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AIMS
The aim of this study is to evaluate the potential association betweenN-acetyltransferase type 2 (NAT2) polymorphisms and drug-
induced liver injury during anti-TB treatment (AT-DILI).

METHODS
We conducted a systematic review and performed a meta-analysis to clarify the role of NAT2 polymorphism in AT-DILI. PubMed,
Medline and EMBASE databases were searched for studies published in English to December 31, 2017, on the association between
the NAT2 polymorphism and AT-DILI risk. Outcomes were pooled with random-effects meta-analysis. Details were registered in
the PROSPERO register (number: CRD42016051722).

RESULTS
Thirty-seven studies involving 1527 cases and 7184 controls were included in this meta-analysis. The overall odds ratio (OR) of AT-
DILI associated withNAT2 slow acetylator phenotype was 3.15 (95%CI 2.58–3.84, I2 = 51.3%, P = 0.000). The OR varied between
different ethnic populations, ranging from 6.42 (95% CI 2.41–17.10, I2 = 2.3%) for the West Asian population to 2.32 (95% CI
0.58–9.24, I2 = 80.3%) for the European population. Within the slowNAT2 genotype, variation was also observed;NAT2*6/*7was
associated with the highest risk of AT-DILI (OR = 1.68, 95%CI 1.09–2.59) compared to the other slowNAT2 acetylators combined.

CONCLUSIONS
NAT2 slow acetylation was observed to increase the risk of AT-DILI in tuberculosis patients. Our results support the hypothesis that
the slow NAT2 genotype is a risk factor for AT-DILI.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Although a number of previous studies have evaluated the potential association between N-acetyltransferase type 2
(NAT2) polymorphisms and drug-induced liver injury during anti-TB treatment (AT-DILI), the results were
inconsistent.

WHAT THIS STUDY ADDS
• We conducted a systematic review and performed a meta-analysis to clarify the role of NAT2 polymorphism in AT-DILI.
Subgroup analyses were performed by: (i) region of origin, (ii) study type, and (iii) genotyping. We evaluated the risk for
specific slow NAT2 acetylators and susceptibility to AT-DILI.

• NAT2 slow-acetylator alleles were associated with a higher risk of AT-DILI, especially in West Asian TB patient popula-
tions, but not in European and African populations.

• Within the slow NAT2 acetylators, the risk was highest for NAT2*6/*7 and relatively lowest for NAT2*5/*6.

Introduction
Tuberculosis (TB) is a major global public health problem. In
2015, there were an estimated 10.4 million new (incident) TB
cases worldwide [1]. The first-linemultidrug combined therapy
(isoniazid, rifampicin, ethambutol and pyrazinamide) is
known to commonly lead to adverse drug reactions (ADRs)
such as hepatotoxicity, gastrointestinal disorders, allergic
reactions, arthralgia and neurological disorders [2, 3], the most
common ADR during anti-TB treatment leading to drug
discontinuation in 11% of patients [4]. Isoniazid is a key drug
in anti-TB therapy but is also the key drug responsible for the
occurrence of drug-induced liver injury during anti-TB treat-
ment (AT-DILI). ADRs occur in 5–33% of all patients receiving
oral isoniazid treatment at 300 mg once daily [5]. The
metabolic intermediates of isoniazid appear to be the cause of
hepatotoxicity [6]. In the liver, isoniazid is first metabolized
into acetyl-isoniazid via N-acetyltransferase [7]. Isoniazid
hydrazine and acetyl-hydrazine are two metabolites of isonia-
zid, which are primarily involved in the mechanism of
isoniazid-induced hepatotoxicity [8–10]. Figure 1 shows the
metabolic pathway of isoniazid.

The first genetic variation in drug response ever discov-
ered was the N-acetylation of isoniazid [7]. This variation
was later found to be induced mainly by the polymorphisms
in N-acetyltransferase 2 coding gene (NAT2), and a number

of previous studies have assessed the association between
NAT2 gene polymorphism and the AT-DILI. The results of
the studies were inconsistent, mainly due to limited power,
Therefore, personalized dosing has not yet been introduced
in programmatic anti-TB treatment. However, considering
the potential impact of NAT2-guided dosing on the occur-
rence of AT-DILI, we aimed to systematically review and
meta-analyse all published studies designed to assess the
presence and strength of the postulated genetic associations
between the NAT2 polymorphisms and susceptibility to
AT-DILI.

