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Introduction: There is an urgent need for biomarkers to help predict prognosis and guide management of esophageal
cancer. This review identifies, evaluates and meta-analyses the evidence for reported somatic and germline DNA
sequence biomarkers of outcome and stage.
Methods: A systematic review was carried out of the PubMed, EMBASE and Cochrane databases (20 August 2014), in
conjunction with the ASCO Level of Evidence scale for biomarker research. Meta-analyses were carried out for all
reported markers associated with outcome measures by more than one study.
Results: Four thousand and four articles were identified, 762 retrieved and 182 studies included. There were 65 reported
markers of survival or recurrence 12 (18.5%) were excluded due to multiple comparisons. Following meta-analysis, signifi-
cant associations were seen for six tumor variants (mutant TP53 and PIK3CA, copy number gain of ERBB2/HER2,
CCND1 and FGF3, and chromosomal instability/ploidy) and seven germline polymorphisms: ERCC1 rs3212986, ERCC2
rs1799793, TP53 rs1042522, MDM2 rs2279744, TYMS rs34743033, ABCB1 rs1045642 and MTHFR rs1801133.
Twelve germline markers of treatment complications were reported; 10 were excluded. Two tumor and 15 germline
markers (11 excluded) of chemo (radio)therapy response were reported. Following meta-analysis, associations were
demonstrated for mutant TP53, ERCC1 rs11615 and XRCC1 rs25487. There were 41 tumor/germline reported markers
of stage; 27 (65.9%) were excluded.
Conclusions: Numerous DNA markers of outcome and stage have been reported, yet few are backed by high-quality
evidence. Despite this, a small number of variants appear reliable. These merit evaluation in prospective trials, within the
context of high-throughput sequencing and gene expression.
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introduction
Esophageal and gastroesophageal junctional (GEJ) carcinoma
account for 3.9% of cancer diagnoses yet 5.9% of cancer deaths
[1]. Worldwide, squamous cell carcinoma (SCC) predominates
but, in Western countries, incidence of adenocarcinoma is in-
creasing rapidly [2, 3]. Treatment with curative intent involves
either resection with or without neoadjuvant therapy, or defini-
tive chemoradiotherapy with or without salvage resection. More
than 5000 patients undergo esophagectomy in the United States
and the UK every year, with 85% receiving neoadjuvant therapy
[4, 5]. However, the majority experience complications, operative
mortality remains relatively high and quality of life may be

significantly impaired [6–8]. Neoadjuvant, adjuvant and defini-
tive chemo- and/or radiotherapy also carry risk [9], and while the
absolute survival benefit of neoadjuvant therapy ranges from 7%
to 13% at 2 years [9], 50%–60% of tumors are resistant [10].
Prognosis overall remains bleak; even following ostensibly cur-

ative treatment 5-year survival is just 35%–45% [11–13]. This
highlights limitations in our biological understanding, and our
urgent need for biomarkers to predict prognosis, recurrence and
sensitivity to therapy, and ultimately better personalize care. Most
clinical experience with esophageal biomarkers to date has largely
involved protein expression with or without sequence changes;
while such markers are used to select patients for early phase
trials, the sole tumor marker in routine use is ERBB2/HER2
status [14, 15]. However, rapid advances in high-throughput
next-generation sequencing (NGS) have highlighted the poten-
tial role of somatic DNA sequence markers. These may function
as independent markers, serve to refine or explore existing
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expression markers, or constitute novel therapeutic targets
[16–18]. Similarly, advances in custom and genome-wide single
nucleotide polymorphism (SNP) arrays have emphasized the
role of germline variants in modulating cancer and treatment
outcome [19, 20].
We therefore undertook the first systematic review of DNA

sequence biomarkers of esophageal cancer, to systematically
identify and evaluate all candidate somatic and germline DNA
sequence markers of outcome (survival, recurrence, therapy re-
sponse and treatment complications) and stage. We then per-
formed meta-analysis for all markers with a nominally statistical
association in at least one study.

methods

inclusion criteria
Studies eligible were those testing association between a DNA
sequence marker (germline or somatic) and outcome (clinical,
radiological or pathological) or stage of esophageal/GEJ cancer.
Markers included germline SNPs, tumor mutations, copy
number variants (CNVs), loss of heterozygosity (LOH), micro-
satellite instability (MSI) and chromosomal instability (CIN;
alterations in ploidy). Clinical outcomes comprised survival
(any measure), recurrence, disease progression and treatment
complications. Radiological outcomes comprised response to
therapy. Histopathological outcomes comprised tumor response
and incomplete resection. Stage comprised radiological TNM
staging and pathological tumor grading [21].

exclusion criteria
Studies using cell lines or expression data were excluded unless
discrete tumor or DNA-specific data could be extracted. Non-
English articles were excluded.

literature search
A search was performed on 20 August 2014 of the PubMed,
EMBASE and Cochrane databases, in accordance with MOOSE
(Meta-analysis Of Observational Studies in Epidemiology) and
PRISMA guidelines [22]. The following term was used: (esopha-
geal OR esophagus OR gastroesophageal) AND (cancer OR car-
cinoma or adenocarcinoma OR SCC) AND (genomic OR genetic
OR genome OR pharmacogenetic OR pharmacogenomic OR
amplification OR copy OR mutation OR polymorphism OR
polymorphic OR variant OR deletion OR insertion OR locus OR
loci OR allele) AND (outcome OR prognosis OR survival OR re-
sponse OR stage OR surgery OR chemotherapy OR radiotherapy
OR marker OR biomarker OR complication). The references
cited by retrieved articles were also assessed for relevant articles.

study data
Data extracted were: methodology; the variant(s) and gene(s)
assessed; outcome measures and population. Extraction was
carried out independently by two authors (JMF and IT). Gene
names were standardized (HUGO Gene Nomenclature Com-
mittee) [23]. Variants were mapped to reference SNP (rs) identi-
fication numbers (US National Library of Medicine dbSNP data-
base; http://www.ncbi.nlm.nih.gov/snp) when not provided by

searching referenced methodology, in vitro polymerase chain
reaction (http://genome.ucsc.edu) with specialized SNP flank
BLAST® (Basic Local Alignment Search Tool; http://blast.ncbi.
nlm.nih.gov), or New England Biocutter v2.0 (NEBcutter; http://
tools.neb.com/NEBcutter2). Gene function was classified using
the US National Library of Medicine Gene Database (http://
www.ncbi.nlm.nih.gov/gene). For all reported associations, it
was determined whether statistical significance persisted follow-
ing correction for multiple comparisons (Bonferroni or false dis-
covery rate correction), or multivariate analysis of all variables
including genotypes. Were none made, post hoc Bonferroni cor-
rection was carried out [24]. For genome-wide association
studies, significance was assumed at P < 5 × 10−8. For reported
markers assessed by a single study, for which P was <0.05 but
>corrected α, effect metrics were calculated but the marker
excluded and presented in supplementary Tables S1 and S2,
available at Annals of Oncology online. Those assessed by more
than one study underwent meta-analysis irrespective.

