2H)-one with
Me2SO4 produced the 6-methoxybenzofuran-3-(2H)-one 3 in 86% yield. After the deprotonation of
the α-proton of carbonyls in 3 with lithium hexamethyldisilazide (LiHMDS), the resulting enolates
were reacted with 3-substitued phenyl isothiocyanates to give the thioamide intermediates,
which underwent condensation with hydrazine monohydrate in dioxane/EtOH (1:1) to form the
benzofuropyrazole derivatives 4a–e in 11% to 30% yield. In this process, the partial cleavage of the
furan ring occurred, a series of 5-methoxy-2-(3-(phenylamino)-1H-pyrazol-5-yl)phenol derivatives
5a–e were also isolated in 13% to 31% yield. The structures of benzofuropyrazoles 4a–e and pyrazoles
5a–e were determined by 1H nuclear magnetic resonance (NMR), 13C-NMR and electrospray ionization
mass spectrometry (ESI-MS). In the 1H NMR spectrum of benzofuropyrazole 4c, the pyrazole 1-NH
appeared at 11.91 ppm, the aniline NH at 8.05 as a singlet, the amide NH at 8.28 (q, J = 4.6 Hz)
in corresponding with the N-methyl at 2.77 (d, J = 4.6 Hz). The seven protons at the two phenyl
rings appeared at 6.42 to 7.82 ppm. In comparison with 4c, in the 1H NMR spectrum of pyrazole 5c,
there were two additional peaks at 10.23 ppm for the phenol OH, 6.24 ppm for the pyrazole 4-H,
supporting its estimated structure.
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2.2. Tumor Cell Growth Inhibitory Activity

All the synthesized compounds were evaluated for their tumor cell growth inhibitory activity
against human breast cancer MCF-7 cell, human erythroleukemia K562 cell and human lung cancer
A549 cell by the conventional MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide)
assay. ABT-751 was used as positive control.

As shown in Table 1, the breast tumor MCF-7 cell was not sensitive to the benzofuropyrazole
derivatives 4a–e. For the K562 and A549 cells, only 4a exhibited high potency and was more potent
than ABT-71 with the GI50 of 0.26 and 0.19 µM, respectively, while other benzofuropyrazoles showed
moderate or weak activity. It seems the substitution of the ethoxy at the aniline ring with the
electron-withdrawing ester, amide, and cyano groups was not tolerated among the benzofuropyrazole
series. In contrast, all the three tumor cell lines were sensitive to the pyrazole analogues 5a–e.
The methyl ester 5b was the most active that inhibited the K562, MCF-7, and A549 cell growth
with GI50 values of 0.021, 1.7 and 0.69 µM, respectively. Both compounds 5a and 5b were highly
active against the K562 and A549 cells, and were 5- to 35-fold more potent than ABT-751. The cyano
derivative 5e was also highly potent against the three tumor cell lines, although it showed slightly less
potency than ABT-751. Unlike the benzofuropyrazole derivatives, the substitution of the ethoxy at
the aniline ring with an electron-withdrawing ester, amide, and cyano group in the pyrazole series
was well tolerated, and even preferred, indicating that the benzofuropyrazole derivatives 4a–e and the
pyrazoles 5a–e might involve different mechanisms of action.

Table 1. Tumor cell growth inhibitory activity of 4a–e and 5a–e.

GI50 (µM)

Compound R K562 MCF-7 A549

4a OCH2CH3 0.26 ± 0.04 >20 0.19 ± 0.08
4b COOCH3 5.46 ± 1.04 >20 >20
4c CONHCH3 5.11 ± 0.31 >20 15.11 ± 2.18
4d CONH2 9.01 ± 1.81 >20 10.08 ± 2.21
4e CN 13.53 ± 0.41 >20 17.01 ± 2.76
5a OCH2CH3 0.046 ± 0.007 16.72 ± 2.6 0.92 ± 0.17
5b COOCH3 0.021 ± 0.004 1.7 ± 0.43 0.69 ± 0.18
5c CONHCH3 7.33 ± 1.004 7.78 ± 0.87 9.46 ± 2.03
5d CONH2 14.77 ± 2.62 5.8 ± 0.202 10.9 ± 0.99
5e CN 1.45 ± 0.047 2.27 ± 0.34 3.24 ± 0.99