Methods

Literature search strategy
The details of the systematic review and meta-analysis were
registered in the PROSPERO register (registration number
CRD42016051722).

Two authors (M.Z. and S.W.) independently searched the
PubMed, Medline and EMBASE databases for studies on the
association of NAT2 polymorphisms with risk of DILI up to
31 December 2017 using the search words: (‘antituberculosis’
or ‘anti tuberculosis’ or ‘tuberculosis’) and (‘genetic polymor-
phism*’ or ‘polymorphism*’) and (‘adverse drug reaction*’ or

Figure 1
Pathways of metabolism of isoniazid
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‘adverse effect*’ or ‘adverse event*’ or ‘drug reaction*’ or ‘drug
damage’ or ‘drug injur*’ or ‘drug-induced’). The search was
conducted on human subjects and published in English,
having no restrictions on sample size or population. The
reference lists from the retrieved documents were also
scanned. Through the quick reading of the title and abstract,
any clearly irrelevant studies, editorials and review articles
were excluded. A flow diagram summarizing the study selec-
tion process is shown in Figure 2.

NAT2 activity is divided into three main categories as
slow, intermediate and rapid acetylation, with some studies
combining intermediate and rapid acetylation. In this review,
individuals homozygous for slow NAT2 acetylator alleles
(NAT2*5/*5, NAT2*5/*6, NAT2*5/*7, NAT2*6/*6, NAT2*6/
*7, NAT2*7/*7) were classified as slow acetylator phenotype;
individuals homozygous for rapid NAT2 acetylator alleles
(NAT2*4, NAT2*11A, NAT2*12A, NAT2*12B, NAT2*12C,
NAT2*13) were classified as rapid acetylator phenotype;
heterozygous individuals (one rapid and one slow NAT2
allele) were classified as intermediate acetylator phenotypes
[11–13]. The rapid acetylator phenotype and intermediate
acetylator phenotypes were classified as non-slow acetylator
phenotype in this review.

Inclusion and exclusion criteria
Eligible studies met the following inclusion criteria: They
must (i) have evaluated the association between the NAT2

genetic polymorphisms and risk of anti-tuberculosis drug-
induced DILI in humans with either case–control (including
nested case–control) or prospective designs, (ii) be original
papers containing independent data, (iii) have included
sufficient data to estimate odds ratios (ORs) and their 95%
confidence intervals (CIs). Studies were excluded if they
met the following predetermined criteria: (i) overlapping
studies, (ii) review articles, (iii) studies without complete ge-
netic distribution data for the DILI and non-DILI groups,
(iv) Newcastle-Ottawa quality assessment (NOS) <4, (v) con-
trols were patients without TB, (vi) not published in
English.

Data extraction and assessment of study
quality
The data extracted independently by the two reviewers
included: name of first author, publication year, country
or region of origin, study type, demographic data of age
and gender, setting (clinic), stage of treatment, duration
of follow-up, matching factors, treatment regimen, detailed
definition of DILI, measurement method for DILI, genotyp-
ing method and genotype distribution in cases and con-
trols. The eligibility/exclusion criteria mentioned above
were used to assess the quality of the included studies,
and study quality was assessed according to Newcastle-
Ottawa quality assessment [14]. These items included: (i)
selection of study subjects, (ii) comparability of cases and

Figure 2
Flowchart for identification of studies in the meta-analysis
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controls on the basis of the design or analysis, (iii) assess-
ment exposure or outcome studies with a score ≥4 esti-
mated by the NOS were considered to be of high quality
and were retained in the analysis. If any discrepancy oc-
curred, the data were rechecked, and a third author was in-
vited to give a final decision.

