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Abstract: Pulmonary Arterial Hypertension (PAH) is a disease of the pulmonary arteries, that is
characterized by progressive narrowing of the pulmonary arterial lumen and increased pulmonary
vascular resistance, ultimately leading to right ventricular dysfunction, heart failure and premature
death. Current treatments mainly target pulmonary vasodilation and leave the progressive vascular
remodeling unchecked resulting in persistent high morbidity and mortality in PAH even with
treatment. Therefore, novel therapeutic strategies are urgently needed. Loss of function mutations
of the Bone Morphogenetic Protein Receptor 2 (BMPR2) are the most common genetic factor in
hereditary forms of PAH, suggesting that the BMPR2 pathway is fundamentally important in the
pathogenesis. Dysfunctional BMPR2 signaling recapitulates the cellular abnormalities in PAH as well
as the pathobiology in experimental pulmonary hypertension (PH). Approaches to restore BMPR2
signaling by increasing the expression of BMPR2 or its downstream signaling targets are currently
actively explored as novel ways to prevent and improve experimental PH as well as PAH in patients.
Here, we summarize existing as well as novel potential treatment strategies for PAH that activate the
BMPR2 receptor pharmaceutically or genetically, increase the receptor availability at the cell surface,
or reconstitute downstream BMPR2 signaling.

Keywords: PAH; pulmonary hypertension; bone morphogenetic protein receptor 2; signaling; repur-
posed drugs; pharmaceuticals; miRNA; clinical trials

1. Introduction

Pulmonary Arterial Hypertension (PAH) is a cardio-pulmonary-vascular condition,
where a progressive occlusion of the distal pulmonary vasculature leads to an increase
in pulmonary vascular resistance and right ventricular (RV) afterload, resulting in RV
failure and premature death [1,2]. Histopathological analysis suggests that dysfunction of
key cellular components of the pulmonary vasculature, namely endothelial and smooth
muscle cells, pericytes, inflammatory cells, and adventitial fibroblasts, induce pulmonary
vascular remodeling [3,4]. This results in narrowing of the vessel lumen and formation of
complex vascular lesions, which together raise pulmonary vascular resistance, increasing
pulmonary arterial pressure as well as the afterload for the right ventricle.

Although PAH is a rare disease affecting only about 1–2 of every 1 million individuals
annually, the mortality and morbidity rate is high and, if untreated, PAH quickly leads to
right ventricle failure and death after 2–3 years [5,6]. PAH may be heritable (with a family
history of PAH), idiopathic (without a family history, unknown cause), or associated (linked
to interstitial lung disease, congenital heart disease, autoimmune disease, etc.) [7]. Whilst
the exact cause of PAH is not known, genetic factors (mutations or epigenetic changes),
environmental factors (e.g., hypoxia, viral infections, anorectic agents, stimulants, etc.)
and immune or inflammatory triggers may contribute to the cause or progression of the
disease [4]. Importantly, there is no cure for PAH. Existing drugs target pulmonary vasodi-
lation, proliferation and endothelial function by increasing nitric oxide (NO), inhibiting

Genes 2021, 12, 8. https://dx.doi.org/10.3390/genes12010008 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-6297-4378
https://dx.doi.org/10.3390/genes12010008
https://dx.doi.org/10.3390/genes12010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/genes12010008
https://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/12/1/8?type=check_update&version=2


Genes 2021, 12, 8 2 of 10

endothelin and voltage-gated calcium channels and by augmenting prostacyclin signaling
pathways [8]. However, these drugs only partially increase survival and improve quality of
life, while the majority of patients ultimately become resistant to medication and succumb
to the disease [9]. With current treatments, the 5-year survival of PAH patients has been
improved from 34% to 60%, yet these drugs are not capable of reducing the extent and
progression of vascular and cardiac remodeling, resulting in eventual clinical deterioration
of PAH patients over time [10].