ABT-751 0.74 ± 0.078 0.88 ± 0.24 4.58 ± 0.04
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2.3. In Vitro Tubulin Polymerization Inhibitory Activity

The pyrazole derivative 5b showed the best tumor cell growth inhibitory activity among all the
tested compounds. To investigate whether 5b was a tubulin inhibitor, the tubulin polymerization
inhibition assay was carried out. At 37 ◦C, tubulin will polymerize into microtubules, which is
followed by the observed fluorescence enhancement due to the incorporation of a fluorescent reporter
into microtubules as polymerization occurs [32]. As shown in Figure 2, 5b inhibited the tubulin
polymerization in a concentration-dependent way with a calculated IC50 of 7.30 µM. Therefore,
5b may be a good lead for further structural modification to find more potent tubulin inhibitors
based on the privileged pyrazole structure.
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Figure 2. Effect of 5b on tubulin polymerization in vitro. Purified tubulin protein at 2 mg/mL in a
reaction buffer was incubated at 37 ◦C in the presence of 1% dimethyl sulfoxide (DMSO), test compound
5b at 1.25, 2.5, 5, or 10 µM or colchicine at 20 µM. The fluorescence intensity was measured every 60 s
for 60 min and is presented as increases in the polymerized microtubule.

3. Materials and Methods

3.1. General Chemical Experimental Procedures

Melting points were determined on an X-6 micromelting point apparatus (Beijing Tech. Co., Ltd.).
1H- and 13C-NMR spectra were recorded on Bruker-400 NMR or Bruker-600 NMR spectrometers.
All spectra were recorded at room temperature for DMSO or CDCl3 solutions. ESI-MS was performed
on an API 4000 instrument. Thin-layer chromatography (TLC) was performed on silica gel GF254
plates. Silica gel GF254 and silica gel (200−300 mesh) from Qingdao Haiyang Chemical Company were
used for TLC and column chromatography, respectively. All reagents were commercially available
and were used as purchased without further purification. All reactions involving oxygen- or moisture
sensitive compounds were carried out under a dry N2 atmosphere. Unless otherwise noted, reagents
were added by syringe. Tetrahydrofuran (THF) was distilled from sodium/benzophenone immediately
prior to use.

3-((6-Methoxy-1H-benzofuro[3,2-c]pyrazol-3-yl)amino)ethoxybenzene (4a) and 3-((5-(2-hydroxy-4-
methoxyphenyl)-1H-pyrazol-3-yl)amino)ethoxybenzene (5a) A solution of 6-methoxybenzofuran-3-(2H)-one
3 (150 mg, 0.9 mmol) in anhydrous THF (5 mL) was cooled to −78 ◦C under nitrogen atmosphere.
LiHMDS (1.09 mL, 1.1 mmol, 1.0 M THF solution) was added dropwise. The mixture was
stirred at −78 ◦C for 2 h and then warmed to −45 ◦C in 45 min. After a solution of the
1-ethoxy-3-isothiocyanatobenzene (164 mg, 1.0 mmol) in anhydrous THF (3 mL) was added, the
resulting mixture was stirred at room temperature overnight. Water (30 mL) was added, and the
mixture was extracted with EtOAc (3 × 30 mL). The organic layer was washed with brine, dried
over anhydrous Na2SO4. After filtration and evaporation, flash column chromatography on silica gel
(hexane/EtOAc = 15:1) gave the resulting thioamide intermediate, which was dissolved in 1,4-dioxane
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(3 mL) and ethanol (3 mL). Hydrazine hydrate (0.46 mL, 7.3 mmol) was added dropwise. The mixture
was heated to 50 ◦C and stirred for 24 h. Water (40 mL) was added, and the mixture was extracted
with EtOAc (3 × 40 mL). The organic layer was washed with brine, and dried over anhydrous Na2SO4.
After filtration and evaporation, the residue was purified by column chromatography on silica gel
(hexane/EtOAc = 4:1) to give 4a (32 mg, 11%) and 5a (38 mg, 13%).