evidence quality
Quality was appraised using the revised American Society of
Clinical Oncology Level of Evidence (LOE) scale for biomarker
research [25].

meta-analysis
Meta-analysis was carried out for all markers with a statistically
significant association (uncorrected P < 0.05) reported by at
least one study. For SNPs, analysis was carried out using the
major common allele as reference, using genotype permutations
shared by all studies. In the case of A/T and C/G substitutions,
the minor variant was confirmed from study allele frequencies.
Where possible, separate analyses were carried out for major
methodological differences such as adjusted/unadjusted hazard
ratios (HRs), genotyping methods, treatment, cell type and eth-
nicity (as determined by the International HapMap
Consortium) [26]. Natural logarithms of HR, odds ratios (ORs)
and standard errors (SEs) were extracted. In studies not present-
ing these, these were estimated using the methods of Parmar, or
extracted from magnified Kaplan–Meier survival curves: HR
and SE were estimated at constant time points; censoring was
assumed to be constant and starting from the minimal follow-
up period, with censored patients allocated to the appropriate
time interval [27]. In six meta-analyzed studies (all nonsignifi-
cant results) [28–33], it was not possible to extrapolate statistics
for all variants; an lnHR of 0 (a HR of 1) and SE of the most
closely matched study (regarding cell type, size and method-
ology) were used to minimize selection bias. When not pre-
sented, ORs were calculated from available data. Meta-analysis
was carried out using RevMan v5.2 (Copenhagen: the Nordic
Cochrane Centre, The Cochrane Collaboration).

study heterogeneity and bias
Heterogeneity was quantified using I2 and χ2 estimates; for
moderate heterogeneity (I2≥ 50%) random rather than fixed-
effects models were used. Heterogeneity and bias were also
assessed by funnel plot asymmetry; [34] visually for all analyses,
and statistically for analyses involving at least 10 studies [34, 35]
using Begg’s and Egger’s tests. Statistical significance was
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assumed at P < 0.05. Following consideration of alternative
causes, probable publication bias was corrected using the ‘trim
and fill’ method [36]. All other analysis was carried out using R
(v3.0.2) [37]. Sensitivity analyses were carried out for all ana-
lyses including five studies or more, whereby studies were
omitted one by one.

results

study characteristics
Four thousand and four articles were identified, 762 retrieved
for evaluation, 580 excluded (Figure 1) and 184 included (sup-
plementary Tables S3–S25, available at Annals of Oncology
online), published between 1989 and 2014. Seventy-three
assessed markers of clinical outcome, 80 clinical outcome and
stage and 29 stage alone. Survival measures were overall survival
(OS; n = 133), disease-free survival (DFS; n = 20), recurrence (n
= 19), progression-free survival (PFS; n = 4) and disease-specific

survival (DSS; n = 4). Twenty nine studies assessed response to
therapy (chemo ± radiotherapy, or biological). Eleven assessed
treatment complications. Treatment intent was curative (n = 156),
palliative (n = 5), mixed (n = 21) and unspecified in 1. Curative
modalities were resection alone (n = 111), resection ± neo-
adjuvant (n = 33) or adjuvant (n = 2) therapy, or definitive che-
moradiotherapy (n = 9). All chemotherapy regimens involved
platinum agents with or without 5-fluorouracil, except three
(bleomycin, gefitinib, irinotecan). One hundred and seventy-six
studies were candidate based, and 6 genome-wide (1 SNP, 5
CNV). One hundred and seventeen studies assessed tumor var-
iants, 64 germline and 1 both. Cell types assessed were SCC (n =
117), adenocarcinoma (AC) (n = 40), both (n = 3) and unspeci-
fied (n = 22).

methodological quality
LOE was B for five studies (2.75%), C for 104 (57.1%) and D for
73 (40.1%). Median number of subjects was 90 (range 10–2932),
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Figure 1. PRISMA flow diagram.
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although 48 studies included fewer than 50. Forty-six (25.3%)
studies were prospective; 135 (74.7%) were retrospective;
1 (0.55%) had both components. Multivariate adjustment of
effect sizes was carried out by 57 studies (31.3%).

molecular quality
Just 37 (56.3%) of 65 studies assessing germline variants assessed
Hardy–Weinberg equilibrium; 59 (90.8%) reported genotyping
success rate (or provided data allowing its calculation).

markers of survival and recurrence
There were 65 reported markers of survival or recurrence: 24
tumor (Table 1; 3 mutations, 16 CNV, 2 LOH regions, 1 telo-
mere length ratio, CIN, heterogeneous ploidy) and 40 germline
polymorphisms (Table 2).

tumor mutations
Three mutant genes were reported to be associated with
outcome: TP53, PIK3CA and NRF2 (LOE IV). TP53 (n = 21)
and PIK3CA (n = 3, SCC) underwent meta-analysis.
TP53 status was variably defined and genotyped, although all

studies assessed exons 5–8 as a minimum, by single-strand
conformation polymorphism (SSCP) analysis with or without
sequencing (n = 13), or Sanger sequencing alone (n = 8).
Following correction for likely publication bias, a significant
negative survival association was demonstrated for mutant TP53
tumors: HR 1.27 (1.01–1.59; P = 0.04; n = 21 studies; supple-
mentary Figures S1 and S2, available at Annals of Oncology
online). Significant associations were demonstrated on subgroup
meta-analysis of: genotyping technique (SCCP), AC and SCC
cell types, and treatment (resection only). Directions of effect
were consistent but nonsignificant for adjusted HR alone (n = 6)
and use of neoadjuvant chemoradiotherapy (n = 7).
An association with DFS was demonstrated for mutant

PIK3CA SCC tumors [HR 0.42 (0.21–0.85); n = 2; P = 0.02], but
not OS.

tumor copy number variants
Sixteen tumor CNVs had previously reported associations with
prognosis; three were excluded due multiple comparisons (sup-
plementary Table S1, available at Annals of Oncology online).
For the remaining 13, LOE was II (1), III (7) and IV (5). Four
markers underwent meta-analysis: associations with worse sur-
vival were demonstrated for gains in ERBB2 (HER2; LOE III),
CCND1 (LOE III) and FGF3 (LOE IV), but not EGFR (LOE II).
For all four, there was heterogeneity regarding definition of
CNV (absolute copy numbers, or ratio to normal), and genotyp-
ing technique [fluorescent/silver in situ hybridization (F/SISH),
quantitative (q)PCR and slot/southern blot].
ERBB2/HER2 analysis was restricted to 11 studies performing

ISH; 3 (using qPCR [28], or slot [75]/southern [74] blot) were
excluded. Worse OS was demonstrated for ERBB2/HER2 gain
overall: HR 1.63 (1.20–2.21; P = 2 × 10−4, n = 11). Significance
persisted for adjusted HR [2.32 (1.64–2.58); P < 1 × 10−5; n = 3],
and cell type (SCC; AC P = 0.06). Treatment regimens were re-
section alone for all studies, except one [61] including mixed
regimens involving the c-MET-GFR inhibitor Crizotinib.

