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Abstract

Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the
distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive
to climate change remains uncertain. Przewalski’s gazelle (Procapra przewalskii) is classified as endangered and a
conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution
of Przewalski’s gazelle may be impacted by projected climate change based on a maximum entropy approach. We also
evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski’s
gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate
change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range
was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data.
Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate
change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly
poses a severe threat and increases the extinction risk to Przewalski’s gazelle. Our findings 1) confirm that endangered
endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change
needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted
geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change.

Citation: Hu J, Jiang Z (2011) Climate Change Hastens the Conservation Urgency of an Endangered Ungulate. PLoS ONE 6(8): e22873. doi:10.1371/
journal.pone.0022873

Editor: Brian Gratwicke, Smithsonian’s National Zoological Park, United States of America

Received March 18, 2011; Accepted June 30, 2011; Published August 3, 2011

Copyright: � 2011 Hu, Jiang. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Natural Sciences Foundation of China (31070469), the Field Front Project of the Knowledge Innovation
Program of the Chinese Academy of Sciences (Y1B3021), the Science and Technology Supporting Project, Ministry of Science and Technology, China
(2008BAC39B04), the Sir Peter Scott Fund of SSC/IUCN (Population trends and habitat qualities of the critically endangered Przewalski’s gazelle) and the
Knowledge Innovation Project of Chinese Academy of Sciences (KSCX2-EW-Z-4; KSCX2-EW-J-22). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jiangzg@ioz.ac.cn

Introduction

In recent decades, global climate has undergone dramatic

changes, which are expected to continue into the 21st century [1].

It is increasingly clear that rapid climate change is profoundly

affecting the Earth’s biodiversity [2,3] and the challenges to

conservation and environment management in the face of these

changes are immense [4–6]. For example, anthropogenic climate

change is already affecting the physiology, phenology, reproduc-

tive output, survival rate and distribution of many species [2,7–

10]. Evidence is accumulating that imminent changes to the global

climate will potentially result in high extinction rates around the

world [11,12].

There is a growing consensus that biodiversity conservation

must take the impacts of climate change into consideration

[3,6,13]. Endemic species, because of their small geographic

range, are likely to be more dispersal-limited and less able to adapt

to a rapidly shifting climate than other species [14]. Although the

influence of current climate on the distribution of endemic species

is unclear, richness of endemic species is more strongly related to

factors directly affecting long-term survival and speciation than

current climate [15,16]. Nevertheless, Ohlemüller et al. [14] found

areas with high numbers of small-range species to be colder and

located at higher elevations than surrounding regions, suggesting

that these are interglacial relict areas for cold-adapted species with

a high vulnerability to future global warming. Species can respond

to climate change by shifting distribution to follow changing

environments or by adapting to altering conditions. If unable

disperse or adapt, species can remain in isolated pockets of

unchanged environment (‘‘refugia’’) or, more likely, will become

extinct [11,13,17]. Although some attention has been given to the

last three options [4,18,19], using ‘‘species distribution models’’

(SDMs) to project how the distributions of species may change

under different scenarios of future climate change has become

especially popular [5,6,20]. In this regard, rapid progress in

predicting the distributions of species has been made and tools are

now available to assess the impacts of climate change on species

[11,21–23].

Despite their popularity, it is widely acknowledged that SDMs

over-simplify the processes governing the geographic distributions

of species [23,24]. In fact, of the many ecological and evolutionary

processes which are expected to determine contemporary

distributions of most species [25,26], several are poorly accounted

for when applying SDMs [23]. In addition to ecological
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uncertainties, recently much attention has been paid to address

other uncertainties embedded in SDMs [27–29]. The sources of

uncertainty are diverse and may arise because of differences in

data sources and statistical methods used in SDMs (e.g.

measurement errors, small sample size, missing covariates and

biased samples) [28,30]. For example, a large number of general

circulation models (GCMs) have been developed simultaneously

by different meteorological research centers to represent physical

processes in the atmosphere, ocean, cryosphere, and land surface.

Concurrently, four scenarios have been defined. Each is an

alternative image of how the future might unfold assuming a

certain level of future greenhouse gas emissions [1]. Regardless,

SDMs provide a useful way to incorporate future conditions into

conservation and management practices and decisions when the

uncertainties of model projections with the risks of taking the

wrong actions or the costs of inaction are balanced [3,26,28].

Przewalski’s gazelle (Procapra przewalskii) is one of the most

endangered ungulates in the world [31,32]. It is endemic to China

and a conservation focus on the Qinghai-Tibetan Plateau [33].