4a: Brown solid, m.p.: 62–64 ◦C. 1H-NMR (CDCl3) δ 7.32 (d, J = 8.6 Hz, 1H, Ar-H), 7.08 (t, J = 8.1 Hz,
1H, Ar-H), 6.56 (d, J = 2.4 Hz, 1H, Ar-H), 6.46 (dd, J = 2.4, 8.6 Hz, 1H, Ar-H), 6.36 (d, J = 8.2 Hz, 1H,
Ar-H), 6.25 (d, J = 8.1 Hz, 1H, Ar-H), 6.21 (s, 1H, Ar-H), 5.09 (s, 1H, 3-NH), 3.96 (q, J = 6.9 Hz, 2H,
OCH2), 3.81 (s, 3H, 6’-OCH3), 1.37 (t, J = 6.9 Hz, 3H, OCH2CH3). 13C-NMR (CDCl3) δ 161.6, 160.3,
156.6, 146.0, 137.8, 130.2, 129.6, 127.9, 125.8, 111.5, 109.5, 107.0, 105.1, 103.7, 101.0, 63.3, 55.3, 14.9. MS
(ESI) calcd. for C18H19N3O3 [M + NH4]+: 341.1, found: 341.4.

5a: Brown solid, m.p.: 82–84 ◦C. 1H-NMR (CDCl3) δ 7.39 (d, J = 8.6 Hz, 1H, Ar-H), 7.17 (t, J = 8.0 Hz,
1H, Ar-H), 6.57–6.49 (m, 5H, Ar-H), 6.22 (s, 1H, 4’-H), 5.79 (s, 1H, 3-NH), 4.01 (q, J = 6.9 Hz, 2H, 1-OCH2),
3.79 (s, 3H, 4”-OCH3), 1.41 (t, J = 6.9 Hz, 3H, 1-CH3). 13C-NMR (CDCl3) δ 160.7, 160.2, 157.0, 143.9,
130.4, 127.6, 109.8, 108.7, 107.1, 106.5, 102.8, 101.7, 90.4, 63.3, 55.3, 15.4. MS (ESI) calcd. for C18H19N3O3

[M + H]+: 326.1, found: 326.4.

Methyl 3-((6-methoxy-1H-benzofuro[3,2-c]pyrazol-3-yl)amino)benzoate (4b) and methyl 3-((5-(2-hydroxy-4-
methoxyphenyl)-1H-pyrazol-3-yl)amino)benzoate (5b) According to the procedures described for the
synthesis of 4a and 5a, compounds 4b and 5b were prepared from 3 (100 mg, 0.6 mmol), LiHMDS
(0.7 mL, 0.7 mmol), methyl 3-isothiocyanatobenzoate (135 mg, 0.7 mmol) and hydrazine hydrate
(0.3 mL, 4.8 mmol). The crude residue was purified by column chromatography on silica gel
(hexane/EtOAc = 3:1) to give 4b (36 mg, 18%) and 5b (33 mg, 16%).

4b: Brown solid, m.p.: 103–105 ◦C. 1H-NMR (DMSO-d6) δ 11.96 (s, 1H, 1’-NH), 8.19 (s, 1H, 3-NH),
8.13 (s, 1H, Ar-H), 7.61 (s, 1H, Ar-H), 7.43 (d, J = 8.3 Hz, 1H, Ar-H), 7.33 (d, J = 4.3 Hz, 2H, Ar-H), 6.50
(dd, J = 1.9, 8.5 Hz, Ar-H), 6.42 (d, J = 2.0 Hz, 1H, Ar-H), 3.84 (s, 3H, COOCH3), 3.74 (s, 3H, OCH3).
13C-NMR (DMSO-d6) δ 167.2, 161.1, 156.9, 145.9, 144.6, 134.1, 130.6, 129.6, 128.3, 119.8, 119.2, 115.6,
110.4, 109.1, 106.2, 103.6, 55.5, 52.5. MS (ESI) calcd. for C18H15N3O4 [M + NH4]+: 355.1, found: 355.5.