Two meta-analyses were carried out for CCND1: studies using
qPCR (n = 4), and slot blot/FISH (n = 2). Worse OS was demon-
strated for qPCR [HR = 2.09 (1.27–3.42); P = 0.004], with a con-
cordant nonsignificant trend for FISH/blot. All four studies
assessing FGF3 used slot/southern blot; an association with
worse OS was demonstrated [HR 1.83 (1.18–2.83); P = 0.006].
EGFR meta-analysis was carried out for FISH and blot techni-
ques (excluding two studies using anti-EGFR therapy [62, 63],
and one performing qPCR) [28]. No associations were demon-
strated.

loss of heterozygosity
LOH (six markers in total) was associated with outcome by four
studies; one study (6p and 13q) was excluded due to multiple
comparisons; [132] for another (2p, 3p and 12p), while 3-year
survival rates were significant the extrapolated HR was not [86].
1q22–23 LOH was associated with worse OS in one study (LOE
IV).

telomere length ratio
One study reported worse OS with a tumor : normal telomere
length >1.17 (LOE III).

genomic instability
CIN was assessed by six studies. Following exclusion of one
study including intratumoral heterogeneous ploidy [93] an asso-
ciation with worse OS was demonstrated [HR 1.63 (1.25–2.11);
n = 4; P = 0.2 × 10−4]. One study assessed intratumoral hetero-
geneity alone, reporting better survival than with homogeneity
[94]. There were no associations between MSI and survival.

germline polymorphisms
Twenty-nine reported associations were identified (following
exclusion of 12 due to multiple comparisons) [107, 109, 112,
133]. Cumulative LOE was II (n = 3), III (n = 22) and IV (n = 4).
Fifteen variants underwent meta-analysis (Table 2). Significant
associations were demonstrated for six SNPs: ERCC1 rs3212986
(cisplatin treatment; LOE II; Caucasian ethnicity), ERCC2
rs1799793 (cisplatin; Caucasian) TP53 rs1042522 (Caucasian),
MDM2 rs2279744 (Caucasian), TYMS rs34743033 (Japanese;
LOE III) ABCB1 rs1045642 (Caucasian and Japanese; LOE IV).
An association was demonstrated for VEGFA rs2010963, but
combining two studies with East Asian ethnicities (Taiwanese
and Japanese). One association with recurrence was demon-
strated:MTHFR rs1801133 (Caucasian; LOE III).

markers of treatment complications
Twelve reported germline associations (8 studies) were identi-
fied; 10 were excluded due to multiple comparisons. One
marker (TNFA rs1800629) [134] underwent meta-analysis
(nonsignificant). The remaining variant, ACE rs4646994 (LOE
III), was associated with postoperative pulmonary complications
by one study (Table 3).

markers of response to chemo(radio)therapy
Two tumor variants (mutant TP53 and CIN) and 15 germline
polymorphisms were reported to be associated with clinical or
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Table 1. Reported tumor markers (mutations, copy number variants, and chromosomal instability) associated with survival and recurrence following treatment of esophageal cancer

LOE Variant Gene / function Association –minor variant Association – wild type No association Cell

type

Population LOE Meta-HR [effect variant] Chi I2 N P

Mutations

III Exon mutant TP53

Apoptotic / DNA repair

regulator

OS and DFS Casson 2003 [38]

OSA – Schneider 2000 [39]

OS and DFS–Madani 2010 [40]

OSA – Yamasaki 2010 [41]

OSA – Kunisaki 2006

OS – Kobayashi 1999 [42]

OS –Uchino 1996 [29]

OS and DFS – Ribeiro 1998 [43]

OS and DSS – Kandioler 2014 [44]

OS – Puhringer 2006 [45]

OS – Soontrapornchai 1999 [46]

OS –Makino 2010 [47]

OS – Shimada 1997 [48]

OS – Egashira 2011 [49]

OS – Ito 2001 [50]

OS – Lam 1997 [51]

OS – Shibagaki 1995 [52]

OS: Goan 2005 [53]

OS: Cao 2004 [54]

OSA – Gibson 2003 [55]

OSA – Coggi 1997 [56]

AC

AC

AC

AC

AC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

US

US

US

US

Res

Res

Res

Res + /−NAC(RT) (CF)
Res

Mixed

Res + NAC

Res+ NAC

Res + NACRT (CF)

Res

Res

Res

DCRT

Res

Res

Res

Res

Res + NACRT

Res

Res + NACRT (CF + IFN)

Res + NAC (CF)

C

C

C

B

D

D

C

D

D

D

C

C

C

D

C

D

C

C

D

D

C

OS(A)PB: 1.27 (1.01–1.59)

OSA PB: 1.19 (0.63–2.27)

AC(A): 1.99 (1.44–2.81)

SCC(APB: 1.47 (1.24–1.73)

US(A)PB: 0.77 (0.41–1.47)

DFS(A): 2.67 (1.38–5.15)

Res OS(A)PB: 1.35 (1.04–1.76)

NAC/RA(PB): 1.23 (0.81–1.87)

SSCP analysis

OS(A)PB: 1.56 (1.33–1.82)

Direct sequencing only

OS(A)PB: 0.96 (0.62–1.46)

SCCP band only

68.1

34.5

2.68

22.7

21.3

7.44

27.0

32.5

27.8

28.3

62

80

0

43

72

73

56

66

44

65

21

6

5

11

5

3

13

7

13

8

0.04

0.590

< 0.001

< 0.001

0.440

0.003

0.030

0.320

< 0.001

0.830

IV Exon 9/20

mutation

PIK3CA

Cell signalling kinase

OSA and DFSA – Shigaki 2013

[58]

