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Abstract: The discovery and description of bioactive substances from natural sources has 

been a research topic for the last 50 years. In this respect, marine animals have been used 

to extract many new compounds exerting different actions. Reproduction is a complex 

process whose main steps are the production and maturation of gametes, their activation, 

the fertilisation and the beginning of development. In the literature it has been shown that 

many substances extracted from marine organisms may have profound influence on the 

reproductive behaviour, function and reproductive strategies and survival of species. 

However, despite the central importance of reproduction and thus the maintenance of 

species, there are still few studies on how reproductive mechanisms are impacted by 

marine bioactive drugs. At present, studies in either marine and terrestrial animals have 

been particularly important in identifying what specific fine reproductive mechanisms are 

affected by marine-derived substances. In this review we describe the main steps of the 

biology of reproduction and the impact of substances from marine environment and 

organisms on the reproductive processes. 
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1. Introduction 

 
1.1. Biology of Reproduction  

 

Reproduction is the biological process by which new individual organisms are generated. In sexual 

reproduction the new organism is a combination of half of the genetic material of the two parents 
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through the fusion of the two gametes: spermatozoon and oocyte [1]. The gametes are formed during 

specific processes such as oogenesis and spermatogenesis, both characterized by a unique process of 

cell division occurring only in gametes, called meiosis, whose goal is the production of highly 

specialized haploid cells for fertilisation. During gametogenesis the two gametes respectively in the 

ovary and the testis undergo maturation whereas gametes are activated at fertilisation. Oocyte 

maturation is the last phase of oogenesis during which the oocyte acquires the competence to be 

ovulated and fertilised. In the majority of the species, the oocyte arrests at different stages of meiotic 

division, in particular the block occurring in the first meiotic prophase marks the state of immature 

oocyte characterized by a prominent nucleus called germinal vesicle (GV). Meiosis is resumed in 

response to a stimulus that is different among the species and meiosis progression occurs with the 

germinal vesicle breakdown (GVBD). Then it progresses until a second arrest at metaphase I (MI) or II 

(MII) that is removed after successful fertilisation. 

Oocyte maturation is usually defined as the period of progression from the first to the second 

meiotic arrest and involves coordinated nuclear and cytoplasmic modifications [2]. If nuclear 

maturation is underlied by the meiotic process, cytoplasmic maturation is a more obscure process and 

involves both morphological and functional alterations related to: (i) changes in the expression profile 

of cell cycle control proteins responsible for driving the oocyte towards developmental competencies 

[3–7]; (ii) relocation of mitochondria and endoplasmic reticulum [8–10]; (iii) transcriptional 

modifications of mRNA [11]; (iv) modification of the plasma membrane permeability [12–15];  

(v) differentiation of the calcium signalling machinery [16].  

The control of oocyte maturation involves a complex interplay between oocyte and the extra 

cellular membranes and the environment, with the participation of numerous metabolic pathways. The 

resumption of meiotic maturation relies on two different mechanisms that are stimulation by 

chemical/hormonal substances and the removal of an inhibitory signal. The former involves the 

production of a ligand that acts on the oocyte at the GV stage inducing the GVBD.  

Meiosis arrest and resumption are modulated by numerous messengers. Many studies have 

provided evidence of the involvement of cyclic nucleotides in the maintenance of meiotic arrest [17]. 

In particular, high levels of cyclic adenosine mono-phosphate (cAMP), some analogues,  

cAMP-dependent protein kinase (PKA) and related substances such as GPR3, act by preventing 

spontaneous maturation and/or blocking GVBD in vitro or, on the contrary, may release oocyte from 

meiotic arrest [18,19].  

Another important factor responsible for meiotic resumption is the M-phase promoting factor 

(MPF) showed for the first time in amphibian oocytes in the ’70s, by Masui [20]. Although most of the 

work on MPF has been carried out with frog and starfish oocytes, accumulated evidence demonstrates 

that this mechanism exists in other animal models, such as mammals and invertebrates [12,16,21–23]. 

There is a general consensus that calcium ions play a fundamental role in the resumption of meiotic 

maturation [4,16,24,25] in different species. The external calcium is involved in meiotic resumption in 

ascidian oocytes [15]. In mouse, calcium oscillations precede GVBD [26] that is delayed by removing 

of external calcium [27]. 