Statistical analysis
The NAT2 genotypes were analysed based on the genetic
model of proposed risk (rapid and intermediate acetylation
phenotype vs. slow acetylation phenotype) for the NAT2
polymorphisms. All of the statistical analyses were per-
formed using STATA version 14.2 (Stata, College Station,
TX, USA) and SPSS version 16.0 (SPSS, USA). Based on com-
plete distribution data on NAT2 polymorphism in cases and
controls, the pooled ORs and their 95% confidence intervals
(CIs) were calculated and displayed as forest plots to assess
the strength of association between NAT2 genetic polymor-
phisms and susceptibility to AT-DILI in TB patients. In this
analysis, pre-stated ethnic subgroup analyses were per-
formed to examine differences in the association between
NAT2 genotype distribution and AT-DILI risk. Subgroup
analyses were performed by: (i) region of origin (East Asia,
South Asia, Southeast Asia, West Asia, Africa, Europe, South
and North America); (ii) study type (case–control study,
nested case–control study, cross-sectional cohort studies,
prospective cohort study); and (iii) genotyping (sequencing,
HRM, RFLP, Taqman, SNP stream). Random effects or fixed
effects models were used depending on the heterogeneity
among studies. Heterogeneity was assessed using the stan-
dard Q-statistic test, where I2 > 50% was considered to be ev-
idence of heterogeneity. Among all qualified studies related
to NAT2 gene, we drew up the summary effects again after re-
moving the study with the widest 95% confidence interval
(CI). We also conducted a sensitivity analysis to assess the
stability of the results by applying the leave-one-out method,
that is repeating the meta-analysis, each time omitting one
of the studies. Publication bias was assessed using Begg’s fun-
nel plot and Egger’s test. A P-value <0.05 was considered as
statistically significant.

Results

Identification and characteristics of the
included studies
Using our electronic database searches, we identified 58
articles describing the strength of the postulated genetic
associations between the NAT2 polymorphisms and suscepti-
bility to AT-DILI. A total of 37 case–control or prospective
cohort design studies with 1527 AT-DILI cases and 7184
controls without AT-DILI were included in the meta-analysis.
The main characteristics of the 37 studies are shown in
Table 1. The studies by An et al. [15], Rana et al. [16] and Rana
et al. [17] were excluded due to overlap with their other stud-
ies (we therefore selected the later publication to analyse the
distribution of the NAT2 genotype); three studies, by Guaoua
et al. [18], Ng [19] andMishra et al. [20], were excluded as con-
trols were not TB patients but healthy people; the studies by

Roy et al. [21] and Cavaco et al. [22] were excluded due to
the absence of complete NAT2 polymorphism distribution
data. The study by Ohno et al. [23] was excluded due to the
absence of slow acetylators.

Quantitative synthesis
Pooling all 37 studies in the meta-analysis, comparing the
slow to the non-slow NAT2 acetylators (i.e., intermediate
NAT2 acetylators and fast acetylators), the overall OR for the
association with AT-DILI was 3.15 (95% CI 2.58–3.84,
P< 0.005, Figure 3) using a random effectsmodel (I2 = 51.3%).

Subgroup analyses of the NAT2 polymorphism were
performed. First, a subgroup analysis for region of origin
was performed (Figure 3). In descending effect size, the ORs
for slow NAT2 genotype associated with the risk of AT-DILI
were statistically significant for West Asia 6.42 (95% CI
2.41–17.10), South Asia 3.05 (95% CI 2.20–4.24), South
America 3.01 (95% CI 2.29–3.96), and East Asia 2.98 (95%
CI 2.03–4.37), but not for North America 2.02 (95% CI
0.82–4.96) (one study only), Africa 2.40 (95% CI 0.78–7.36)
and Europe 2.32 (95% CI 0.58–9.24).

Secondly, a subgroup analysis was performed across study
designs (Figure 4). Of the 37 studies, 19 were case–control
studies, seven were nested case–control studies, five were
cross-sectional cohort studies, five were prospective cohort
studies, and one was a retrospective cohort study. The sub-
groups all showed positive effects sizes, ranging from 1.90
(94% CI 1.40–2.58) for cross-sectional cohort studies to 4.00
(95% CI 3.11–5.14) for case–control studies.