The species was once distributed throughout Qinghai, Ningxia,

Inner Mongolia and Gansu Provinces, China. Increasing human

activity over the last century has resulted in continuing habitat

destruction and range reduction for the gazelle [34]. The gazelle

was listed as critically endangered by the IUCN until 2008 when it

was reclassified as endangered [35], based on newly discovered

populations with approximately 300 gazelles in Tianjun County

(locating in the northwest of Qinghai Lake watershed area), and in

Wayu and Ranquhu (the southwest of Qinghai Lake) [36]. Today

only several hundred individuals survive in isolated localities

around Qinghai Lake [33,37].

Key assumptions in SDMs are that species are at equilibrium

with the environments, and that relevant environmental gradients

have been adequately sampled [38]. In this respect, although

Przewalski’s gazelle is not in climatic equilibrium, and its restricted

distribution is the product of human activities [33,36], the

presence of gazelles (recorded during prolonged surveys) are

thought to be at equilibrium with the socio-ecological environ-

ments [23,36].

To explore how Przewalski’s gazelle may be impacted by

currently projected climate change, we used SDMs to model the

suitable habitats under different climate change scenarios for 2020,

2050 and 2080 and assessed the uncertainty in the projections. In

particular we asked: will projected climate change alter current

suitable habitat of the gazelle? Will there be more suitable habitat

or less? To what extent will the gazelle be threatened by climate

change in the future? Our study will inform relevant policy makers

and conservation authorities of the potential vulnerabilities of this

endangered ungulate to climate change, and will guide future

conservation planning not only for the gazelle, but for other

threatened ungulate species.

Methods

Species occurrence data
The study region here encompassed the historical and current

ranges of Przewalski’s gazelle. Investigations for the species were

conducted for historical ranges in Inner Mongolia, Gansu,

Xinjiang and Qinghai Provinces, China [31,33]. For current

distribution ranges, a long-term and regular monitoring program

of known populations was implemented mainly using transect

census [33,36,39,40]. We collected species occurrence data based

on extensive field surveys for gazelles during the period of 2002–

2008. Historical distribution was determined through literature

records [33]. All occurrence data were lumped together and

treated the same with a total of 3897 presence records and no

absence data. Due to the clustering of initial records, 117 presence

point data (Table S1) were retained for further analysis in Maxent

after duplicates in the same 161 km grid cells were removed using

ArcGIS 9.2 (ESRI, Redland, USA).

Environmental predictors
We used 19 environmental predictors across four types of data:

(1) Climate-12 predictors, i.e. annual mean temperature, mean

diurnal range, isothermality, temperature seasonality, maximum

temperature of the warmest month, mean temperature of the

wettest quarter, mean temperature of the warmest quarter, annual

precipitation, precipitation of the wettest month, precipitation of

the driest month, precipitation of the wettest quarter and

precipitation of the warmest quarter from WorldClim 1.4 [41].

(2) Habitats- land cover layer [42] and the normalized difference

vegetation index (NDVI) for April, May, July and August,

respectively (http://www.data.ac.cn/index.asp). (3) Human impact-

human influence index (HII, an estimate of human influence

based on human settlement, land transformation, accessibility and

infrastructure data) [43]. (4) Topography-elevation from the

Hydro1K dataset [44]. All predictor layers were at a resolution

of 161 km to match the presence data. The 19 predictors were

considered important based on the outputs of jackknife analyses

among the raw 38 variables (Figure S1). The model conducted

with these predictors performed well and outperformed the model

conducted using a set of uncorrelated (r,0.8) predictors [45].

Climate change scenarios
For climate change scenarios we referred to the Intergovern-