Rec – Shigaki 2013

OSA and RecEx –Wang 2014

OSEx and DFSEx – Hou 2014

SCC

SCC

SCC

Res + /−NACRT (CF + /−tax)

Res + /−NACRT
Res

D

D

C

OS(A): 0.63 (0.26–1.56)

DFS(A): 0.42 (0.21–0.85)

RecEx: 0.64 (0.23–1.75)

6.13

0.26

2.81

67

0

64

3

2

2

0.320

0.020

0.390

IV Exon mutation NRF2/BIRC2

Transcription factor

OS and Rec – Shibata 2011 SCC Resection + NACRT (F) (Japan) D OSEx: 3.54 (1.60–7.88)

Rec—NP

NA NA 1 0.005

0.046

Copy number variants

II Gain EGFR

Epidermal growth factor

receptor

OS –Marx 2010 [59]

OS – Kitagawa 1996 [60]

OS – Lennerz 2011 [61]

OSA – Luber 2011 [62]

OS –Miller 2003 [28]

OS – Janmaat 2006 [63]

OS Rec – Chikuba 1995 [30]

OS –Itakura 1994 [31]

OS – Sunpaweravong 2005 [64]

AC

SCC

AC

SCC

SCC

SCC

US

AC

SCC

Res

Res

Res

Palliative gefitinib

Res + ACRT (C)

Res

Mixed

PC (OLF + cetuximab)

Res

D

D

C

B

D

D

D

B

D

Gain assessed by FISH/CISH

OS: 2.43 (0.75–7.84)

Gain assessed by slot/Southern

blot

OS: 1.63 (0.63–4.22)

Excluding Miller 2003 (qPCR)

23.9

18.1

92

89

3

3

0.140

0.320

III Gain ERBB2/HER2

Epidermal growth factor

receptor

OS – Prins 2013 [65]

DFSA – Rauser 2007 [66]

OSA – Brien 2000 [67]

DSSA, OSA – Yoon 2012 [71]

OSA – Rauser 2007 [66]

OS – Thompson 2011 [72]

OS –Miller 2003 [28]

OS – König 2013 [73]

AC

AC

AC

AC

AC

AC

Both

Res

Res

Res

Res

Res

Res

D

C

D

D

D

C

D

OS(A): 1.63 (1.20–2.21)

OSA: 2.31 (1.64–3.24)

OS(A) (AC): 1.59 (0.99–2.56)

OS(A) (SCC): 1.92 (1.12–3.29)

DFSA: 2.1 (1.06–4.26)

Gain assessed via

31.2

0.72

15.4

27.7

NA

62

0

68

82

NA

11

3

6

5

1

0.002

< 0.001

0.060

0.020

0.033
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OS – Zhan 2012 [68]

OS – Sato-Kuwabara 2009 [69]

OSA –Mimura 2005 [70]

OS – Sunpawerayong 2005 [64]

OS – Suzuki 1997 [74]

OS and DSS Ikeda 1996 [75]

OS – Lennerz 2011 [61]

SCC

SCC

SCC

SCC

SCC

SCC

US

Res

Res

Res

Res

Ress

Mixed

D

D

D

C

D

D

D

FISH/SISH/IHC; Miller 2003,

Ideka 1996, Suzuki 1997

excluded

III Gain ERBB2/HER2

Epidermal growth factor

receptor

DSSA, OSA – Yoon 2012 [71]

(heterogeneous amplification)

AC Res C OS: 2.02 (1.09–3.74)

DSS: 2.04 (1.09–3.79)

NA

NA

NA

NA

1

1

0.026

0.025

III Gain CCND1

Cell cycle kinase

OSA: Wang 2012b [76]

OSA –Miller 2003 [28]

OSA – Takeshita 2010 [77]

OS – Shimada 1997 [48]

OS – Shinozaki 1996 [78]

RecA – Komatsu 2014 [79] (ctDNA)

OS–Sunpawerayong 2005 [64]

OS – Gramlich 1994 [80]

SCC

AC

SCC

SCC

SCC

SCC

SCC

SCC

Res

Res

Res

Res

Res

Res

Res

Res

C

C

C

D

C

D

D

C

Gain assessed by qPCR only

OSA: 2.09 (1.27–3.42)

Gain assessed by FISH/IHC

OSA: 1.54 (0.93–2.57)

Gain assessed by slot blot

OS: 4.29 (2.47–7.45)

3.17

3.94

NA

5

75

NA

4

2

1

0.004

0.100

< 0.001

III Gain 1p36.32 OSA – Carneiro 2008 [81] SCC Res C OSA: HR 19.6 (2.5–153.9) NA NA 1 0.005

III Gain 19p13.3 OSA – Carneiro 2008 [81] SCC Res C OSA: HR 7.0 (1.5–31.9) NA NA 1 0.011

III Gain MDM2

Ubiquitin ligase

OS – Shibagaki 1995 [52] SCC Res C OS: HREx 3.82 (1.81–8.07) NA NA 1 5.3x10−3

IV Gain FGF3/INT2

Fibroblast growth factor OS – Ikeda 1996 [75]

OS –Mori 1992 [82]

OS – Shimada 1997 [48]

OS – Suzuki 1997 [74]

AC

SCC

SCC

SCC

Res

Res

Res

Res

D

D

D

D

OS: PBHR 1.83 (1.18–2.83)

PB – Corrected for Ikeda 1996

5.65 29 4 0.006

IV Gain FGF4/HST1

Fibroblast growth factor

OS – Chikuba 1995 [30] Rec – Chikuba 1995 [30] SCC

SCC

Res + ACRT (C)

Res

D

D

Median survival different but:

OS: HREx 1.4 (0.86–2.30)

Rec: HREx 1.09 (0.659–1.80)

NA NA 1 >0.05

IV Gain TERC

Telomerase

OS –Wang 2013 [83] SCC Res D OS: HREx 7.87 (3.32–18.7) NA NA 1 0.010

IV Gain MET

Growth factor

OS – Lennerz 2011 [61] US Mixed D OS: HREx 3.72 (2.56–5.39) NA NA 1 < 0.001

IV Gain CPT1A

Mitochondrial oxidation

OSA – Shi 2011 [84] SCC Res D OSA: 4.39 (1.34–14.14) NA NA 1 0.015

Telomere length

III Telomere length ratio (>1.17) OSA – Gertler 2008 [85] AC Res C OS: HRA 3.40 (1.3–8.9) NA NA 1 < 0.02

LOH

III LOH at one of 2p, 3p, 17p OS – Ikeguchi 1999 [86] SCC Res C 2 loci: OS (3yr) 48% versus