Subgroup analysis for different methods of genotyping
was performed (Figure 5). Of the 37 studies, 15 used se-
quencing, 18 used RFLP, two used Taqman, one used
HRM, one used SNP stream. The subgroups all showed
positive effects sizes, ranging from 2.06 (95% CI 0.93–4.57)
for Taqman to 8.82 (95% CI 3.26–23.89) for HRM (one
study only).

This meta-analysis also evaluated the risk for specific slow
NAT2 acetylators and susceptibility to AT-DILI. There were
statistically significant associations between NAT2*5/*5,
NAT2*5/*6, NAT2*5/*7, NAT2*6/*6, NAT2*6/*7, NAT2*7/*7
and the risk of AT-DILI. Within the slow NAT2 acetylators,
we found a relatively lower risk of AT-DILI with NAT2*5/*6.
The ORs for NAT2*5/*6 slow NAT2 acetylators compared
with other slow NAT2 acetylators combined was 0.43 (95%
CI 0.27–0.68) (Figure 6) using a fixed effects model
(I2 = 12.8%, P = 0.328). In contrast, NAT2*6/*7 was associ-
ated with a relative increased risk of AT-DILI compared to
the other slow NAT2 acetylators combined (OR = 1.68, 95%
CI 1.09–2.59) using a fixed effects model (I2 = 44.0%,
P = 0.075) (Figure 7).

Sensitivity analyses and publication bias
The sensitivity analysis was conducted via sequential analysis
after omitting one study at a time to assess the effects of indi-
vidual studies on the overall meta-analysis estimate. This
analysis shows that the results of the meta-analysis are statis-
tically robust as the ORs for the overall association of slow
acetylators on AT-DILI remained significant and ranged from
3.03 to 3.25 using random effects models. Heterogeneity was
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Table 1
Studies investigating the association between the NAT2 polymorphisms and AT-DILI risk