mental Panel on Climate Change (IPCC) [1] Special Report on

Emissions Scenarios, which describes the relationships between the

forces driving greenhouse gas and aerosol emissions and their

evolution during the 21st century. Each scenario represents

different assumptions regarding demographic, social, economic,

technological, and environmental developments that diverge in

increasingly irreversible ways. We selected two greenhouse gas

emission scenarios (GESs; A2a and B2a) to assess plausible futures

based on a range in human choices over the next few decades. The

A2a scenario describes a highly heterogeneous future world with

regionally oriented economies. The main driving forces are a high

rate of population growth, increased energy use, land-use changes

and slow technological change. The B2a scenario is locally and

regionally oriented but with a general evolution towards

environmental protection and social equity. Compared to B2a,

A2a projects a higher rate of population growth, a larger increase

in GDP and faster land-use changes, but less diverse technological

changes. B2a projects resource conservation efforts beginning in

the early decades of this century and CO2 emissions declining by

midcentury [1]. Given the great uncertainty in predicting future

climate, we used projections from three internationally recognized

GCMs, i.e. CCCMA (Canadian Centre for Climate Modeling and

Analysis) [46], CSIRO (Commonwealth Scientific and Industrial

Research Organization) [47] and HADCM3 (Hadley Centre

Coupled Model version 3) [48], that simulated the impact of the

A2a and B2a scenarios on future climate conditions. These are

considered the most advanced simulations of global climate system

responses to increasing greenhouse gas concentrations currently

available.

In order to explore the potential range of Przewalski’s gazelle in

the future we extracted the above climate predictors across the

three GCMs under the two GESs for the years 2020, 2050 and

2080. Estimations of future non-climatic predictors were not

available because a wide range of socio-economic drivers would

Climate Change and Endangered Ungulate
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affect those factors. The extrapolation of past trends in non-

climatic variables to the future was considered conservative

estimators of the future in order to avoid misleading conclusion

due to over-simplifications [5,20].

Niche-based models
We implemented Maxent [49] (version 3.3.1; www.cs.princeton.

edu/,schapire/maxent/) to model the suitability of habitat for

Przewalski’s gazelle (Fig. 1) [45]. Maxent, a machine learning

method, is one of the most popular SDMs and is among the best-

performing modeling approaches using presence-only data [49–

51]. It satisfies a set of constraints representing the incomplete

information on the distribution and, subject to those constraints,

finds the probability distribution using the maximum entropy

principle [49]. We adhered to the default settings for the

regularization multiplier (1), maximum number of iterations

(500), convergence threshold (1025) and maximum number of

background points (10 000). We generated models randomly

assigning 80% of occurrences as training data with the remaining

20% used as test data. We ran five cross-validate replicates for

each model. Selection of ‘‘features’’ (predictors) was carried out

automatically, following the default rules dependent on the

number of presence records. We used the easily interpretable

logistic output format conditioned on the environmental variables

in each grid cell [50] with suitability values ranging from 0

(unsuitable habitat) to 1 (optimal habitat).

We projected the current prediction [45] on the future climate

scenarios and produced 90 future distribution models [ = 5

models618 projections ( = 3 GCMs62 GESs63 time slices)].

Growing concerns have emerged that excessive variability is

introduced when applying ensemble-forecasting approaches which

fit a number of alternative models (i.e. the use of multiple models)

to reach a consensus scenario, thus possibly compromising policy

decisions [52]. The basis of the consensus approach is that

different predictions are copies of possible states of the real

distributions, and they form an ensemble. Because different SDMs

provide considerably variable performance [53–55] and contrib-

ute to the largest variation in the projections of impacts of climate

change [28], we addressed variability concerns by using the

cross-validate replicates from Maxent as proxies for different

single-models in consensus methods [52]. We employed the

consensus method, namely Mean (based on mean function), which

forms a representation of the most commonly used techniques and

has been shown to yield robust predictions [55].

We used a suitability threshold to derive projected presence-

absence distributions from the logistic outputs. As the choice of a

threshold has a great effect on the projected map but there is still

no consensus on the selection of optimal threshold [45,56], three

different thresholds were implemented. Because the threshold

indicating maximum training sensitivity plus specificity is consid-

ered as a more robust approach [53,56], we used it to conduct the

conversion into presence-absence predictions. To evaluate the

degree of climate change risk, as an alternative approach, we also

used two fixed thresholds of 0.8 and 0.95 [57].

Spatial index for potential impacts of climate change
We used three approaches to assess the impacts of climate

change on the potential habitat ranges. First, range shift was

calculated under two spread assumptions: null spread (no spread

ability of gazelles) and full spread (unlimited ability to spread).

Under the assumption of null spread, only the overlap habitat

between current and future ranges was considered suitable for

gazelles. Under the full spread assumption, the gazelle populations

could reach all new potential habitat ranges. To assess range

variation at the pixel level, we summed the potential range loss

(RL) by pixel and related this to the predicted current range (CR)

by pixel. Under the full spread, the percentage of range gained

(RG) by pixel was assessed by the same procedure; we estimated

the percentage of predicted range change (C) by pixel [5] using

C~100|(RG{RL)=CR

and turnover (T) by pixel using

T~100|(RLzRG)=(CRzRG):

Second, we conducted a comparison with a formula that

uncovers the maximal divergence among time slices:

DIVERGmax~max( a{bj j, a{cj j, a{dj j, b{cj j, b{dj j, c{dj j),

Figure 1. Predicted probability distribution for Procapra przewalskii using Maxent at 161 km. The lapis lazuli area indicates the Qinghai
Lake.
doi:10.1371/journal.pone.0022873.g001
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where jj is the absolute value of the difference between two time

slices; max operator is the maximum difference among time slices;

a, b, c, and d represent the current, 2020, 2050 and 2080 models,

respectively [5].