5b: Yellow solid, m.p.: 185–186 ◦C. 1H-NMR (DMSO-d6) δ 12.01 (s, 1H, 1’-NH), 10.24 (s, 1H,
2”-OH), 8.67 (s, 1H, 3-NH), 8.13 (s, 1H, Ar-H), 7.57 (s, 1H, Ar-H), 7.53 (d, J = 6.8 Hz, 1H, Ar-H), 7.31
(s, 2H, Ar-H), 6.51 (s, 1H, Ar-H), 6.50 (dd, J = 1.9, 6.9 Hz, 1H, Ar-H), 6.23 (s, 1H, 4’-H), 3.84 (s, 3H,
COOCH3), 3.74 (s, 3H, OCH3). 13C-NMR (DMSO-d6) δ 167.2, 160.3, 155.8, 151.6, 144.8, 139.8, 130.7,
129.4, 128.4, 119.7, 118.8, 115.5, 110.0, 105.8, 102.1, 93.0, 55.5, 52.2. MS (ESI) calcd. for C18H17N3O4

[M + H]+: 340.1, found: 340.4.

3-((6-Methoxy-1H-benzofuro[3,2-c]pyrazol-3-yl)amino)-N-methylbenzamide (4c) and 3-((5-(2-hydroxy-4-
methoxyphenyl)-1H-pyrazol-3-yl)amino)-N-methylbenzamide (5c) According to the procedures described
for the synthesis of 4a and 5a, compounds 4c and 5c were prepared from 3 (100 mg, 0.6 mmol),
LiHMDS (0.7 mL, 0.7 mmol), 3-isothiocyanato-N-methylbenzamide (134 mg, 0.7 mmol) and hydrazine
hydrate (0.3 mL, 4.8 mmol). The crude residue was purified by column chromatography on silica gel
(hexane/EtOAc = 1:1) to give 4c (30 mg, 15%) and 5c (33 mg, 16%).

4c: Brown solid, m.p.: 180–182 ◦C. 1H-NMR (DMSO-d6) δ 11.91 (s, 1H, 1’-NH), 8.28 (q, J = 4.6 Hz,
1H, CONH), 8.05 (s, 1H, 3-NH), 7.82 (s, 1H, Ar-H), 7.55 (s, 1H, Ar-H), 7.43 (d, J = 5.7 Hz, 1H, Ar-H),
7.27 (t, J = 7.8 Hz, 1H, Ar-H), 7.15 (d, J = 7.6 Hz, 1H, Ar-H), 6.49 (dd, J = 2.6, 8.6 Hz, 1H, Ar-H), 6.42
(d, J = 2.6 Hz, 1H, Ar-H), 3.74 (s, 3H, OCH3), 2.77 (d, J = 4.6 Hz, 3H, N-CH3). 13C-NMR (DMSO-d6) δ
167.8, 161.1, 156.9, 146.1, 144.5, 135.9, 134.2, 129.1, 128.3, 117.4, 116.7, 114.5, 110.5, 109.1, 106.1, 103.6,
55.5, 26.7. MS (ESI) calcd. for C18H16N4O3 [M + NH4]+: 354.1, found: 354.4.
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5c: Brown solid, m.p.: 184–186 ◦C. 1H-NMR (DMSO-d6) δ 11.94 (s, 1H, 1’-NH), 10.23 (s, 1H, OH),
8.52 (q, J = 3.6 Hz, 1H, CONH), 8.25 (s, 1H, 3-NH), 7.81 (s, 1H, Ar-H), 7.52 (s, 2H, Ar-H), 7.25 (s, 1H,
Ar-H), 7.11 (s, 1H, Ar-H), 6.51 (s, 1H, Ar-H), 6.49 (dd, J = 1.6, 6.9 Hz, 1H, Ar-H), 6.24 (s, 1H, 4’-H),
3.74 (s, 3H, OCH3), 2.76 (d, J = 3.6 Hz, 3H, N-CH3). 13C-NMR (DMSO-d6) δ 170.0, 160.3, 155.8, 151.8,
144.6, 139.7, 136.1, 129.0, 128.4, 117.6, 116.4, 114.3, 110.2, 105.8, 102.1, 93.0, 55.5, 26.7. MS (ESI) calcd. for
C18H18N4O3 [M + H]+: 339.1, found: 339.1.