As showed in mammalian oocytes, meiotic maturation is a complex process that involves extensive 

rearrangement of microtubules and actin filaments [28]. Depending on the species, actin filaments 

control chromatin movement during oocyte development and regulation of organelle positioning; they 
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also participate in oocyte cortex formation and in polarity establishment. The actin filaments, 

furthermore, play several roles in cortical granule movement, anchoring and exocytosis, and, together 

with myosin, are also involved in polar body emission [29].  

Sperm maturation is defined as the development of the ability of spermatozoa to fertilise eggs. In 

this process, the sperm undergoes morphological, biochemical, and physiological modifications 

initially in the testis (testicular maturation) and later in the epididymis (epididymal maturation). In the 

former, maturation occurs at molecular levels especially during the last phase of spermatogenesis 

known as spermiogenesis; here, the large round haploid spermatide undergoes a dramatic 

morphological and molecular changes including: replacement of histones with protamines, high 

condensation of chromatin, formation of the acrosome, centrioles migration and tail assemblage. In the 

mean time, sperm acquires a functional competence, e.g., acquisition of flagellar beating providing 

forward propulsion and compactness of nuclear and flagellar structures.  

After that, in mammals, sperm function required for fertilisation seems to be developed in the 

epididymis, whereas in marine animals it takes place at the moment of its spawning in the  

environment [1,30]. In marine organisms, spawning, i.e. the release of sperm and often eggs into the 

environment, is a common mechanism of reproduction [31]. The probability of successful fertilization 

in this mating strategy depends on many factors, including the number and the distribution of spawners 

[32], the timing of gamete release [33], the ways in which released gametes are dispersed [34] and 

finally properties of gametes themselves [35]. 

Fertilisation is a highly specialized process of cell to cell interaction that involves many steps such 

as recognition of complementary receptors on the surface of the two gametes, their binding, and the 

fusion of the two plasma membranes [1,36]. During this complex process each gamete activates its 

partner. First, the spermatozoon responds to signal originating from the oocyte and its investments by 

rapidly changing its behaviour, form and function. Multi-step events of sperm activation involve 

motility, chemotaxis, first binding, acrosome reaction, second binding and fusion [1,30,37]. All these 

steps are mediated by known molecules. In particular, the acrosome reaction is an essential 

requirement to render the sperm plasma membrane highly fusible. The acrosome is an organelle 

located on the tip of the sperm head and due to the contact between ligand and receptors on the two 

gametes membranes undergoes the exocytosis [38]. This process that is calcium-mediated allows the 

spermatozoon to cross the zona pellucida that surrounds the oocyte and to take contact with the oocyte 

plasma membrane, after that fusion of the gametes occurs [29]. Following fusion, the spermatozoon 

triggers the quiescent oocyte into metabolic activation inducing electrical, morphological and 

metabolic modifications.  

Electrical changes of the oocyte plasma membrane are a crucial event of the oocyte activation [40]. 

First indications on the role of ion currents at fertilisation were provided in marine animals in the early 

‘80. In the echinoderm oocytes the occurrence of a depolarizing fertilisation potential was attributed to 

the activation of a transient voltage-dependent inward current [41,42]. Subsequently, it was possible to 

determine that the ion fluxes responsible for fertilisation potential crossed the plasma membrane as a 

ion current named fertilisation current [43]. Biophysical studies characterized the channels responsible 

for the fertilisation current as large non-specific and highly conductive ion channels [43,44] and 

subsequently to mainly mediated by sodium currents [14]. In marine worm eggs, the fertilisation 
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potential can be thought of as a sum of a Na+-dependent "sperm receptor potential" and a 

superimposed Ca2+-dependent action potential [45]. 

Resting potential changes and fertilisation currents has been recorded in many vertebrate oocytes 

such as amphibians [46], hamster [47], rabbit [48], mouse [49], human [50] and bovine [51]. In 

addition, it has been shown that electrical modifications is a mechanism for preventing polyspermy in 

sea urchin [52], marine worm [53], ascidian [54] and Xenopus [46] oocytes. 

Morphological modifications are mainly due to the triggering of the cortical reaction [9] or to the 

contraction of the oocyte body due to a calcium wave that crosses it from pole to pole [55].  

Finally, numerous metabolic modifications occur such as modulation of phosphoinositide pathway 

[5–59] with inositol trisphosphate (IP3) formation. The latter gives rise to a fundamental event in 

oocyte activation [25] that is the release of intracellular calcium. This calcium signal is responsible for 

the exocytosis of cortical granules, resumption of meiosis and activation of development [60–65]. 