Third, based on the predicted distributions and using spatial

analysis tools in ArcGIS (ESRI, Redland, USA), we extracted the

probability of occupancy for known localities (i.e. presence

records) of gazelles for the four time slices considered (current,

2020, 2050 and 2080). We then characterized the trends in the

projected probability of occurrences [58].

Extinction risk
In line with IUCN Red List criterion A3(c), based on the

predicted reduction in range size in the future, we assigned the

gazelle to a threat category. The threat categories and their

thresholds are as follows [59]: extinct, species with a projected

range reduction of 100% in the future; critically endangered,

projected range reduction of .80%; endangered, projected range

reduction of .50%; and vulnerable, projected range reduction of

.30%. Although it is important to note that the Red Listing

approach is simplistic and general and considers only the effects of

projected climate change, it provides a synthetic overview of

species-specific threats due to climate change [20]. We estimated

the extinction risk under assumptions of: 1) null spread, where

range reduction was calculated as the percentage of RL, and 2) full

spread, where range reduction was calculated as C.

Uncertainty analysis
We used Kolmogorov-Smirnov tests to check normality of data

and transformed data to meet assumptions of normality and

homogeneity of variances. Multivariate analysis of variance

(MANOVA), which takes into account collinearity among

response variables, was performed to test the effects of time slice,

threshold and GCMs, and their interactions on the four variables

(i.e. the percentage of range lost, gain, change, and turnover) for

estimating the impacts of climate change. A significant MANOVA

was followed up with univariate ANOVAs. All data of the

percentage of range gain were logarithmic transformed (log10) prior

to analyses, and the data of the percentage of range change were

abs and log10 transformed. These statistical analyses were

performed using SPSS 15 software (SPSS Inc., Chicago, USA).

Results

Potential impacts of climate change
The potential range of Przewalski’s gazelle was discernibly

impacted by projected climate change (Fig. 2). Across the GCMs

and GESs, it was clear that the strength of the impacts increased as

the time horizon or the cut-off value increased. With the threshold

indicating sensitivity-specificity sum maximization, for the years

2020, 2050 and 2080, the average percentage of range loss was

31%, 41% and 51% respectively. Under the full spread

assumption, the average percentage of range gain for the same

years was 100%, 82% and 65%. This predicted a strong turnover

in range for all future time slices. Strong to small range increases

were projected from 2020 to 2080.

With the threshold of 0.80, for the years 2020, 2050 and 2080,

the average percentage of range loss was 50%, 69% and 70%,

respectively. Under the full spread, the average percentage of

range gain for the same years was 61%, 41% and 50%. A strong

turnover in range was provided by all three time slices. Small

range increase was projected by 2020 but the gazelle was predicted

to experience a moderate reduction in suitable habitat by 2050

and 2080 (Fig. 2).

With the threshold of 0.95, for the years 2020, 2050 and 2080,

the average percentage of range loss was 82%, 95% and 95%,

respectively. Under the full spread, the average percentage of

range gain for the same years was 52%, 16% and 9%. This gave

an extremely strong turnover in range by all three time slices.

Figure 2. Projected impacts of climate change on the distribution of Procapra przewalskii. Percentage of range loss, range gain, range
change and range turnover as predicted using presence by pixel across the three general circulation models (CCCMA, CSIRO and HADCM3) and the
two climate change scenarios: A2a (liberal) and B2a (conservative), for three time slices (2020, 2050 and 2080). The solid horizontal line represents the
median, the square symbol represents the mean, edges of box are quartiles, whiskers are 5th and 95th percentiles and circles are outliers.
doi:10.1371/journal.pone.0022873.g002
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Moderate to strong range reductions were projected by 2020 and

later years (Fig. 2).