Genotype/
Year Country Study

NOS
Genotyping

Sample size Slow acetylators

Author score Case Control Case Control

NAT2

Chan [44] 2017 Singapore Case–control study 6 Sequencing 24 79 18 17

Wattanapokayakit [45] 2016 Thailand Case–control study 5 Sequencing 53 85 39 21

Mushiroda [46] 2016 Japan Case–control study 6 Sequencing 73 293 13 14

Yuliwulandari [47] 2016 Indonesia Case–control study 5 Sequencing 50 191 32 65

Wang [48] 2015 China Cross-sectional cohort study 7 Sequencing 70 285 23 62

Ho [49] 2013 China Nested case–control study 6 Sequencing 19 329 12 67

Lv [24] 2012 China Nested case–control study 6 RFLP 89 356 18 74

Ben Mahmoud [50] 2012 Tunisia Nested case–control study 6 RFLP 14 52 11 22

Rana [16] 2012 Indian Case–control study 6 RFLP 50 201 19 30

Leiro-Fernandez [51] 2011 Spain. Nested case–control study 7 RFLP 50 67 36 44

Sistanizad [52] 2011 Iran Cross-sectional cohort study 6 RFLP 14 36 9 11

Khalili [53] 2011 Iran Case–control study 6 RFLP 14 36 9 5

Bozok [54] 2008 Turkey Case–control study 6 HRM 30 70 23 19

Higuchi [30] 2008 Japan Nested case–control study 6 RFLP 18 82 6 4

Possuelo [55] 2008 Brazil Prospective cohort study 8 Sequencing 14 240 9 60

Shimizu [56] 2005 Japan Case–control study 5 RFLP 10 32 4 1

Huang [31] 2002 China Nested case–control study 6 RFLP 33 191 14 39

NAT2, CYP2E1

Rana [17] 2014 India Prospective cohort study 7 RFLP 55 245 21 36

Chamorro [57] 2013 Argentina. Cross-sectional cohort study 6 RFLP 47 128 28 48

Gupta [58] 2013 India Nested case–control study 7 RFLP 50 165 28 63

Santos [59] 2013 Brazil Case–control study 6 Sequencing 18 252 11 75

An [60] 2012 China Case–control study 6 Sequencing 101 107 40 13

Bose [61] 2011 India Case–control study 7 RFLP 41 177 29 79

Lee [62] 2010 China Case–control study 7 Taqman 45 95 21 20

Yamada [63] 2009 Canada Case–control study 5 Sequencing 23 147 14 64

Cho [64] 2007 Korean Case–control study 6 Sequencing 18 114 7 12

Vuilleumier [65] 2006 Switzerland Case–control study 7 RFLP 8 81 3 32

NAT2, CYP2E1, GST

Chamorro [66] 2017 Argentina Prospective cohort study 6 RFLP 96 249 64 102

Heinrich [67] 2016 Brazil Cross-sectional cohort study 7 RFLP 20 88 15 44

Singla [68] 2014 India Case–control study 6 RFLP 17 391 15 213

Xiang [69] 2014 China Cross-sectional cohort study 6 Taqman 71 1614 28 501

Costa [70] 2012 Brazil Prospective cohort study 5 Sequencing 54 75 22 13

Teixeira [29] 2011 Brazil Case–control study 6 Sequencing 26 141 18 64

Sotsuka [71] 2011 Japan Case–control study 6 RFLP 52 92 8 5

NAT2, CYP2E1, CYP3A4

Zaverucha-do-Valle [72] 2014 Brazil Retrospective cohort study 7 Sequencing 52 79 37 36

(continues)
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specifically decreased (I2 = 41.3%), when the study by Lv et al.
[24] was removed.

A funnel plot of these 37 studies suggested a possibility of
the preferential publication of positive findings (Figure 8).
The Egger test provided evidence that there was no small-
study publication bias among the studies included
(P < 0.001). The Begg’s test gave the same result.

Discussion
This meta-analysis examined well-characterized polymor-
phisms of NAT2 gene in the relationship to AT-DILI sus-
ceptibility. It determined that NAT2 slow-acetylator
alleles were associated with a higher risk of AT-DILI, es-
pecially in West Asian TB patient populations. Significant
results were also found in South Asian, East Asian and
American populations, but not in European and African
populations.

The previous meta-analyses [25–27] did not include data
from the African population which has the largest incidence
of TB in the world. Compared with the previous meta-
analyses, the present study is much larger, with more than
one-and-a-half to two times as many cases. It also adjusts
the classification used in the study by Yimer et al. [28], which
categorized Ethiopian patients together with European
patients. In contrast to our meta-analysis, the previous
meta-analysis did not include data from Indonesian popula-
tions which has the fifth largest incidence of TB in the world.
Therefore, this meta-analysis is more comprehensive and
powerful, especially because it contains Asian countries listed
in the top 30 TB “high burden countries” in the 2016 latest
global TB report [1].

We performed a subgroup analysis for different study
designs and methods of genotyping to investigate whether
the NAT2 gene polymorphism was associated differently
with AT-DILI risk when using different designs and
genotyping methods. Our results on the role of the poly-
morphism of NAT2 in different ethnicities were consistent
across study design and genotyping method. Furthermore,
we evaluated the risk for specific slow NAT2 acetylators
and susceptibility to AT-DILI, which previous meta-analyses
never reported.

It came to our attention that although association of
NAT2 slow acetylators with AT-DILI was not observed for
Europeans and Africans, it was observed in the Brazilian
study of Teixeira [29], which is interesting as the Brazilian

population includes contributions from Africans, Europeans
and Amerindians in its heritage. Considering the ethnic di-
versity of the Brazilian population, a more consistent com-
parison of the results found among these populations
would be of importance and could contribute even more
to the definition of such association in different popula-
tions. At present, there is still a lack of research data on dif-
ferent groups of people in Brazil, and such research should
be encouraged in the future.