75%

HREx: 1.81 (0.53–6.25)

NA NA 1 0.048

> 0.05

IV LOH 1q21-23 OS –Maru 2009 [87] AC Res D HREx: 3.90 (1.13–13.5) NA NA 1 0.030
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pathological response to chemo ± radiotherapy (Table 3); 11
polymorphisms were excluded due to multiple comparisons).
Mutant TP53 was assessed by six studies; three for pathologic-

al and three for clinical response. A lower OR of pathological re-
sponse was demonstrated [OR 0.24 (0.06–0.95), n = 3, P = 0.04];
effect direction for clinical response was concordant but non-
significant [OR 0.43 (0.08–2.24); P = 0.32].
Following meta-analysis, two polymorphisms were associated

with a major pathological response to platinum-based chemo/
radiotherapy in Caucasians: wild-type XRCC1 rs25487 [GG
genotype, LOE III; OR 1.91 (1.30–2.81), n = 3, P = 0.001], and
variant ERCC1 rs11615 [TT/CT; OR 4.57 (3.01–6.94); n = 3;
P < 1 × 10−5]. The AA variant of ERCC1 rs3212986 (LOE III)
was associated with radiological response to palliative cisplatin-
based chemotherapy in one study (Chinese ethnicity), but not
major pathological response to neoadjuvant chemotherapy in
two (Caucasian).

markers of stage
Twenty-four tumor markers were reported: 2 mutations, 12
CNV, 7 LOH, 2 MSI and CIN; 15 were excluded.

tumor mutations
Following exclusion of PIK3CA, the sole tumor mutation with a
reported association was TP53 (n = 19; LOE III; Table 4).
Following meta-analysis, mutant TP53 tumors were associated
with more advanced T (T3/T4) and N (≥N1) stages, but not
overall TNM stage (III/IV), grade (G3/4) or positive resection
margin (R1).

copy number variants
Twelve tumor CNVs were identified; 8 were excluded due to
multiple comparisons (Table 4). Meta-analysis was possible for
two markers, with one significant association demonstrated:
EGFR (T1/2 stage; LOE IV).

loss of heterozygosity
Seven LOH variants were identified; five were excluded
(Table 4). Meta-analysis was possible for one marker. A signifi-
cant association was demonstrated for LOH 13p and ≥N1 stage
(Table 4).

genomic instability
Following meta-analysis CIN (LOE III; Table 4) was associated
with overall stage [III/IV: OR 2.68 (1.10–6.54); P = 0.03; n = 2
studies] and nodal stage [OR 2.18 (1.06–4.47); P = 0.03; n = 7
studies], but not T stage or grade. MSI (using the 5 Bethesda
markers, and 10 at 17q24–25) was associated with more
advanced stage; another measure was excluded.

germline polymorphisms
Seventeen polymorphisms were identified; 12 were excluded due
to multiple comparisons. One marker (GNAS1 rs7172) under-
went meta-analysis, without significance.
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Table 2. Reported germline markers (polymorphisms) associated with survival and recurrence following treatment of esophageal cancer

LOE SNP

(major/minor

allele)

Gene /

function

Association–

minor variant

Association–

wild type

Non-significant Cell

type

Population Meta-HR [variant allele / genotype] versus wild-type’

[Ethnicity]

Chi I2 N P

II rs3212986

(C/A)

ERCC1

DNA NER

OSA–Bradbury 2009b [95]

DFSA–Wang 2011 [96]

OSA–Rumiato 2013 [97]

OS–Warnecke 2009 [33]

US

SCC

US

US

Res + NAC (CF)

PC (CF)

Res +/−NAC (CF)

Res + NACRT (CF)

B

C

C

C

OS(A/Ex): 0.63 (0.42–0.93)

[TT/CT, cisplatin, Caucasian]

DFS(A): 1.98 (1.19–3.03)

[AA/CA + cis,,Chinese]

4.12

NA

51

NA

3

1

0.02

0.001

II rs1799793

(G/A)

ERCC2

DNA NER

OSA–Bradbury 2009b [95]

OS and Rec – Ott 2011 [98]

OS–Rumiato 2013 [97]

US

AC

US

Res + NAC (CF)

Res + NAC

(C/OF +/−tax)
Res +/−NAC (CF)

B

B

C

OS(A/Ex): 0.71 (0.54–0.94)

[GA/AA; cisplatin; Caucasian]

DFS: 0.33 (0.20–0.07) [AA]

3.88

NA

48

NA

3

1

0.020

0.002

II rs13181

(T/G)

ERCC2

DNA NER

OSA and DFSA–Bradbury

2009b [95] OS and Rec - Ott 2011 [98]

OS–Rumiato 2013 [97]

OSA, RecA–Wu 2006

US

AC

US

US

Res + NAC (CF)

Res + NAC

(C/OF +/−tax)
Res +/−NAC (CF)

Res + NACRT

(CF +/−tax)

B

B

C

D

OS(A/Ex): 0.82 (0.65–1.05)

[TG/GG, Caucasian]

DFSA: 0.32 (0.20–0.60)

RecA: 0.94 (0.30–2.81)

5.14

NA

0.03

42

NA

0

4

1

2

0.110

0.002

0.91

III rs11614913 MIR196A2

Micro RNA

OSA–Wu 2014 [99]

OSA–Yang 2014b [100]

SCC

SCC

PC

Mixed

C

C

OSA: 1.26 (0.72–2.21)

[TT; Chinese/Taiwanese]

PFSA: 1.01 (0.54–1.88)

2.17

NA

54

NA

2

1

0.420

0.972

III CA-SSR-1

(DNR)

EGFR

Epidermal growth factor

receptor

OS and Rec–Vashist 2014

[101]

Both Res C OS (AC): 1.70 (1.20–2.80)

[LL; Caucasian]

Rec (AC): 2.70 (1.70–4.30)

OS (SCC): 3.50 (2.10–6.00)

Rec (SCC): 2.50 (1.30–4.80)

NA NA 1 0.010

< 0.001

< 0.001

0.005

III rs1800796

(C/G)

IL6

Interleukin

OS–Motoyama 2012b [102] DSS–Motoyama 2012b [102] SCC Res +/− AC C OS: HRA 3.40 (CI NP)

[GG/GC; Japanese]

OS: HRAEx 3.49 (1.28–9.45)

NA NA 1 5.9x10−3

< 0.05

III rs238406

(G/T)

ERCC2

NER repair

OSA and DFSA Lee 2011 [103] SCC Res + NACRT (CF/

C + tax)

C OSA: 0.61 (0.40–0.93)