Spatial outputs of the ensemble-forecast approach revealed that

the potential range will be vulnerable to large variation under

projected climate scenarios (Fig. 3). Under the full spread, with the

threshold indicating sensitivity-specificity sum maximization, the

gazelle could experience an increase in suitable habitat with more

range gain than loss by 2020; the variation of range size was little

with approximately equal area of loss and gain by 2050; while a

considerable negative impact was suggested by 2080 with range

loss more than doubling range gain (Fig. 3a–c). With the threshold

of 0.80, a reduction was projected in suitable habitat for the three

time slices. As the time horizon increased this negative impact was

predicted to expand. For the years 2020, 2050 and 2080, the area

ratio (range loss: range gain) was 1.5, 3.5 and 39.9 respectively

(Fig. 3d–f). With a more restrictive threshold of 0.95, by 2020 the

current suitable habitat (c. 5630 km2) was predicted to diminish

to only 20 km2, while range gains of approximately 490 km2 were

expected in the west and northwest of Qinghai Lake. This

reduction in range size could be extremely severe with only 1 km2

suitable habitat by 2050 and no suitable habitat by 2080

(Fig. 3g–i).

Spatially explicit comparisons between current and future

potential ranges identified high divergences in certain areas and

consistently highlighted similar maximal divergences between the

scenarios A2a and B2a (Fig. 4). DIVERGmax predicted reductions

in suitable habitat under future climate change scenarios in two

regions of high probability of occupancy, situated in the south, and

from east to north of Qinghai Lake.

Currently known localities of gazelles were forecasted to

undergo a decrease in the probability of occurrence over time

(Fig. 5). Probability of occurrence was predicted to drop from

0.940 based on current data to 0.792 by 2020, 0.732 by 2050 and

0.684 by 2080.

Extinction risk evaluation
The application of IUCN Red List A3(c) criterion highlighted

that the gazelle could be severely threatened by projected climate

change (Fig. 2 & 3). This also revealed the uncertainty provided by

the crude spread assumptions. Based on the ensemble-forecast

approach across climate scenarios, under the assumption of no

spread, the gazelle would be classified as vulnerable after 2020 and

became endangered for 2080 with the threshold indicating

sensitivity-specificity sum maximization, while it would be

endangered after 2020 and became critically endangered for

2080 with the threshold of 0.80. With the most rigorous threshold

of 0.95, the species may become critically endangered by 2020

(.95% range loss), and committed to extinction after 2050. Under

the full spread assumption, the results were, as expected, less

severe but not optimistic. Although the species was classified as low

risk across time slices with the threshold indicating sensitivity-

specificity sum maximization, with the threshold of 0.80 it was

Figure 3. Close-up of predicted distribution of Procapra przewalskii for three time slices: 2020, 2050 and 2080. Models are obtained with
an ensemble-forecast approach across the three general circulation models (CCCMA, CSIRO and HADCM3) and the two climate change scenarios (A2a
and B2a). Suitable ranges are selected by the thresholds of 0.54, 0.80 and 0.95 (panels a–c; d–f; g–i, respectively) for current and future predictions.
For all panels, red indicates the current suitable habitats predicted to be unsuitable in the future; yogo blue indicates the current nonsuitable habitats
predicted to be suitable in the future and blue indicates current suitable habitats predicted to stay suitable in the future. The gray solid lines
represent county boundaries and yellow dotted lines, the boundaries of protected areas. The lapis lazuli area indicates the Qinghai Lake.
doi:10.1371/journal.pone.0022873.g003
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classified as endangered and critically endangered by 2050 and

2080, respectively. Additionally, the gazelle would be endangered

after 2020 and committed to extinction by 2080 with the threshold

of 0.95.

Relative contribution of uncertainty to projections
Based on the MANOVA, the assessment of impacts of projected

climate change was significantly affected by the threshold and

GCMs used. Range variation did not vary significantly with time

slice. There was also no significant effect from the interactions

between these three components (Table 1). On the other hand, the

univariate ANOVAs revealed significant changes in range loss,

range change and range turnover with time slice, but no significant

change in range gain. These four measures for estimating impacts

of climate change were significantly affected by both threshold and

GCMs. However, no significant effects of the interactions between

the three components were found.

Discussion

Sensitivity to climate change
Predicting the effects of anthropogenic climate change on the

distributions of species is critical [3], since these changes may lead

to massive species extinctions [4,11,20]. While some species are

likely to benefit from the changes with extending ranges into

currently unoccupied areas, many mammals exhibit generally

predictable responses to changing climate which may alter their

distribution ranges or accelerate extinction rates [6,8,13,17,20].