A calcium increase may occur in oocytes as single increase, as in amphibians [66] and sea urchins 

[67] or in the form of repetitive oscillations as in ascidians [68] and mammals [69–73]. 

In many species, fusion between sperm and the oocyte occurs at the tip of microvilli, and the actin 

filaments in the microvilli may participate in sperm-egg binding and fusion. As described above, the 

ion currents play a crucial role in the gamete activation and embryo development, so many fertilisation 

blockers are drugs affecting physiological modifications of cytoskeleton and/or ion currents. 

In conclusion, a correct maturation and reciprocal activation of gametes are a pre-requisite for 

successful fertilisation and although their temporal and spatial sequences are not yet fully clarified, 

they involve numerous molecules in form of ligand-substrate complexes, ion current changes, and 

intracellular messenger pathway mobilization [24,74,75]. 

The basic mechanism of fertilisation has been widely debated, at present there are two main 

hypotheses as to how the spermatozoon triggers the oocyte into activation [24]. The first points on the 

binding of the spermatozoon to an oocyte membrane receptor whose signal is in turn transduced by a 

G-protein mechanism. The contrasting idea suggests that the spermatozoon contains a soluble factor 

that is released into the oocyte cytoplasm following the gamete fusion [76,77]. Both the mechanisms 

have been supported by experimental evidence, however in the last decade accumulating evidence 

indicate that the sperm factor hypothesis is more feasible. Other potential candidates were proposed by 

Parrington [78] to be a 33 KDa molecular mass protein and/or a truncated form of the c-kit tyrosine 

kinase receptor [79]. At present it has been well documented that the phospholipase Czeta is soluble 

factor in mammals. However, many investigators are still working to clarify the molecular nature of 

sperm factor in invetebrates [80,81]. 

Embryo development. Successful fertilisation drives the oocyte into meiosis completion and exit 

and the formation of the zygote. This represents the first diploid cell of a new organism that divides by 

mitosis into a number of smaller cells named blastomeres. This process is the cleavage and is different 

depending on the species. Early cleavages are often synchronous, but when synchronism is lost, the 

blastomeres become arranged in layers or groups that mark their specific differences resulting from an 

unequal distribution of cytoplasmic components and/or from induction from neighboring cells. The 

blastomere nuclei are in fact subjected to a cytoplasmic environment that in turn affects gene activity. 

This triggers the programme of development that gives rise to the cell lines, e.g. the future embryo 

tissue (nerve, muscle, epidermis etc.). Transition from maternal gene products to the new individuals 
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gene products takes place at different stages of division depending on the species. The first steps of 

embryogenesis share common characteristics among species (blastulation, gastrulation, neurulation), 

however the late events leading to formation of the new individual is totally different, e.g. the 

formation of swimming larvae and metamorphosis occurring in sea water in marine animals vs embryo 

implantation in mammals occurring in utero.  

Although a large volume of literature deals with developmental biology, this is a very complex 

step-by step process that is difficult to summarize [82,83]. 

 

1.2. Marine Drugs 

 

Before describing the action of marine drugs on reproductive mechanisms it is worth to mentioning 

that most, if not all, marine invertebrates harbour microorganisms that include bacteria, cyanobacteria 

and fungi within their tissues extra- and intracellular space [84,85]. The relationship between marine 

invertebrates and marine microorganisms that may serve as food or that live either permanently or 

temporarily inside of marine macroorganisms are highly complex and far from being well understood 

[85–87]. Microorganisms not only serve as food for filter feeders or (in the case of cyanobacteria and 

chemoautotrophic bacteria) enrich the diet of their hosts by carbon and nitrogen fixation, but may 

perhaps also be involved in the biosynthesis of natural products [88]. So, it is clear that there is often a 

difficulty in clarifying the real producer of a marine compound. 

In this review, we have classified marine natural products in two groups: i) compounds with known 

and tested impact on reproduction processes; ii) compounds with plausible impact on reproductive 

processes, chosen on the basis of their molecular mechanisms or targets. For convenience, we describe 

the origin of the drugs on the basis of the zoological scale order. 

 

1.2.1. Marine Natural Products Affecting Reproduction 

 

A limited number of studies have suggested that some of these compounds may have ecological 

roles as allelochemicals, specifically including compounds that may inhibit competing species. These 

allelochemicals may also play a role in defense against potential predators and grazers, particularly 

aquatic invertebrates and their larvae [89].  

In the endless fight between predator and prey, the latter does not play the role of passive victim. 