Thus, new, effective and disease modifying therapies are urgently needed [11], thera-
pies that target the underlying molecular mechanisms responsible for pulmonary vascular
remodeling, which is the hallmark of PAH. Over the past two decades, many cellular and
molecular mechanisms have been described as playing key roles in the pathogenesis of
disease in preclinical and clinical settings [4,12]. Here, we focus on modulation of bone
morphogenic protein receptor 2 (BMPR2) signaling [7] as a key mechanistic pathway and
potential master switch in the pathogenesis of PAH.

2. The BMPR2 Signaling Pathway

In 2000 two independent groups identified mutations in BMPR2 as causative for the
familial form of PAH [13,14]. BMPR2 carriers with PAH have an earlier disease onset
than idiopathic PAH patients [15]. Interestingly, male patients were more likely to possess
a BMPR2 mutation than women and develop severe disease in presence of a BMPR2
mutation [16].

Meanwhile, researchers have identified mutations in over 16 genes in patient with
hereditary PAH (HPAH) that may predispose to PAH, including BMPR2 of course, but also
receptors that are part of or are interacting with the BMPR2 pathway such as activin A
receptor type II-like 1 (ACVRL1), endoglin (ENG), caveolin-1 (CAV1), SMAD1, SMAD4,
SMAD9, bone morphogenetic protein receptor type 1B (BMPR1B), eukaryotic translation
initiation factor 2 α kinase 4 (EIF2AK4), and growth differentiation factor 2 (GDF2) [17].
While most identified gene mutations are relatively rare (1–3% cases), heterozygous loss-
of-function mutations in the BMPR2 gene are the most common and occur in 53–86%
of HPAH and 14%–35% of idiopathic PAH (IPAH) patients [18]. To date, more than 300
mutations, predominantly nonsense and frameshift types, have been identified in the
BMPR2 gene in PAH patients. BMPR2, encoded by the BMPR2 gene, is a member of the
serine/threonine kinase transmembrane proteins belonging to the TGFβ receptor super-
family. BMPR2 binds BMP ligands such as BMP2, BMP4, BMP6, BMP7 and BMP9. BMPs
typically play a role in a wide range of signal pathways involved in cellular differentiation,
growth, and apoptosis and in embryogenesis, development, and tissue homeostasis. In the
canonical BMP signaling pathway, upon binding of BMP ligands, BMP type 2 receptors
(e.g., BMPR2 (ActRIIA) and ActRIIB)) recruit, complex and phosphorylate BMP type 1
receptors (e.g., Activin receptor-like kinase 1(ALK1), BMPR-1A (ALK3), BMPR-1B (ALK6),
and ActR-1A (ALK2)), which then phosphorylate receptor-regulated SMADs (R-SMADs).
These R-SMADs form a complex with co-SMADs (e.g., SMAD4) and translocate to the
nucleus where the complex binds to a BMP response element DNA sequence. As a result,
the complex acts as transcriptional regulator of target gene expression including Inhibitor
of DNA Binding 1, 2, and 3 (ID1, ID2, ID3) or cyclin-dependent kinase inhibitor 1A and 2B
(CDKN1A and CDKN2B) by binding to the BMP responsive element (BRE), which plays
a critical role in cell proliferation, apoptosis and migration. In addition to the canonical
SMAD mediated signaling pathway, several non-canonical BMP signaling pathways are
also activated by BMPR2, including p38 Mitogen-Activated Protein Kinase (MAPK), Extra-
cellular Signal-Regulated Kinase (ERK), Phosphoinositide 3-kinase (PI3K)/Akt signaling,
Peroxisome proliferator-activated receptor γ (PPAR γ)/Apolipoprotein E (ApoE)/ High
–density lipoprotein cholesterol (HDLC), Wingless (Wnt), Caveolin, Rho-GTPases, Protein
Kinase C (PKC) signaling and NOTCH signaling [19].
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3. Regulation of BMPR2 Signaling

A tight regulation of BMPR2 signaling is exerted by extracellular agonists and an-
tagonists, such as the inhibitory molecule Noggin, Chordin and gremlin1 [20], which is
upregulated by endothelin1 [21]. Intracellularly, a feedback loop controls BMPR2 signaling
through the activity of inhibitory SMADs (iSMADs) SMAD6 and SMAD7, which inhibit the
phosphorylation of SMAD2 and SMAD3, signaling molecules that function as counterparts
to SMAD 1/5 signaling. SMAD1 degradation is initiated through SMURF1 and SMURF2
targeting, which downregulates further downstream gene expression [22]. BMPR2 down-
stream signaling is further regulated by FK binding protein 12 (FKBP12), which prevents the
activation and phosphorylation of type 1 receptors in absence of a ligand [23] FKBP12 fur-
thermore maintains the balance of rSMAD and iSMAD signaling, by regulating SMAD2/3
activity and recruiting SMAD7 [24].