As expected, the projected distribution of Przewalski’s gazelle

resulting from several climate change scenarios suggests this

species will become much more limited in suitable habitat. While

the gazelle appears to gain range under the universal spread

assumption, the probability of occurrence is relatively low for most

new habitats. Additionally, large proportions of the current habitat

of high occurrence probability are expected to become unsuitable

with climate change in the future (Fig. 2 & 3).

Furthermore, the rangelands on the Qinghai-Tibet Plateau

where all current Przewalski’s gazelle populations now exist [33]

may also be vulnerable to climate change [60,61]. Climatic

warming affects vegetation production and quality negatively [60]

and important plant groups for ecosystem services may undergo

species loss due to consumption by livestock with climate warming

[61]. Given the competition between gazelles and domestic sheep

for food as well as the habitat space conflict between gazelles and

local people [33,62], climate change will threaten the survival of

gazelles.

Threshold selection, extinction risk and the uncertainty
It is a prerequisite to predict how species will respond to

anticipated climate changes in order to effectively conserve

populations and reduce extinction rates. However, uncertainty

surrounding the degree to which climate change will impact

species presents a challenge for environmental management and

policy [27,28,63]. It would be wise to recognize and quantify this

uncertainty when developing conservation strategies [55,64]. The

Figure 4. Close-up of model disagreement among time slices (current, 2020, 2050 and 2080). The disagreement is estimated through
maximal divergences (DIVERGmax) for the two climate change scenarios: A2a (panel a) and B2a (panel b). The gray solid lines represent county
boundaries and yellow dotted lines, the boundaries of protected areas. The lapis lazuli area indicates the Qinghai Lake.
doi:10.1371/journal.pone.0022873.g004

Figure 5. Predicted probability of occurrence for known
Procapra przewalskii localities. The probability of occurrence is
extracted for the four time slices considered (current, 2020, 2050 and
2080) based on the predicted distributions from an ensemble-forecast
approach. The solid horizontal line represents the median, the square
symbol represents the mean, edges of box are quartiles, whiskers are
5th and 95th percentiles and circles are outliers.
doi:10.1371/journal.pone.0022873.g005
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choice of an optimal suitability threshold is crucial in conservation

practice [56,57]. No general-purpose rule exists for selection of an

optimal suitability threshold despite many approaches available for

threshold-determining (subjective or objective) [56] and this

remains to be further explored in Maxent [45,49]. Our analyses

revealed that the selected threshold significantly affects the

assessment of impacts of climate change on future populations of

Przewalski’s gazelle. The threshold indicating sensitivity-specificity

sum maximization here (0.54) was lenient and produced optimistic

results when evaluating the extinction risk. Future populations of

the gazelle would be vulnerable or endangered under the null

spread assumption but low risk under the full spread assumption.

In view of the fact that gazelle populations are greatly disturbed by

human activities [36,65,66] and the uncertainties in the simula-

tions of climate change impacts [28,29,55], we should consider the

more severe prediction. With more stringent strategies (the

threshold of 0.8 and 0.95 here), the reduction in range size was

projected for most climate change scenarios under both the null

and full spread assumptions. Specifically, under the threshold of

0.95 the gazelle would have no suitable habitat by 2080 and

subsequently become critically endangered or extinct.

Several studies have extrapolated to alarming extinction risks in

the future [11,20], despite criticisms that the use of IUCN Red List

Criteria [59] for estimating this risk is too loose [67]. While

acknowledging the uncertainty from SDMs and GCMs [28], we

addressed how sensitive Przewalski’s gazelle is to projected impacts

of climate change across the entirety of its range. Given the

constraints limited habitat space would put on gazelle population

growth [33,45,62], the assumption of a linear relationship between

abundance and range size is feasible when using Criterion A [59]

to estimate the extinction rate based on projected range shifts [20]

and the longer life span of gazelles [67]. Additionally, Liu et al. [56]

suggest that even in those applications where some subjective

decision making is involved, it is still useful to estimate the most

appropriate thresholds while using the ‘‘objectively’’ determined

presence/absence prediction as a reference. In this study,

sensitivity analysis using different levels of threshold deduces a

panorama for the extinction risk of the gazelle. This is of concern

since it could reduce the arbitrary bias in assigning species to

threat categories under future climate change [67]. We should

acknowledge the predicted increase in extinction rate of

Przewalski’s gazelle under climate change despite the current

degraded threat status in the IUCN Red List [35]. This could

present new challenges and demands for conservation programs.