Beyond direct defense, characterized by a series of mechanisms to avoid being killed, prey have also 

developed indirect long-term defenses, a sort of preventive war against predators: in fact, by producing 

antiproliferative compounds many organisms are able to regulate the population dynamics of their 

marine predators, in particular, interfering with some crucial processes of their reproductive cycle, 

such as: maturation, fertilisation, and early embryo development. 

Cyanobacteria are Gram-negative bacteria capable of producing a wide range of potent toxins as 

secondary metabolites, i. e. the cyanotoxins, whose action is still rather unknown [90,91]. On the 

contrary, other bacteria produce widely known marine neurotoxins; tetrodotoxin (TTX) is one of 

these; it is a voltage-gated sodium current blocker and a major toxic component contained in pufferfish 

of the Family Tetraodontidae. Animals containing TTX are not limited to certain species of puffer. A 

wide variety of marine and terrestrial animals are now known to have TTX, including, but not limited 
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to, pufferfish, salamanders, frogs, horseshoe crabs, xanthid crabs, blue-ringed octopus, and starfish 

[92]. In the pufferfish, TTX is concentrated in the ovary and liver, but other organs including skin, 

intestine, and muscle contain TTX in some species of puffer. The reason for such a wide distribution is 

that TTX is not produced by the puffer fish, but is produced by certain species of bacteria including 

Vibrio sp. and comes to be in the animals through the food chain [93–96]. As demonstrated in the 

ascidian Ciona intestinalis, inhibition of sodium currents at the time of fertilisation current generation 

gave rise to a high percentage of anomalous embryos, in which the spatial orientation at the 8/16-cell 

stage is lost [14].  

The difficulty in identifying the real producer is clear also for another drug, maitotoxin (MTX), 

which is an extremely potent toxin obtained from the marine dinoflagellate Gambierdiscus toxicus and 

involved in ciguatera poisoning. MTX was previously detected in the viscera of maito (a small 

herbivorous fish, Ctenochaetus striatus, called “maito” in Tahiti), but further studies [97,98] found a 

good correlation between dinoflagellates in the gut contents and the toxicity of the viscera. The 

dinoflagellate turned out to represent both a new genus and new species, and it was named 

Gambierdiscus toxicus [99]. This toxin is a powerful activator of changes in the intracellular calcium 

concentration and it induces a potassium release from the oocytes simultaneously with a sodium entry 

into unfertilised eggs, although experimental evidence suggests that MTX has no ionophoretic activity 

per se [100–103]. MTX inhibits sea urchin egg fertilisation in a dose-dependent manner but, maybe, 

ion transport perturbations are probably not the direct cause of fertilisation inhibition which could be 

related to a modification of the plasma membrane of the female gametes by this hydrophilic toxin 

[101]. A different effect has been found in mouse, where the results suggest that putative channels 

activated by MTX may be involved in the calcium influx required for mouse sperm acrosome  

reaction [103]. 

Many marine drugs represent a useful tool for studying cellular processes: one of the most famous 

is okadaic acid (OA): the latter acts as a potent inhibitor of protein phosphatases [104] and has turned 

out to be a valuable tool for the study of phosphorylation based processes of cellular signaling [105]. 

The protein serine/threonine phosphatases are a unique family of enzymes that catalyze the specific 

dephosphorylation of phosphoserine or phosphothreonine residues in many cell types. The potent 

activity of OA is remarkably conserved across phyla: this toxin inhibits phosphatase activity in 

mammals, yeast, and higher plants [106]. OA was initially isolated and characterized from the sponges 

Halichondria okadai and H. melanodocia [107]. However, it was later shown to be produced by 

dinoflagellates of the genera Prorocentrum and Dinophysis [104,108–110] and is now considered to be 

of dietary origin rather than a “true” sponge metabolite in terms of its biosynthetic origin. The function 

of OA in sponges is not well understood. Studies by Wiens et al. [111] have provided evidence for at 

least two putative roles of OA within the sponge Suberites domuncula. At low concentrations, OA 

triggers a MAP kinase p38-regulated defense system against bacteria. At elevated concentrations, OA 

acts as an apoptogen and promotes expression of the proapoptotic caspase gene with a simultaneous 

down-regulation of the expression of the anti-apoptotic Bcl-2 homolog gene. In subsequent studies of 