To our knowledge, this is the first systematic review and
meta-analysis to evaluate the association between specific
slow NAT2 acetylators and the susceptibility to AT-DILI.
Previous studies only showed that the NAT2*6 allele signifi-
cantly predicts predisposition to AT-DILI in Taiwanese,
Japanese and Chinese individuals [24, 30, 31]. Of the 37
studies included in our meta-analysis, nine investigated the
association between slow NAT2 acetylators and susceptibility
to AT-DILI and when combined, showed a relatively higher
risk of AT-DILI with NAT2*6/*7, which is in accordance
with previous studies in Taiwanese, Japanese and Chinese
populations.

The World Health Organization reported that over 95%
of TB deaths occur in low- and middle-income countries.
Six countries account for 60% of the total, with India lead-
ing the count, followed by Indonesia, China, Nigeria,
Pakistan and South Africa [1]. In Figure 3, we can see that
two-thirds of included studies were conducted in East
Asian, South Asian and Southeast Asian populations, from
India, Indonesia, China, Taiwan, Iran, Japan and Korea.
The pharmacokinetic profiles of INH and its metabolites
differ significantly between individuals. Patients can be
categorized according to their number of functional NAT2
alleles into slow, intermediate and fast acetylator pheno-
types. Therefore, it should be feasible and would be useful
to help guide programmatic TB drug therapy through
pharmacogenomics, to reduce the occurrence of ADRs in in-
dividual patients.

To provide a rational dosing design to balance the inher-
ent trade-off between treatment efficacy and toxicity in
INH-based chemotherapy, it should be considered that there
are several polymorphisms in NAT2 leading to altered
catalytic activities for INH acetylation [32–35]. Some authors
suggested that an adaptation of administered INH dosages
according to patient acetylator status may benefit patients
[36–38]. In one clinical trial an INH QD dose of 5 mg kg�1

of body weight was modified to doses of 2.5 mg kg�1 for slow
acetylators, 5 mg kg�1 for intermediate acetylators and

Table 1
(Continued)

Genotype/
Year Country Study

NOS
Genotyping

Sample size Slow acetylators

Author score Case Control Case Control

NAT2, CYP2B6, CYP3A5, ABCB1, UGT2B7, SLCO1B1

Yimer [28] 2011 Ethiopian Prospective cohort study 5 Sequencing 41 160 31 107

NAT2, CYP2E1, CYP2C9, CYP2C19, CYP2D6

Kim [73] 2009 Korean Case–control study 6 SNP stream 67 159 21 28
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Figure 3
Forest plot of the association of the NAT2 polymorphism with risk of AT-DILI (subgroup analyses were performed by region of origin). For each
effect measure, the forest plot indicates the pooled treatment effect estimate with its 95% CI, the weight measure and the I2 heterogeneity mea-
sure among the studies included. CI = confidence interval; OR = odds ratio
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Figure 4
Forest plot of the association of theNAT2 polymorphism with risk of AT-DILI (subgroup analyses were performed by type of study). For each effect
measure, the forest plot indicates the pooled treatment effect estimate with its 95% CI, the weight measure and the I2 heterogeneity measure
among the studies included. CI = confidence interval; OR = odds ratio
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7.5 mg kg�1 for fast acetylators, resulting in reduced adverse
effects in fast acetylators while maintaining overall treatment
efficacy in all acetylator phenotypes [37].

In the past five years, personalized dosing therapy based
on drug metabolizing enzymes and transporter genomes has
become one of the focuses of personalized medicine. If the

Figure 5
Forest plot of the association of the NAT2 polymorphism with risk of AT-DILI (subgroup analyses were performed by method of genotyping). For
each effect measure, the forest plot indicates the pooled treatment effect estimate with its 95% CI, the weight measure and the I2 heterogeneity
measure among the studies included. CI = confidence interval; OR = odds ratio
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association between the genetic polymorphisms and risk of
AT-DILI is determined, maybe a personalized clinical drug–
dosage model can be developed for the treatment of tubercu-
losis taking into account other well-known factors that
influence drug exposure [39, 40]. The personalized clinical
drug–dosagemodel is especially important for the population
of South and East Asia with high incidence of AT-DILI. It
could effectively reduce the incidence of ADRs in the
treatment of tuberculosis, especially for the treatment inter-
ruption caused by AT-DILI. For the high-burden TB countries,
reducing the incidence of ADRs may be cost-effective because
the cost of treating AT-DILI is often higher than the treat-
ment of TB [1]. The WHO “End TB Strategy”, approved by
theWorld Health Assembly in 2014, calls for a 90% reduction
in TB deaths and an 80% reduction in the TB incidence rate
by 2030, compared with 2015 [41]. This clinical model of
tuberculosis drug therapy could play a role in the realization
of this goal.