Conservation implications
Przewalski’s gazelle is one of the flagship species on the

Qinghai-Tibetan Plateau, but many gazelles do not live within the

protected area [36]. Moreover, the gazelle was only found in the

region around Qinghai Lake where other large herbivores (e.g.

Pantholops hodgsoni, Equus kiang and Poephagus mutus ) have

experienced discernible responses to climate and environment

changes [68]. In the present study, we have built models to predict

the impacts of climate change and evaluate the extinction risk for

the gazelle. Although projected range shifts under climate change

will never be certain and cannot address the proximate causes of

species extinction [3], they will be substantial for Przewalski’s

gazelle. Thomas et al. [11] suggest that any reduction in the

potential range is likely to lead to an increased risk of local

extinction. In this regard, the risk of extinction to Przewalski’s

gazelle appears to be increasing with climate change. Further-

more, if a species becomes restricted to a few sites in fragmented

landscapes, just as the status for Przewalski’s gazelle [33,35,36],

local catastrophic events such as droughts or disease outbreaks or

an increase of land transformation by humans could easily cause

the extinction of that species [69]. It would be best to conserve all

possible habitats given the endangered status of the gazelle and the

uncertainty of the impacts of climate change. Efforts such as

securing existing protected areas (i.e. the Qinghai Lake National

Nature Reserve and the special protected zone in Gangcha

County) and establishing new reserves should be undertaken in the

Table 1. Results of both multivariate analysis of variance
(MANOVA) and univariate ANOVAs on the effects of time slice,
threshold, GCMs, and their interactions on the four measures
for estimating potential impacts of climate change: the
percentage of range loss, range gain, range change and range
turnover predicted.

Wilks’ l df F P

Multivariate

Time slice 0.632 6, 50 2.16 0.063

Threshold 0.161 6, 50 12.42 0.000**

GCMs 0.457 6, 50 3.99 0.002*

Time slice * Threshold 0.606 12, 66 1.15 0.336

Time slice * GCMs 0.687 12, 66 0.84 0.606

Threshold * GCMs 0.550 12, 66 1.40 0.187

Time slice * Threshold * GCMs 0.614 24, 73 0.56 0.945

Univariate

Time slice Range loss 2 6.219 0.006*

Range gain 2 2.969 0.068

Range change 2 4.169 0.026*

Range turnover 2 3.896 0.033*

Threshold Range loss 2 44.040 0.000**

Range gain 2 9.325 0.001**

Range change 2 18.316 0.000**

Range turnover 2 47.790 0.000**

GCMs Range loss 2 8.030 0.002*

Range gain 2 4.980 0.014*

Range change 2 6.046 0.007*

Range turnover 2 4.447 0.021*

Time slice * Threshold Range loss 4 0.264 0.898

Range gain 4 0.358 0.836

Range change 4 0.238 0.914

Range turnover 4 0.483 0.748

Time slice * GCMs Range loss 4 1.373 0.270

Range gain 4 0.496 0.739

Range change 4 0.684 0.609

Range turnover 4 1.341 0.280

Threshold * GCMs Range loss 4 0.590 0.673

Range gain 4 0.618 0.654

Range change 4 0.412 0.798

Range turnover 4 1.372 0.270

Time slice * Threshold *
GCMs

Range loss 8 0.308 0.956

Range gain 8 0.438 0.888

Range change 8 0.390 0.916

Range turnover 8 0.267 0.971

doi:10.1371/journal.pone.0022873.t001
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regions projected to be suitable over longer timescales or habitats

with high suitability (e.g. the north-western region close to Qinghai

Lake; Fig. 3). Then migration corridors must to be established

between populations of the gazelle as well as between highly

suitable habitats since a large proportion of projected highly

suitable habitats are under pressure from intensive human

activities [33,39,62]. Of broader significance is that all large

herbivores on the Qinghai-Tibet Plateau currently experiencing

declining populations are disproportionately threatened [70]. Only

combining the existing knowledge of the likely impacts of climate

change, can people protect Przewalski’s gazelle and other

endangered large herbivores effectively.