S. domuncula, Schroder et al. [112] suggested that OA may serve as a defense molecule by inducing 

apoptosis in symbiotic or parasitic annelids. [113]. As protein phosphatase specific inhibitor, OA has 

previously been used to stimulate chromatin condensation and premature germinal vesicle breakdown 

in invertebrate and vertebrate oocytes [114–123]. 
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Like TTX, brevetoxins are also voltage-gated sodium channel inhibitors, but these marine toxins 

are produced by the dinoflagellate Karenia brevis. Kimm-Brinson and Ramsdell [124] suggested that 

the larvae of medaka fish (Oryzias latipes), but not the eggs, are susceptible to Karenia brevis. In 

contrast, an earlier study with the sea urchin (Lytechinus variegatus) reported that lysates of K. brevis 

administered to eggs did induce developmental abnormalities [125]. This study found that sperm 

motility, egg fertilisation, and development through the blastula stage were unaffected; however, 

mortality and developmental abnormalities occurred in about 50% in embryos at gastrula stage and 

80% in embryos at pluteus stage. The reason for the difference between the study with the red drum 

eggs and the sea urchin eggs may result from the use of K. brevis cells and lysates. The persistence of 

red tides from the late autumn until early spring has suggested that the spawning of some marine 

species may be subject to the adverse effect of red tide toxins. Steidinger et al. [126] also emphasized 

the need for attention to the effects of red tide outbreaks on migratory species, as many species seek 

estuaries for breeding and nursery grounds. Based on studies with other classes of fat-soluble 

contaminants, somatic stores of toxin in fish are transferred during oogenesis and lead to larval  

toxicity [127]. 

Figure 1. Effect of diatom-derived aldheyde 2-trans-4-trans-decadienal (DD) on 

fertilisation currents recorded in the whole-cell voltage clamp configuration in Ciona 

intestinalis oocytes. a: normal fertilisation current; b: oocytes incubated in acetaldehyde 

and then fertilised showed a normal fertilisation current similar to the control; c: oocytes 

incubated in the diatom aldehyde DD (1.5 μg/mL) and then fertilised showed 50% 

reduction in fertilisation current amplitude; d: oocytes incubated in more concentrated DD 

(2 μg/mL) and then fertilised showed complete inhibition of the fertilisation current. 

Modified from Tosti et al. [142].  

 
 

K. brevis red tides have been associated with mortality events of many aquatic animals including 

finfish, sea turtles, and sea birds during their adult stages [126,128–135]. These animals have been 

known to bioaccumulate substantial body burdens of contaminants at times, and in certain cases 

transfer toxicity to offspring during oogenesis. Given the similarity of developmental processes found 

between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur 

among different phylogenetic classes [124]. 
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The last 2 decades have seen much controversy concerning the negative impacts that consumption 

of diatoms may have upon copepods. Despite some contrasting data [136], diatom-derived aldehydes 

have been shown to interfere with reproductive mechanism in copepods [137–139] and polychaetes 

and echinoderms [140,141]. In the ascidian Ciona intestinalis, 2-trans-4-trans-decadienal (DD) and 

2-trans-4-cis-7-cis-decatrienal (DT) inhibit the fertilisation current (Figure 1) which is generated in 

oocyte upon interaction with the spermatozoon. In particular, DD may have a dual effect on 

reproductive processes, influencing primary fertilisation events such as gating of fertilisation channels 

and secondary processes such as actin reorganization which is responsible for the segregation of cell 

lineages. In the same study, DD altered actin filaments and mitocondrial migration after contraction, 

leading to a disturbance in cleavage formation (Figure 2A). However, DD also induced larval 

teratogeny at low concentrations (Figure 2B), possibly due to actin perturbation [142]. 

Figure 2. A: Percentage reduction of first cleavage of Ciona intestinalis oocytes incubated 

10 minutes at different concentrations of DD and then fertilised. B: Percentage of embryos 

that reached the larval stage when exposed to different concentrations of DD. Dark shading 

shows the percentage of abnormal larvae. Light shading shows the percentage of normal 

larvae. Insert: top panel shows a normally developed C. intestinalis larva 24 hours after 

fertilisation. Bottom panel: various degrees of malformations such as stunted and elongated 

tail, lack of sensory organ pigmentation, blockage at the 118-cell stage (gastrula). From 

Tosti et al. [142]. 