[CC; Taiwanese]

DFSA: 0.57 (0.38–0.85)

NA NA 1 0.02

0.007

III rs1800975

(G/A)

XPA

DNA NER repair

OSA–Yang 2013 [104] DFS–Yang 2013 [104] SCC Mixed C OSA: 1.36 (1.06–1.76) [AG;

[Taiwanese]

DFS: 1.20 (0.95–1.51) [AG]

NA NA 1 0.014

0.126

III rs34743033

(STR 2/3/4)

TYMS

DNA repair/ replication

OSA–Kaneko 2011 [105]

OS–Okuno 2007 [106]

OS–Sarbia 2006 [107]

OS–Rumiato 2013

SCC

SCC

SCC

US

DCRT (CF)

Res + NACRT (CF)

Res + NACRT (CF + E)

Res + NAC (CF)

C

C

C

C

OSA: 1.54 (1.00–2.38)

[≥2/3; Caucasian/Japanese]
OS(A): 2.47(1.20, 5.06) [Japanese]

OSA: 1.18 (0.69, 2.03) [Caucasian]

5.78

0.45

0.18

65

0

0

3

2

2

0.61

0.010

0.550
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Table 2. Continued

LOE SNP

(major/minor

allele)

Gene /

function

Association–

minor variant

Association–

wild type

Non-significant Cell

type

Population Meta-HR [variant allele / genotype] versus wild-type’

[Ethnicity]

Chi I2 N P

III rs2279744

(T/G)

MDM2

Ubiquitin ligase

OSA–Renouf 2013 [108]

DFSA Boonstra 2011 [109]

OSA and DFSA Cescon 2009

[110]

Both

Both

AC

Res

Mixed

D

C

(SCC) DFSA: 2.78 (0.24–31.9) [GG; Caucasian]

(AC) DFSA: 0.92 (0.65–1.29) [GG]

(AC) OSA: 2.01 (1.38–2.95)

(SCC) OSA: 7.89 (2.40–26.0)

9.36

0.04

0.48

NA

89

0

0

NA

2

2

2

1

0.410

0.620

< 0.001

< 0.001

III rs2273535

(A/T)

AURKA

Cell cycle kinase

OS and DFSA–Pan 2012

[111]

DFSA–Boonstra 2011 [109]

US

Both

Res + NACRT (CF + tax)

Res

C

D

OSEx: 0.30 (0.10–0.92) [TT; Caucasian]

DFSA: 0.55 (0.17–1.74)

NA

2.92

NA

66

1

2

< 0.05

0.310

III rs2010963

(G/C)

VEGFA

Epithelial mitogen

OS–Tamura 2012 [112]

OS - Yang 2014 [113]

SCC

SCC

DCRT (CF)

Res +/−NACRT (CF)

C OS HR(Ex): 0.68 (0.50–0.92) [CC] 0.16 0 2 0.01

III rs3025039

(C/T)

VEGFA Epithelial

mitogen

DFSA–Lorenzen 2011 [114]

OSA–Bradbury 2009 [115]

OS–Tamura 2012 [112]

AC

AC

SCC

Res + NAC (CF)

Mixed

DCRT (CF)

C

C

C

OS(A): 0.75 (0.54–1.03) [CT; Caucasian/Japanese]

DFSA: 1.8 (1.04–3.09) [CT/TT; Caucasian]

0.79

NA

0

NA

2

1

0.080

0.040

III rs1042522

(C/G)

TP53

Apoptotic / DNA repair

regulator

OSA and PFSA–Renouf 2013

[108]

OSA, DFSA–Cescon 2009

[110] OSA, RecA–Wu 2006

AC

AC

US

Mixed

Mixed

Res + NACRT (CF +/

−tax)

C

C

D

OSA: 1,84 (1.34–2.53) [GG; Caucasian]

DFSA: 2.03 (1.29–3.18) [GG]

RecA: 1.29 (0.24–7.14) [GG]

0.44

NA

NA

0

NA

NA

3

1

1

< 0.001

0.002

> 0.05

III rs2069762

(A/C)

IL2

Cytokine

DSSA–Motoyama 2011 [116] SCC Res C DSS: 3.54 1(1.69–7.39) [C; Japanese]

DSSA: 3.36 (NA)

NA NA 1 0.0231

0.0136

III rs1800471

(C/G)

TGFB1

Growth factor regulator

OS–Tang 2013 [117] SCC Mixed C OS: 3.51 (2.18–5.67) [CG/GG; Chinese] NA NA 1 < 0.001

III rs1050631

(G/A)

SLC39A6

Zinc transporter

OSA–Wu 2013 [118] SCC Mixed C OSA: 1.3 (1.19–1.43) [AA; Chinese] NA NA 1 3.77x10−8

III rs41458645

(C/T)

Mitochondrial D loop OSA–Zhang 2010 [119] SCC Mixed C OSA: 3.00 (1.03–8.76) [CT; Chinese] NA NA 1 0.044

III rs139001869

(A/G)

Mitochondrial D loop OSA–Zhang 2010 [119] SCC Mixed C OSA: 3.48 (1.07–11.36) [AG; Chinese] NA NA 1 0.039

III rs3769818

(G/A)

CASP8

Caspase

OSA –Umar 2011 [120] SCC Mixed C OSA: 3.36 (1.07–10.61) [AA; Indian] NA NA 1 0.039

III rs1695

(A/G)

GSTP1

Detoxification enxyme

OSA–Lee 2005 [121]

OS–Okuno 2007 [106]

OS–Warnecke 2009 [33]

OSA and RecA –Wu 2006

[122]

OSA – Rumiato 2013

SCC

SCC

US

US

US

Res + NAC

(C + F/tax)

Res + NACRT (CF)

Res + NACRT (CF)

Res + NACRT (CF +/

−tax)
Res + NAC (CF)

C

C

C

D

C

OSA: 1.29 (1.03–1.61) [TG/GG; Caucasian/

Taiwanese/Japanese]

OSA 1.15 (0.78–1.70)

[TG/GG; Caucasian]

RecA: 0.50 (0.16–1.58) [Caucasian]

2.36

1.84

NA

0

0

NA

5

3

1

0.030

0.490

> 0.05

III rs72214039

(CA ins)

EGFR

Epidermal growth factor

receptor

OSA–Lee 2011b [123] SCC Res NACRT (CF/

C + tax)

C OSA: 1.88 (1.02–3.49) [Short/Short; Taiwanese] NA NA 1 0.045

III rs7121

(T/C)

GNAS

G protein subunit

OSA – Alakus 2014 [124]