The availability of BMPR2 receptors at the cell surface is provided by the balance of
receptor expression and degradation, as well as receptor shuttling to the cell surface [25].
While upregulation of BMPR2 receptor expression has recently been explored as a therapeu-
tic strategy in PAH [26], little is known about intracellular signaling molecules that target
BMPR2 expression. We recently explored upstream modulators of BMPR2 expression and
described two novel players in BMPR2 signaling that can increase BMPR2 expression,
namely Fragile Histidine Triad (FHIT) and lymphocyte-specific protein tyrosine kinase
(LCK) [27].

In contrast to the lack of data on the positive regulation of BMPR2 expression, the mech-
anisms of its downregulation are well-described, whereas regulation via micro RNAs (miRs)
and receptor degradation play major roles. miR-20a and miR17 have both been connected
to the downregulation of BMPR2 expression [28,29] whereas the miR17-92 cluster down-
regulated BMPR2 by engaging the inflammatory cytokine IL-6 via STAT3 [30]. Hypoxia
downregulates BMPR2 signaling through miR-21 and miR-125a [31]. miR-302 targets
BMPR2 signaling in PASMCs, thereby reducing their proliferation [32] miR21 is connected
to a feedback inhibition of BMPR2 signaling, as its expression is induced by BMPR2 signal-
ing on the one hand, but also reduces BMPR2 expression in PAECs. Therefore, the lack of its
expression in vivo induces PH, while the use of miR-21 inhibitors in a rodent model of PH
supports vascular regeneration in the hypoxia-remodeled pulmonary vasculature [33,34].
In addition to BMPR2 regulation by micro RNAs, it was recently described that 17-estradiol-
induced binding of the estrogen receptor to the BMPR2 gene promotor, inhibited BMPR2
transcription, a finding that might explain the sex-based differences in PAH pathogene-
sis [35,36]. A reduction of BMPR2 receptor presence on the cell surface can be achieved
by its premature degradation in connection to infection and inflammation. The inflam-
matory cytokine Tumor necrosis factor α (TNFalpha) activates metalloproteases that can
cleave the receptor, and viral particles (i.e., Kaposi sarcoma-associated herpesvirus KSHV)
can ubiquinate BMPR2, leading to its lysosomal degradation [37]. Furthermore, in the
absence of BMPR2, SMAD signaling can shift from rSMAD-dominated signals of BMPR2
to the activation of the rSMADs SMAD2, SMAD3 and SMAD4, which are controlled by
TGFβ [38] activating EC ITGB1 transcription, leading to EndMT, stress fiber production
and actomyosin contractility.

Defective BMPR2 signaling caused by a mutational change in the BMPR2 gene can be
rescued, as shown in unaffected BMPR2 mutant carriers through an effective feedback loop.
When BMPR2 is functionally inactivated or reduced, the expression of receptor antagonists
such as FKBP1A or Gremlin1 is reduced, while, similarly, cellular receptor activators are
being upregulated [39].

4. BMPR2 Deficiency and Pulmonary Hypertension

Despite the high frequency of BMPR2 mutations in PAH patients, the disease pen-
etrance rate is ~20% of the mutation carriers, suggesting that, in addition to BMPR2
mutations, other unidentified genetic, epigenetic, or environmental factors are involved in
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the development of the disease, potentially by decreasing BMPR2 expression and signaling
activity below a specific threshold required to cause disease.

Furthermore, in PAH patients with and without BMPR2 mutations, BMPR2 expression
and signaling activity is impaired in the pulmonary vasculature [40,41], suggesting that
dysfunction of BMPR2 signaling is a key common feature in PAH patients.