 
 

Domoic acid (DA) is produced by red alga Chondria armata and planktonic diatoms of the genus 

Pseudo-nitzschia, [143]. Over the last decade, reproductive failure in California sea lions has been 

increasingly associated with harmful algal blooms, most notably DA produced by Pseudo-nitzschia 

spp. [144–146]. The food web plays the primary role in the transmission of DA from Pseudo-nitzschia 

blooms to the California sea lion [144,147]. Common vectors are pelagic planktivorous fish, which 

 

µg/mL 
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accumulate DA-containing diatoms in their gut exceeding toxin concentrations of one part per 

thousand, exceptionally high levels for a natural toxin [147,148]. Additionally, Pseudo-nitzschia, 

which form long chains of cells, will sink to the ocean floor where the DA effectively infiltrates the 

benthic food web and provides an additional source of vectoring [149]. At the level of the receptor in 

the brain, DA binds to kainate subtypes of ionotropic glutamate receptors to induce excitotoxicity by 

release of glutamate and activation of N-methyl-D-aspartate ionotropic glutamate receptors [150]. DA 

crosses the placenta, readily enters the neonatal brain and is retained in the amniotic fluid [151]. The 

early fetal brain is electrically silent, but expresses levels of ionotropic glutamate receptors that guide 

the migration of neurons to the appropriate brain regions and facilitate in the formation correct 

synapses. DA, which is normally cleared rapidly by renal filtration in adult animals, is more toxic to 

animals in utero because of a longer residence time in the fetal-maternal unit and greater access to the 

fetal brain [143]. 

The effect of DA in invertebrates is also known. As a result of the DA exposure, larval growth of 

king scallop, Pecten maximus, measured in terms of shell length and the appearance of the eye-spot, 

and larval survival were significantly compromised. The negative effect of DA exposure suggests that 

this toxin could possibly influence natural recruitment in P. maximus, and it may be necessary to 

protect hatchery-cultured scallop larvae from DA during toxic Pseudo-nitzschia blooms [152]. 

Embryo development is blocked by several drugs isolated from algae: caulerpenyne does not affect 

the microfilament-dependent processes of fertilisation and cytokinesis and allows the beginning of 

mitosis, but prevents normal DNA replication and results in metaphase-like arrest of sea urchin 

embryos [153]; stypoldione uncouples cytokinesis from mitosis at the lowest effective concentrations 

and, although it can disrupt microtubules at relatively higher concentrations, it inhibits cell division at 

the lowest effective concentrations by a selective action on cytokinesis through a mechanism that does 

not appear to involve disassembly of microtubules [154]. 

Sometimes it happens that the same compound may have several contrasting applications: for 

example, a sulfono glycolipid (S-ACT-1) isolated from Gelidiella acerosa, a Sri Lankan marine red 

alga, has a potent human sperm motility stimulating activity in vitro and has the potential to be 

developed into a sperm stimulant [155], but crude extracts from the same species showed elevated 

post-implantation loss. Since post-coital contraceptive activity of another red alga, Gracilaria 

corticata, was due to enhanced pre-implantation loss, marine red algae could represent a useful source 

to be harvested for potential post-coital contraceptive drugs [156]. 

Williamson et al. [157] compared the effects of chemical cues from host algae on different life 

history stages of the sea urchin Holopneustes purpurascens. In sublittoral habitats, H. purpurascens 

occurred primarily on two algal hosts: red alga (Delisea pulchra) and kelp (Ecklonia radiata). Sea 

urchin larvae rapidly metamorphosed in the presence of D. pulchra, but metamorphosis was delayed or 

absent in the presence of E. radiata. D. pulchra produces a polar chemical inducer of metamorphosis 

not found in E. radiata. In contrast to larval metamorphosis, feeding and performance of juvenile and 

adult sea urchins were considerably worse on D. pulchra than on E. radiata. 

To our knowledge, there are just few marine drugs that affect gamete maturation by interacting with 

the cytoskeleton [158–160]: among them, jasplakinolide, a marine compound from sponges, was 

found to arrest oocytes in vitro maturation acting as a microfilament inhibitor, this also affects 

fertilisation in mice [161,162]; theonellapeptolide Ie, from Petrosa species, induced malformed 
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maturation through disturbance of cortical F-actin distribution [158]; also strongylophorines, isolated 

from Strongylophora strongylata, inhibited the maturation of starfish oocytes by affecting actin [160]. 

Other marine toxins, the latrunculins, produced by certain sponges, including genus Latrunculia, 

inhibit the microfilament-mediated processes during fertilisation, cleavage and early development in 

sea urchins and mice [163], even more potent than the cytochalasins [164]. 