OSA and DFSA–Vashist 2011

[125]

OS – Alakus 2009 [126]

US

US

US

Res

Res

Res + NACRT (CF)

D

C

B

OSA: 0.73 (0.46–1.16) [CC; Caucasian]

DFSA: 0.55 (0.34–0.89

9.08

NA

67

NA

3

1

0.180

2.50x10−3
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III rs111509018

(STR)

ECRG2/SPINK7

Serpin-inhibitor

OSA and DFSA Kaifi 2007

[127]

US Res C OSA: 2.56 (1.53–4.29) [TCA4/TCA4; Caucasian]

DFSA: 2.30 (1.37–3.87)

NA NA 1

1

< 0.001

< 0.001

III rs9344

(G/A)

CCND1

Cell cycle kinase

OSA–Izzo 2007 [57] AC Res D OSA: 3.48 (1.94–6.23) [AA] NA NA 1 < 0.001

IV rs1801133

(G/A)

MTHFR

Folate metabolism

RecA–Wu 2006 [122] OSA–Wu 2006 [122]

OSA and RecA Ott 2011 [98]

OS – Lu 2011 [128]

OS–Umar 2010 [129]

OS–Sarbia 2006 [107]

OS–Warnecke 2009 [33]

US

AC

SCC

SCC

SCC

SCC

Res + NACRT (CF +/

−tax)
Res + NAC +(C/OF +/

−tax)
Res only

Mixed

Res + NACRT

(CF, E)

Res + NACRT (CF)

D

B

C

C

C

C

OSA: 0.93 (0.67–1.29)[AA; Caucasian/Chinese/

Indian]

OSA: 0.92 (0.63–1.33) [Caucasian]

RecA: 0.40 (0.21–0.78) [Caucasian]

3.06

0.69

1.54

0

0

35

6

4

2

0.660

0.640

0.007

IV rs1801131

(A/C)

MTHFR

Folate metabolism

OSA–Wu 2006 [122] RecA–Wu 2006 [122]

OS and rec–Ott 2011 [98]

OS–Warnecke 2009 [33]

US

AC

SCC

Res + NACRT (CF +/

−tax)
Res + NAC (C/OF +/

−tax)
Res + NACRT (CF)

D

B

C

OSA: 0.99 (0.64–1.55) [AA; Caucasian]

RecA: 0.80 (0.22–2.95)

0.67

2.38

0

54

3

2

0.970

0.740

IV rs1045642

(C/T)

ABCB1

Drug efflux

OSA and RecA –Wu 2006 [122]

OS – Narumiya 2011 [130]

OS – Okuno 2007 [106]

OS –Warnecke 2009 [33]

US

SCC

US

US

Res + NACRT (CF)

Res + NACRT (CF)

Res + NACRT (CF)

Res + NACRT (CF +/

−tax)

D

C

C

D

OSA: 0.57 (0.37–0.87) [TT; Caucasian/Japanese]

OSA: 0.51 (0.32–0.81) [Caucasian]

Rec: 0.26 (0.09–0.81)

1.87

0.68

NA

0

0

NA

4

3

1

0.009

0.004

< 0.05

IV rs11267092

(DEL/INS)

F2R

Angiogensis

OSA and RecA–Lurje 2011

[131]

AC Res D OSEx: 1.70 (1.16–2.48)

[INS/INS / INS/DEL; Caucasian]

Rec: 2.41 (1.25–4.65) [INS/INS]

NA NA 1

1

< 0.001

0.003

OS = overall survival; DFS = disease-free survival; rec = recurrence; A = adjusted; (A) = including adjusted; PB = adjusted for publication bias; Ex = extrapolated; NP = not presented; AC = adenocarcinoma;
SCC = squamous cell carcinoma; US = unspecified; Res = resection; NAC = neoadjuvant chemotherapy; NACRT = neoadjuvantchemoradiotherapy; DCRT = definitive chemoradiotherapy; C/Cis = cisplatin;
O = oxaliplatin; tax = taxane; F = 5FU; E = etoposide; Res = resection; Ex = Extraplotated; INS = insertion; DEL = deletion; NA = not applicable
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Table 3. Reported tumor variants and germline polymorphisms associated with treatment complications and response to chemo(radio)therapy

LOE Variant Gene Association –mutant Association – wild type No association Cell type Population LOE Meta OR [effect allele / genotype /

haplotype]

Chi I2 N P

Treatment complications

III rs4646994

(INS/DEL)

ACE

Vasodilator

Post-op pulmonaryA Lee 2005b [135] US Res C ORA: 3.12 (1.01–9.65)

[DEL/DEL; Taiwanese]

NA NA 1 0.049

III rs1800629

(G/A)

TNFA

Cytokine

Post-op infectionA – Azim 2007 [134]

Motoyama 2009 [136]

US

SCC

Res +/− NAC(RT)

Res

C

D

ORA: 4.02 (0.00–18347)

[GG; Caucasian/Japanese]

0 0 2 0.750

Response to chemo(radio)therapy

Tumor

III High DNA ploidy - mPR – HCR versus CR – Ohno 1989 [91] SCC Res + NACRT versus HNACRT (bleomycin) C mPR 13.18 (5.30–32.7) [High

ploidy]

NA NA 1 < 0.001

IV Mutant (exon) TP53

Apoptosis / DNA repair regulator

mPR – Ribeiro 1998 [43]

mCR –Yamasaki 2010 [41]

cPR –Makino 2010 [47]

mCR – Kunisaki 2006

cCR – Ito 2001 [50]

cCR – Gibson 2003 [55]

US

SCC

SCC

SCC

SCC

US

Res, NACRT (CF + IFN)

Res + NAC

Res + NACRT / DCRT (CF)

DCRT

Res + NACRT (CF)

Res + NACRT (CF)

D

D

D

C

C

C

mPR 0.24 (0.06–0.95) [mutant]

mCR 0.43 (0.08–2.24)

2.87

14.2

30

86

3

3

0.040

0.320

Germline

II rs7121

(T/C)

GNAS1

G protein subunit

mPRA – Alakus 2009 [126] US Res + NACRT (CF) B mPRA 7.25 (1.30–40.62)

[CC; Caucasian]

NA NA 1 < 0.05

III rs3212986

(C/A)

ERCC1

DNA NER

mCRA–Wang 2011 [96]

mPR–Warnecke 2009 [33]

mPR–Rumiato 2013 [97]

SCC

US

US

PC (CF)

Res + NAC (CF)

Res + NAC (CF)

C

B

C

mCR ORA: 2.62 (1.11–6.23)

[AA/CA; Chinese]

mPR OR: 1.52 (0.73–3.20)