Pulmonary endothelial-specific deletion of BMPR2 in mice recapitulates human PAH
features [42]. PAH manifestations are also observed in mice expressing a dominant-negative
BMPR2 gene in pulmonary smooth muscle cells [43,44]. Similarly, haplo-insufficient
BMPR2 mutant rats developed severe dysfunction of the cardio-pulmonary-vascular sys-
tem, such as distal vessel muscularization, loss of microvascular vessels, inflammation,
RV and endothelial dysfunction as well as intrinsic cardiomyocyte dysfunction [45].

Impaired BMPR2 signaling is associated with aberrant vascular cell phenotypes, in-
cluding pulmonary arterial endothelial cells (PAEC) apoptosis, hyperproliferation and
apoptosis resistance of pulmonary arterial smooth muscle cells (PASMC), and inflamma-
tion [3,12]. These findings suggest that targeting and thereby increasing BMPR2 expression
and signaling could be an effective therapeutic approach for treating PAH.

5. Therapeutic Strategies to Modify BMPR2 Signaling

As outlined above, the mechanistic causes of BMPR2 deficiency in PAH can be defined
as either receptor inactivation, decreased receptor expression, or an impairment of the
receptor’s downstream signaling pathway [19]. In recent years, many novel approaches
have emerged that target the BMPR2 pathway and are promising for clinical translation.
Here, we have grouped and classified pharmacological and genetic interventions as follows:
(a) targeting the BMPR2 receptor to increase its activity by pharmacological activators
or gene-directed modulation, (b) increasing receptor availability at the cell surface by
increasing signaling upstream of BMPR2, preventing receptor degradation or increasing the
receptor shuttling to the cell surface, and (c) reconstituting BMPR2 downstream signaling
by targeting interacting signaling pathways.

5.1. Targeting BMPR2 Receptor Activity
5.1.1. Receptor Activation

The activity of the BMPR2 receptor can be pharmaceutically increased by pharmaco-
logical activators, as long as a small quantity of BMPR2 exists and/or the potential of the
BMPR2 protein to be activated is not prevented by the presence of a mutation in the BMPR2
gene. The most direct activation of BMPR2 signaling can be achieved pharmaceutically
through the administration of recombinant BMP-9 ligand which has been proposed as a
therapeutic strategy for use in PAH [26].

5.1.2. Relieving Receptor Inhibition

The inhibition of the BMPR2 receptor can be pharmacological or genetical in nature.
The functional activity of the BMPR2 receptor complex can be repressed by the intracellular
binding of FKBP12 to the intracellular domain of the type 1 transmembrane receptors
activin receptor-like kinase 1 (ALK1), ALK2, and ALK3 and presence of the phosphatase
Calcineurin, which binds to FKBP12. The release of FKBP12 from the receptor complex by
BMPR2 ligands activates downstream (intracellular) BMPR2 signaling [23].

The activation of the receptor complex could therefore be induced by inhibitors of
Calcineurin and compounds that bind FKBP12 themselves and prevent interaction with
the type 1 receptors. Cyclosporine is an inhibitor of Calcineurin that decreased pulmonary
arterial smooth muscle cell proliferation in vivo and apoptosis in vitro, while partially
reversing the severity of experimental PH in monocrotaline treated rats [46]. Rapamycin,
an FKBP12 ligand, has been shown to ameliorate the extend of artery smooth muscle cell
proliferation [47]. The dual inhibition of both FKBP12 and Calcineurin was achieved by
FK506(Tacrolimus) [23], which facilitates the release of the FKBP12/Calcineurin complex
from the type 1 receptor by binding to both molecules, and thereby activating downstream
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canonical and non-canonical BMPR2 signaling even in presence of a BMPR2 mutation.
FK506 was identified as the best BMPR2 activator in a high-throughput luciferase reporter
assay of 3756 FDA-approved drugs using ID1 expression as the assay readout [23], su-
perior to Rapamycin and Cyclosporine. In vitro, FK506 activated downstream BMPR2
signaling via SMAD1/5, MAPK and ID1 signaling in healthy PA endothelial cells (PAECS),
while normalizing endothelial dysfunction in PAH PAECs. FK506 prevented experimental
PH in BMPR2+/- mice and reversed PH in both the rat monocrotaline induced and Sugen-
Hypoxia induced PH, whereby it reduced right ventricular systolic pressure (RVSP), right
ventricular hypertrophy (RVH), pulmonary vascular medial hypertrophy and neointima
formation. FK506 was found to be safe and well tolerated in a Phase 2a proof-of concept
safety and tolerability study [48] and has shown promise as compassionate use in three
end-stage PAH patients [49].