However, not all the compounds from the sponge have the same target: for example, (-)-10-epi-

axisonitrile-3, a spirocyclic sesquiterpene isocyanide obtained from the marine sponge Geodia exigua, 

immobilized sperm of sea urchin and starfish and in turn block fertilisation, by inhibiting the 

phosphocreatine shuttle participating in the high-energy phosphate metabolism [165]; 

theonellapeptolide IId, isolated from Theonella swinhoei, prevented fertilisation of sea urchin while 

has no effect on early embryonic development of fertilised eggs [166]; also jaspisin, isolated from the 

extract of a marine sponge, Jaspis species, has different properties: it is a selective inhibitor of 

exoplasmic membrane fusion in echinoderms, blocking fusion between the sperm acrosomal process 

and the egg plasma membrane, and also embryo hatching [167–169]. Similarly to jaspisin, but 

differently from 10-epi-Axisonitrile-3, there are other inhibitors of echinoderm fertilisation isolated 

from sponge, callyspongins A and B [170] and halenaquinol sulfate [171,172], that are able to 

inhibit sperm-egg fusion without affecting sperm motility [165]. Calyculin-A, originally derived from 

the marine sponge Discodermia calyx, is similar to okadaic acid in its potent inhibition of protein 

phosphatases and thus in its impact on reproduction [173,174]. 

Bacteria, algae and sponges are not the only source of marine products: Agius et al. [175] 

demonstrated that under illumination bonellin, a compound isolated from Bonellia viridis [176], 

causes depression of oxygen uptake by spermatozoa and developmental arrest of echinoid and Bonellia 

eggs. The effect on the eggs may primarily be due to the crosslinking of membrane proteins and to the 

formation of peroxydase that results in the cytolysis of the unfertilised eggs and in the inhibition of 

cleavage [177]. Bonellin is able to arrest the motility of swimming larvae of C. intestinalis, but, since 

the fibrillar structures appear to be unaltered, also this impact seems a consequence of membrane 

modifications [178].  

Recently, spermicidal activity has been found in sea cucumber Bohadschia vitiensis whole-body 

extracts followed by isolation and characterization of bioactive molecule, bivittoside D, able to induce 

human sperm membrane permeabilization [179]. 

Even some early chordates are supposed to be a promising source for marine drugs affecting 

reproduction processes: methoxyconidiol, extracted from the ascidian Aplidium aff. densum [180], 

inhibits the cleavage of sea urchin Sphaerechinus granularis and Paracentrotus lividus fertilised eggs: 

infact, it disrupts M-phase progression and completely blocks cytokinesis without having any effect on 

DNA replication, most likely by affecting microtubule dynamics [181]. In Table 1, we provide a 

summary of the significant data described above. 
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Table 1. Summary of significant data reported in the text. 

Drug Source Target - Impact References 

Tetrodotoxin  Bacteria including 

Vibrio sp. 

-Voltage-gated sodium channels; 

- Inhibition of fertilisation current in C. intestinalis; 

teratogenic effect 

[14,96,200] 

 

Maitotoxin Dinoflagellate 

Gambierdiscus toxicus 

- Cationic channel  

- Mouse acrosome reaction; inhibition of sea urchin egg 

fertilisation 

[101,103] 

Okadaic acid Dinoflagellates 

Prorocentrum lima and 

Dinophysis spp. 

- Protein phosphatases; 

- Inhibition of phosphorylation based processes of cellular 

signaling 

[104,123] 

Brevetoxin Dinoflagellate Karenia 

brevis 

-Voltage-gated sodium channels; 

- Teratogenic effect 

[124] 

2-trans,4-trans 

Decadienal 

Diatoms - Fertilisation current; 

- Inhibition of embryonic development and fertilisation in 

broadcast spawning marine invertebrates 

[140,142] 

Domoic acid Alga Chondria armata 

Diatom Pseudo-

nitzschia 

- Ionotropic glutamate receptors; 

- Neurotoxicity; reduction of larval growth and survival in 

P. maximus ; reproductive failure in California sea 

lions.  