3-((6-Methoxy-1H-benzofuro[3,2-c]pyrazol-3-yl)amino)benzamide (4d) and 3-((5-(2-hydroxy-4-
methoxyphenyl)-1H-pyrazol-3-yl)amino)benzamide (5d) According to the procedures described
for the synthesis of 4a and 5b, compounds 4d and 5d were prepared from 3 (100 mg, 0.6 mmol),
LiHMDS (0.7 mL, 0.7 mmol), 3-isothiocyanatobenzamide (124 mg, 0.7 mmol) and hydrazine hydrate
(0.3 mL, 4.8 mmol). The crude residue was purified by column chromatography on silica gel
(hexane/EtOAc = 1:3) to give 4d (59 mg, 30%) and 5d (61 mg, 31%).

4d: Brown solid, m.p.: 172–174 ◦C. 1H-NMR (DMSO-d6) δ 12.02 (s, 1H, 1’-NH), 8.12 (s, 1H, 3-NH),
7.82 (s, 2H, Ar-H), 7.52 (s, 1H, Ar-H), 7.43 (d, J = 2.9 Hz, 1H, Ar-H), 7.26–7.21 (m, 3H, 1-CONH2, Ar-H),
6.51 (d, J = 5.7 Hz, 1H, Ar-H), 6.44 (s, 1H, Ar-H), 3.74 (s, 3H, OCH3). 13C-NMR (DMSO-d6) δ 169.0,
161.0, 156.9, 146.1, 144.5, 135.6, 134.2, 129.0, 128.3, 117.7, 117.2, 114.8, 110.5, 109.2, 106.1, 103.6, 55.5.
MS (ESI) calcd. for C17H14N4O3 [M + NH4]+: 340.1, found: 340.1.

5d: Brown solid, m.p.: 128–130 ◦C. 1H-NMR (DMSO-d6) δ 11.84 (s, 1H, 1’-NH), 8.56 (s, 1H, 3-NH),
7.83 (s, 1H, Ar-H), 7.75 (s, 1H, Ar-H), 7.54 (d, J = 6.8 Hz, 1H, Ar-H), 7.43 (s, 1H, Ar-H), 7.26-7.21 (m,
3H, 1-CONH2, Ar-H), 6.51 (s, 1H, Ar-H), 6.49 (d, J = 6.8 Hz, 1H, Ar-H), 6.29 (s, 1H, 4’-H), 3.74 (s, 3H,
OCH3). 13C-NMR (DMSO-d6) δ 169.1, 160.3, 144.5, 135.8, 129.1, 128.3, 117.8, 114.6, 110.3, 105.8, 102.1,
55.5. MS (ESI) calcd. for C17H16N4O3 [M + H]+: 325.1, found: 325.1.

3-((6-Methoxy-1H-benzofuro[3,2-c]pyrazol-3-yl)amino)benzonitrile (4e) and 3-((5-(2-hydroxy-4-
methoxyphenyl)-1H-pyrazol-3-yl)amino)benzonitrile (5e) According to the procedures described
for the synthesis of 4a and 5b, compounds 4e and 5e were prepared from 3 (100 mg, 0.6 mmol),
LiHMDS (0.7 mL, 0.7 mmol), 3-isothiocyanatobenzonitrile (112 mg, 0.7 mmol) and hydrazine
hydrate (0.3 mL, 4.8 mmol). The crude residue was purified by column chromatography on silica gel
(hexane/EtOAc = 1:4) to give 4e (31 mg, 17%) and 5e (33 mg, 18%).

4e: White solid, m.p.: 200–202 ◦C. 1H-NMR (DMSO-d6) δ 12.01 (s, 1H, 1’-NH), 8.39 (s, 1H, 3-NH),
7.91( s, 1H, Ar-H), 7.53(d, J = 6.9 Hz, 1H, Ar-H), 7.43-7.38 (m, 2H, Ar-H), 7.15 (d, J = 7.4 Hz, 1H, Ar-H),
6.51 (dd, J = 2.5, 8.6 Hz, 1H, Ar-H), 6.44 (d, J = 2.5 Hz, 1H, Ar-H), 3.75 (s, 3H, OCH3). 13C-NMR
(DMSO-d6) δ 161.1, 156.9, 145.2, 145.0, 134.0, 130.5, 128.5, 121.7, 120.0, 119.9, 117.2, 112.0, 110.3, 109.7,
106.2, 103.6, 55.5. MS (ESI) calcd. for C17H12N4O2 [M + NH4]+: 322.1, found: 322.1.