5.1.3. Gene-Directed Modulation of the BMPR2 Receptor

The promise of genetic interventions to correct a specific BMPR2 mutation in familial
and idiopathic PAH patients is on the advent. Gene-directed modulation of the BMPR2
receptor showed promise in experimental PH models. However, the use of CRISPR
modulation as a pharmaceutical strategy, while a powerful tool, is not yet available for
PAH patients.

In 2007: Reynolds et al. used an adenoviral vector for the targeted delivery of the
BMPR2 gene to prevent BMPR2 inhibition in a rat model of hypoxia-induced PH. This treat-
ment strategy significantly reduced the RVSP, RVH, and distal pulmonary vasculature mus-
cularization [50]. However, the concern about a neutralizing immune response mounted
after adenoviral transduction for horizontal gene transfer posed a concern for the efficacy
of the method [51]. Building on these promising results, Harper et al. [52] improved
established experimental PH in Monocrotaline (MCT) induced PH in rats using genetic
modifications. Endothelial-like progenitor cells (ELPC) from the femural bone-marrow
of rats were transduced with a BMPR2 adenoviral vector (AdCMVBMPR2myc) and were
injected into the tail-vein of experimental PH rats. While the injected cells were short lived
in the lungs (<24 h), the injected animals showed an immediate increase in BMPR2 in their
lungs, which was thought to be exosome mediated, as well as an improvement in muscu-
larized vessels over time [52]. Another avenue to overcome the obstacle of a neutralizing
immune response would be the use of Adeno-associated virus (AAV) for gene delivery,
which elicits only a neglectable immune response [53,54]. The use of the adenovirus for
BMPR2 AAV1.SERCA2a reduced RV hypertrophy, RVSP, mPAP and vascular remodeling,
thereby overall reducing experimental PH [55]. Currently, this strategy is investigated in
translational studies for heart failure and PH [56]. The effect of the correction of a BMPR2
mutation by CRISPR was investigated by Gu et al. [39], where induced pluripotent stem
cell-derived endothelial cells (iPSC-ECs) from different individuals amongst three single
families were examined for their characteristics. Endothelial cells derived from FPAH
patients were defective in cell survival, adhesion, migration, tube formation and BMPR2
signaling, whilst unaffected mutation carriers as well as CRISPR corrected iPSC-ECs were
not.

As the presence of a BMPR2 mutation can reduce not only the functionality, but also
the expression of the BMPR2 receptor, the induction of readthrough of nonsense mutations
by ataluren has been employed to increase BMPR2 signaling in several lung and blood cell
types [57]. Similarly, gentamycin was used to treat premature stop codons and readthrough
in PAH [58,59].

5.2. Modulating the Availability of the BMPR2 Receptor at the Cell Surface

The increased availability of the BMPR2 receptor at the cell surface is a potent strategy
to increase downstream BMPR2 signaling. We have shown that BMPR2 signaling can
be modulated by upstream modifiers that we have targeted by repurposed pharmaceuti-
cals [27]. In an siRNA high-throughput screen of over 20,000 genes of potential BMPR2
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modulators, the tumor suppressor gene Fragile Histidine Triad (FHIT) was identified and
thereafter pharmaceutically targeted by the repurposed drug Enzastaurin, which reversed
established experimental PH in Sugen Hypoxia rats. Despite the established pharmacologi-
cal role of Enzastaurin in PKC-inhibition, the authors showed that the action of Enzastaurin
on BMPR2 signaling may likely be an unspecific effect of the drug, as other PKC inhibitors
were unable to achieve the same effect on BMPR2 gene expression and PAEC function.