[143,152] 

Caulerpenyne Alga Caulerpa taxifolia - Microtubules; 

- Inhibition of first cell division 

[153] 

Stypoldione Alga Stypopodium 

zonale 

- Sulfhydryl groups of proteins 

- Inhibition of cytokinesis in sea urchin embryos 

[154] 

Sulfonoglycolipid 

S-ACT-1 

Alga Gelidiella acerosa - Sperm  

- Stimulation of sperm motility 

[155] 

Crude extract Alga Gracilaria 

corticata,  

- Increase of pre-implantation loss in femal rats [156] 

Crude extract Alga Gelidiella acerosa - Increase of post-implantation loss in female rats [156] 

Jasplakinolide Sponge Jaspis 

johnstoni 

- Actin; 

- Arrest of in vitro maturation 

[161,162] 

Theonellapeptolide 

Ie  

Sponge Petrosia  - Cortical F-actin distribution;  

- Abnormal maturation  

[158] 

Strongylophorine Sponge Strongylophora 

strongylata 

-Actin;  

-Inhibition of the maturation of starfish oocytes 

[160] 

Latrunculin Sponge Latrunculia 

magnifica 

- Microfilament;  

- Inhibition of microfilament-mediated processes during 

fertilisation, cleavage and early development in sea 

urchins and mice. 

[163] 

(-)-10-epi-Axiso-

nitrile-3 

Sponge Geodia Exigua - Phosphocreatine shuttle;  

- Sea urchin and starfish sperm immobilization 

[165] 

Theonellapeptolide 

IId  

Sponge Theonella 

swinhoei 

- Inhibition of fertilisation of the sea urchin [166] 

Jaspisin Sponge Jaspis sp. - Exoplasmic membrane fusion; 

- Block fusion between sperm acrosomal process and egg 

plasma membrane; block of embryo hatching 

[167–169] 
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Table 1. Cont. 

Callyspongins A 

and B 

Sponge Callyspongia 

truncata 

- Inhibition of sperm-egg fusion [170] 

Halenaquinol 

sulfate 

Sponge Xestospongia 

sapra 

- Inhibition of sperm-egg fusion [171,172] 

Calyculin A Sponge Discodermia 

calyx 

- Protein phosphatases 

- Modulation of phosphorylation based processes of 

cellular signalling 

[174] 

Bonellin Echiura Bonellia viridis - Membrane proteins;  

- Formation of peroxydase; cytolysis of unfertilised eggs, 

inhibition of cleavage and of larval motility  

[178] 

Bivittoside D Sea cucumber 

Bohadschia vitiensis 

- Sperm; 

- Membrane permeabilization; spermicide activity in 

human 

[179] 

Methoxyconidiol Ascidian Aplidium aff. 

densum 

- Microtubules; 

- Inhibition of cleavage 

[180,181] 

 

1.2.2. Potential Impact of Marine Drugs  

 

As described above, reproduction is a complex process characterized by many crucial steps. It is 

clear that every marine compound able to affect in some way one of these events could affect 

reproduction either in natural setting and in vitro. A good example to better understand the huge 

potential of marine organisms as drug source is given by marine sponges. The latter have been 

considered to be a gold mine during the past 50 years, with respect to the diversity of their secondary 

metabolites [182]. A huge amount of marine products has been described [183–187] and sponges, in 

particular, are the source of more than 5,300 different products. Every year hundreds of new 

compounds are being discovered [184–186], leading to identification of novel therapeutic agents 

showing a broad spectrum of pharmacological activity; therefore, more marine natural products will 

probably become potential leads for clinical development as novel therapeutic agents for the treatment 

of multiple disease categories [188–190]. 

Marine compounds showed different effects on many molecules that are in different ways involved 

in reproduction, for example, they inhibit protein kinase C [113,191–193], calcium [194–196], sodium 

[197–201] and potassium channels [202–206]. Similarly, other targets are IP3 receptors, endoplasmic 

reticulum calcium pumps [207], microtubules [208–216]; microfilaments [217–221]; and plasma 

membrane [222,223].  

Even though this is not proved yet, we may hypothesize their plausible impact on reproduction on 

the basis of their molecular targets, either in vivo and in vitro. Over the last few decades significant 

efforts have been made, by both pharmaceutical companies and academic institutions, to isolate and 

identify new marine-derived natural products. Because of the diversity in ocean life many new 

potentially interesting compounds are continuously being discovered. 

Despite the risks associated with marine toxins, such as food poisoning or harmful algal blooms, 

these biogenic compounds have proven their advantage and potential in several fields, particularly as 

new therapeutic agents for a variety of diseases: in fact, marine ecosystem is an enormously rich 
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source of natural products with promising therapeutic usefulness in oncology, providing anticancer 

agents with novel mechanisms of action [224–227].  

This review reports current understanding of the impacts of compounds from marine organisms on 

the main reproductive processes and some of their specific mechanisms underlying gametogenesis, 

fertilisation and very early embryo development. Although most of the data provide evidence that such 

compounds adversely affect reproductive success, marine drugs may represent a wide source with 

potential application in improving reproductive fitness.  
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