Although we included a large number of studies with a
considerable overall sample size and performed subgroup

analyses to explore differences in effects of the NAT2 poly-
morphisms on AT-DILI risk, several potential limitations
should be taken into consideration when interpreting our
results. Firstly, the NAT2 polymorphism has a higher minor
allele frequency in different populations, so the lack of infor-
mation about polymorphism distributions in the target
populations does not allow us to estimate the attributable
fraction of NAT2 polymorphisms on AT-DILI occurrence.
Secondly, the lack of information on other potential
causative/protective factors, in particular age, sex, dietary
habits, nutrition status, body mass index (BMI), drinking
and smoking habits, were available for only a limited number
of the studies and, as such, we were not able to adjust effect
sizes. Thirdly, not all studies provided information on the def-
initions applied for AT-DILI and hepatotoxicity. Lastly, only
some studies provided information on synergism of the TB
drugs used and the Hardy–Weinberg equilibrium test, which
may have impacted the effect size, and simultaneously hin-
dered an adequate exploration of a potential source of hetero-
geneity. Despite these limitations, our review and meta-

Figure 6
Forest plot of the association of the NAT2*5/*6 slow NAT2 acetylators compared with other slow NAT2 acetylators combined with risk of AT-DILI.
For each effect measure, the forest plot indicates the pooled treatment effect estimate with its 95% CI, the I2 heterogeneity measure among the
studies included. CI = confidence interval; OR = odds ratio
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analysis provides important new information that is statisti-
cally robust in sensitivity analyses and has yielded relevant
and reliable results.

Conclusion
In summary, this meta-analysis not only demonstrated that
the NAT2 slow acetylation phenotype was significantly
associated with increased risk of AT-DILI depending on the
population studied, it also suggests that there is variation
within the slow NAT2 acetylator group: the risk was highest
for NAT2*6/*7 and relatively lowest for NAT2*5/*6. In March
2016, the United States Clinical Pharmacogenetics Imple-
mentation Consortium updated 33 pharmacogenomic drug
application guidelines, 25 of which relate to drugmetabolism
and transport.NAT2 has not yet been included in these guide-
lines but, based on our results, may have a place in future
updates. Considering the complex mechanisms involved in
the development of AT-DILI, and limitations of the available

Figure 7
Forest plot of the association of the NAT2*6/*7 slow NAT2 acetylators compared with other slow NAT2 acetylators combined with risk of AT-DILI.
For each effect measure, the forest plot indicates the pooled treatment effect estimate with its 95% CI, the I2 heterogeneity measure among the
studies included. CI = confidence interval; OR = odds ratio

Figure 8
Begg’s funnel plot to detect publication bias for the NAT2
polymorphism
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observational studies on the impact ofNAT2 polymorphisms,
we recommend a randomized controlled trial be designed
with adequate sample size to assess the true effect of NAT2.
Also evaluating gene-to-gene interactions (between human
genetic polymorphisms and risk of AT-DILI, such as CYP2E1,
GST, CYP3A4, CYP2C19) should be encouraged. Additional
evidence from such well-designed trials would support
guideline development and would aid development of a
clinical tool for INH dosage adjustment based on genetic
and clinical risk factors, in order to reduce hepatoxicity and
improve TB treatment outcomes.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data
from the IUPHAR/BPS Guide to PHARMACOLOGY [42],
and are permanently archived in the Concise Guide to
PHARMACOLOGY 2017/18 [43].
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