Similarly, treatment with the elastase-specific inhibitor elafin stabilized the BMPR2
receptor at the membrane in animal PH models by enhancing its interaction with Caveolin-1
and thus reversed established PH in Sugen-hypoxia rats and patient PAECs [60].

Likewise, the prevention of receptor degradation at the cell surface by chloroquine
and hydro-chloroquine by inhibition of autophagy and lysosomal degradation prevented
the development of experimental PH [61,62]. BMPR2 receptor degradation and receptor
shedding is also targeted by the TNF-α antagonist Etanercept [37], which prevented and
reversed experimental PH in rats [63] and endotoxic pigs [64].

Increasing BMPR2 shuttling to the membrane using the chaperone 4-phenylbutyric
acid (4PBA) [65] led to a mild improvement in BMPR2 downstream signaling in patient
fibroblasts that contained a specific inactivating mutation C118W, which served as a proof
of concept for the applicability of this method in patients and an important step towards
precision medicine in PAH [66].

5.3. Increasing Downstream Gene Transcription by Targeting BMPR2 Signaling or Interacting
Pathways

Classical activation of BMPR2 signaling is achieved through ligand binding to BMPR2
receptor complexes. BMPR2/Alk1 heterocomplexes are mainly targeted by BMP9 [26],
whereas other BMP ligands, such as BMP2 and BMP4, can activate multiple BMPR2 hetero-
complexes (i.e., BMPR2/BMPR1A-B, BMPR2/Alk3), resulting in a higher probability for
off-target effects in gene expression of bone formation signaling [67]. In PAECs, the admin-
istration of BMP9 prevents EC apoptosis consistent with the desired therapeutic outcome
of preventing early vessel loss. Injection of the BMP9 ligand in mice and rats reversed estab-
lished experimental PH (MCT-induced and SuHx) even in the presence of a heterozygous,
inactivating BMPR2 mutation.

A different approach would be to interfere with pathways or molecules that in-
hibit the BMPR2 receptor or its pathway such as TGF-β signaling or the binding protein
FKBP12. FKBP12 can be pharmaceutically targeted by FK506 and also FKVP, a non-
immunosuppressive FK506 analog, which both activate BMPR2 signaling by FKBP12
antagonism [23,68]. The drug etanercept likewise increased BMPR2 signaling by inhibiting
the BMP inhibitory pathway TGF-β, an effect that can also be observed with other TGF-β
inhibitory substances, such as Paclitaxel [69].

Lastly, many pathways converge to induce BMPR2 signaling, opening the pharmaceu-
tical potential of combined use of BMPR2-potentiating medication to achieve the synergistic,
or additive activation of BMPR2 signaling. As a proof-of-concept, FK506 and Enzastaurin
showed additive effects on BMPR2 signaling activation in vitro [27]. Moreover, the loss
of BMPR2 leads to changes in several of its downstream signaling pathways, such as
p38/MAPK/ERK [70], PI3K/Akt [71] and Wnt [72] signaling, which have thus also been
investigated as therapeutic targets at a molecular level. Exploring the potential additive
effects of targeting the BMPR2 receptor, as well as its downstream signaling, may be of
therapeutical value.

6. Conclusions

PAH is a progressive and ultimately fatal disease, while current treatments are insuffi-
cient to substantially prolong patient survival. Targeting BMPR2 signaling and interacting
signaling pathways has emerged as a promising approach to identify disease modifying
therapies that address fundamental, genetically based molecular pathways important
in PAH pathogenesis. Additive and synergistic effects of a combination treatment with
several BMPR2 enhancing drugs have been shown to increase the therapeutic effect. How-
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ever, the off-target effects of existing BMPR2-targeting pharmaceuticals hinder the precise
assessment of the full potential of BMPR2 targeting in PAH therapy.

In summary, the use of BMPR2 targeted treatments in addition to conventional va-
sodilatory drugs in PAH is a promising avenue to explore in the search for novel PAH
treatments, but the development of novel compounds to target BMPR2 signaling with
increased specificity is of utmost importance.
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