5e: White solid, m.p.: 166–168 ◦C. 1H-NMR (DMSO-d6) δ 12.05 (s, 1H, 1’-NH), 10.28 (s, 1H, OH),
8.93 (s, 1H, 3-NH), 7.99 (s, 1H, Ar-H), 7.55 (s, 1H, Ar-H), 7.53 (s, 1H, Ar-H), 7.38 (s, 1H, Ar-H), 7.12 (d,
J = 4.4 Hz, 1H, Ar-H), 6.53 (s, 1H, Ar-H), 6.51 (dd, J = 1.3, 5.7 Hz, 1H, Ar-H), 6.25 (s, 1H, 4’-H), 3.78
(s, 3H, OCH3). 13C-NMR (DMSO-d6) δ 160.4, 155.8, 151.2, 145.0, 140.0, 130.4, 128.5, 121.3, 120.0, 117.3,
112.0, 109.8, 105.8, 102.1, 92.8, 55.5. MS (ESI) calcd. for C17H14N4O2 [M + H]+: 307.1, found: 307.3.

3.2. MTT Assay

The human tumor cell lines, were grown in Roswell Park Memorial Institute (RPMI)
1640 medium and supplemented with 10% foetal bovine serum in the 37 ◦C in an
atmosphere containing 5% CO2. All the synthesized compounds were assayed by conventional
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. In brief, the
exponentially growing cells were seeded into 96-well cell plates at a density of 4−4.5 × 103 cells
per well and allowed to adhere overnight. Cells were incubated with various concentrations of the test
compounds for 72 h. Then 20 µL of MTT (2.5 mg/mL) was added, the cells were incubated at 37 ◦C for
another 4 h. The reduced MTT crystals were dissolved in DMSO, and the absorbance was measured at
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570 nm by a microplate spectrophotometer. The growth in inhibitory effects of each compound were
expressed as GI50 values, which represent the molar drug concentrations required to cause 50% tumor
cell growth inhibition.

3.3. In Vitro Tubulin Polymerization Inhibition Assay

The fluorescence-based in vitro tubulin polymerization assay was performed using the Tubulin
Polymerization Assay Kit (BK011P, Cytoskeleton, USA) according to the manual. The tubulin
reaction mix contained 2 mg/mL porcine brain tubulin (>99% pure), 2 mM MgCl2, 0.5 mM ethylene
glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), 1 mM guanosine triphosphate (GTP),
and 15% glycerol. First, a 96-well plate was incubated with 5 µL of inhibitors in different concentrations
at 37 ◦C for 1 min. Then 50 µL of the tubulin reaction mix was added. Immediately, the increase in
fluorescence was monitored by excitation at 355 nm and emission at 460 nm in a multimode reader.

4. Conclusions

In the synthesis of 1H-benzofuro[3,2-c]pyrazole derivatives 4a–e, the furan ring-opening was
observed, and a series of pyrazole derivatives 5a–e were identified. In the tumor cell growth inhibitory
assay, only 4a was highly active towards the K562 and A549 cells, while other benzofuropyrazole
derivatives were not active or showed weak activity. In general, the pyrazoles 5a-e were more
potent than the corresponding benzofuropyrazole derivatives. Compound 5a exhibited a similar
tendency to that of 4a with high potency against K562 and A549 cells but weak effects on MCF-7 cells.
Both pyrazoles 5b and 5e exhibited high inhibitory activities against K562, MCF-7 and A549 cells.
The most active compound 5b was 5- to 35-fold more potent than ABT-751 in the inhibition of A549
and K562 cells. In addition, 5b inhibited tubulin polymerization inhibition with an IC50 of 7.30 µM.
These results indicated that 5b was a novel tubulin polymerization inhibitor and it may be a good lead
for the discovery of novel pyrazoles as potent anticancer agents.
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KB/V Vincristine-resistance human oral epidermoid carcinoma cell
LiHMDS Lithium bis(trimethylsilyl)amide
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