Supporting Information

Figure S1 Analyzing the importance of individual
predictor in the Maximum Entropy Approach (Maxent)
with all selected explanatory variables. Jackknife analyses

are used to assess individual predictor importance in the

development of model in relation to overall model quality or

‘‘total gain’’ (grid bar) at 161 km. Black bars indicate the gain

achieved when including that predictor only and excluding

remaining predictors; gray bars show how much the total gain is

diminished without the given predictor. HII: human influence

index; GDP: gross domestic product; bio01: annual mean

temperature; bio02: mean diurnal range; bio03: isothermality;

bio04: temperature seasonality; bio05/06: max/min temperature

of the warmest/coldest month; bio07: temperature annual range

(P5–P6); bio08/09/10/11: mean temperature of the wettest/

driest/warmest/coldest quarter; bio12: annual precipitation;

bio13/14: precipitation of the wettest/driest month; bio15:

precipitation seasonality; bio16/17/18/19: precipitation of the

wettest/driest/warmest/coldest quarter; CTI: compound topo-

graphic index; landcov: land-cover; ndvi01-12: normalized

difference vegetation index (NDVI) of each month (see Hu &

Jiang, 2010 for details).

(TIF)

Table S1 Presence points of Procapra przewalskii based
on the field work and historical records from the
literature.

(DOCX)
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30. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, et al. (2006)
Methods and uncertainties in bioclimatic envelope modelling under climate

change. Progress in Physical Geography 30: 751–777.

31. Schaller G (1998) Wildlife of the Tibetan steppe. Chicago and London:
University of Chicago Press.

32. Mallon DP, Kingwood SC (2001) Antelopes. Part 4: North Africa, the Middle

East, and Asia. Global Survey and Regional Action Plans. Gland and

Cambridge: SSC Antelope Specialist Group, IUCN.
33. Jiang Z (2004) Przewalski’s Gazelle. Beijing: China Forestry Publishing House.

Climate Change and Endangered Ungulate

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e22873



34. Jiang Z, Feng Z, Wang Z, Chen L, Cai P, et al. (1995) Historical and current

distributions of Przewalski’s gazelles. Acta Theriologica Sinica 15: 241–245.

35. IUCN SSC Antelope Specialist Group (2008) Procapra przewalskii. IUCN 2010

IUCN Red List of Threatened Species Version 2010.4. Available: http://www.

iucnredlist.org.

36. Li C, Jiang Z, Li D, Ping X, Cai J, et al. (2011) Current status and conservation

of Przewalsk’s gazelle Procapra przewalskii. Oryx (Accepted).

37. Ye R, Cai P, Peng M, Lu X, Ma S (2006) The investigation about distribution

and population size of Przewalski’s gazelle (Procapra przewalskii) in Qinghai

Province, China. Acta Theriologica Sinica 26: 373–379.

38. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation

and prediction across space and time. Annual Review of Ecology, Evolution, and

Systematics 40: 677–697.

39. Jiang Z, Li D, Wang Z (2000) Population declines of Przewalski’s gazelle around

Qinghai Lake, China. Oryx 34: 129–135.

40. Lei R, Jiang Z, Liu B (2001) Group pattern and social segregation in Przewalski’s

gazelle (Procapra przewalskii) around Qinghai Lake, China. Journal of Zoology

255: 175–180.

41. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high

resolution interpolated climate surfaces for global land areas. International

Journal of Climatology 25: 1965–1978.

42. GLC (2003) Global Land Cover 2000 database. European Commission, Joint

Research Centre. Available: http://gem.jrc.ec.europa.eu/products/glc2000/

glc2000.php.

43. Last of the Wild Data Version 2 (2005) Global Human Influence Index (HII).

Wildlife Conservation (WCS) and Center for International Earth Science

Information Network (CIESIN). Available: http://sedac.ciesin.columbia.edu/

wildareas/.

44. USGS (2009) HYDRO1k elevation derivative database. Available: http://eros.

usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro.

45. Hu J, Jiang Z (2010) Predicting the potential distribution of the endangered

Przewalski’s gazelle. Journal of Zoology 282: 54–63.

46. Kim, Kim SJ, Flato, Flato G, Boer, et al. (2003) A coupled climate model

simulation of the Last Glacial Maximum, Part 2: approach to equilibrium.

Climate Dynamics 20: 635–661.

47. Gordon HB, Farrell SP (1997) Transient climate change in the CSIRO coupled

model with dynamic sea ice. Monthly Weather Review 125: 875–908.

48. Collins M, Tett SFB, Cooper C (2001) The internal climate variability of

HadCM3, a version of the Hadley Centre coupled model without flux

adjustments. Climate Dynamics 17: 61–81.

49. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecological Modelling 190: 231–259.

50. Phillips SJ, Dudı́k M (2008) Modeling of species distributions with Maxent: new

extensions and a comprehensive evaluation. Ecography 31: 161–175.

51. Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, et al. (2006) Novel

methods improve prediction of species’ distributions from occurrence data.

Ecography 29: 129–151.
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