[CT/CC; Caucasian]

NA

0.76

NA

0

1

2

< 0.05

0.260

III rs11615

(A/G)

ERCC1

DNA NER

mPR–Metzger 2012 [137]

mPR–Warnecke 2009 [33]

mPR-Rumiato 2013 [97]

AC

US

US

Res + NACRT (CF)

Res + NACRT (CF)

Res + NAC (CF)

D

C

C

mPR OR: 4.57 (3.01–6.94) [TT/

CT; Caucasian]

3.48 43 3 < 1x10−5

IV rs25487

(G/C)

XRCC1

DNA repair

cPR–Wu 2006 [122]

cPR - Ott 2011 [98]

mPR–Warnecke 2009 [33]

US

AC

US

Res + NACRT (CF +/−tax)
Res + NAC (C/OF +/−tax))
Res + NACRT(CF)

D

B

C

m/cPR 1.91 (1.30–2.81) [GG;

Caucasian]

3.13 36 3 0.001

OS = overall survival; DFS = disease-free survival; rec = recurrence; A = adjusted; AC = adenocarcinoma; SCC = squamous cell carcinoma; US = unspecified; NAC = neoadjuvant chemotherapy;
NACRT = neoadjuvantchemoradiotherapy; DCRT = definitive chemoradiotherapy; HNACRT = hyperthermicneoadjuvant chemoradiotherapy; PC = palliative chemotherapy; CF = cisplatin-5FU;
DEL = deletion; OF = cisplatin-5FU; Res = resection mPR =major pathological response; cPR = complete pathological response; mCR =major clinical response; cCR = complete clinical response; OR = odds
ratio; IFN = interferon; LOE = level of evidence; NA = not applicable
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Table 4. Reported tumor markers (mutations, copy number variants, genomic and chromosomal instability) associated with stage of esophageal cancer

LOE Variant Gene Association –mutant No association Cell type Population LOE Meta OR [effect allele / genotype / haplotype] Chi I2 N P

Mutations

III Mutant TP53

Apoptosis / DNA repair

regulator

T, N –Madani 2010 [40]

N – Cao 2004 [54]

N –Hattori 2003 [138]

O Ribeiro 1998

O, T, N, G-Casson 2003 [38]

N - Makino 2010 [47]

R –Madani 2010 [40]

T – Cao 2004 [54]

O, T, N – Schneider 2000 [39]

T, N, G – Soontrapornchai 1999

T, N, G – Egashira 2011 [49]

T, N, M, O – Yamasaki 2010 [41]

T, M, G – Ito 2001 [50]

O – Kobayashi 1999 [42]

T, N, M, G – Uchino 1996 [29]

O – Coggi 1997 [56]

O, T, N – Goan 2005 [53]

O, G – Lam 1997 [51]

O, T, N – Shibagaki 1995 [52]

T, N – Puhringer 2006 [45]

T, M, G –Makino 2010 [47]

AC

SCC

SCC

US

AC

AC

SCC

SCC

SCC

SCC

SCC

US

AC

SCC

SCC

SCC

AC

SCC

Res

Res

Res

Res + NACRT

Res

Mixed

Res

NAC (CF) +/− Res

Res + NACRT (CF)

Res

Res

Res

Res

Res

Res

Res

Res +/− NACRT

(CF)

Res +/− NACRT

/DCRT (CF)

C

D

C

D

C

D

C

D

C

D

D

D

C

D

D

C

B

D

OPB: 1.28 (0.71–2.31)

T: 1.40 (1.12–1.74)

N: 1.39 (1.07–1.81)

M: 1.21 (0.72–2.03)

G: 1.46 (0.83–2.58)

R: 2.10 (0.470–9.35)

O: B p = 0.540; E p = 0.275

T: B p = 0.393; E p = 0.071

N: B p = 0.765; E p = 0.443

M: B p = 0.207; E = 0.492

G: B p = 0.719; p = 0.543

PB Corrected for Ribeiro 1998

32.4

17.5

18.1

2.99

19.1

3.45

63

20

17

0

53

71

12

15

15

5

10

2

0.410

0.003

0.010

0.480

0.190

0.330

Copy number variants

III Gain SPK2

Protein kinase

N,O –Wang 2009 [139] SCC Res C O: 8.00 (2.25–28.5)

N: 8.10 (2.28–28.8)

NA NA 1

1

1.30x10−3

1.20x10−2

III Gain PRKC1

Serpin

T – Yang 2008 [140] N, O, G – NS – Yang 2008 [140] SCC Res C O: 4.64 (1.71–12.4)

N: 3.12 (1.21–8.02)

T: 2.63 (0.78–8.81)

NA

NA

NA

NA

NA

NA

1

1

1

0.002

0.019

0.118

III Gain HER2 (ERBB2)

Epidermal growth factor

receptor

T, G – Yoon 2012 [71]

G,O – Zhan 2012 [68]

O, G – Lennerz 2011 [61]

N – Ikeda 1996 [75]

T, M, L – Zhan 2012 [68]

O, T, N – Suzuki 1997 [74]

O, T, N, M, R, G – Reichelt 2007 [141]

O, N - Brien 2000 [67]

O, N, G - Mimura 2005 [70]

O, T, N, G, R – Sato-Kuwabara 2009 [69]

O, G – Sunpaweravong 2005 [64]

O, T, N, G, M, R – Thompson 2011 [72]

O, T, N, G, M – Al-Kasspooles [142]

T, N, G – Prins 2013 [65]

AC

SCC

US

SCC

SCC

US

AC

SCC

SCC

SCC

AC

AC

AC

Res

Res

Mixed

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

C

D

D

C

D

C

D

D

D

D

D

C

D

O: 1.13 (0.83–1.54)

T: 0.84 (0.55–1.27)

NPB: 0.96 (0.69–1.35)

M: 1.77 (0.69–4.56)

GPB: 0.61 (0.34–1.09)

PB – Corrected for Ikeda 1996, Al-Kasspooles 1993,

Suzuki 1997, Minmura 2005
PB – Corrected for Sunpaweravong 2005, Zhan 2012

14.02

17.5

20.2

3.85

40.0

43

48

31

22

72

10

10

11

4

10

0.510

0.400

0.510

0.240

0.100

IV Gain EGFR

Epidermal growth factor

receptor

T,N –Marx 2010 [59]

G – Lennerz 2011 [61]

N – Kitagawa 1996 [60]

N – Yang 2012 [143]

M, G –Marx 2010 [59]

O – Lennerz 2011 [61]

O, T – Kitagawa [60]

O,G – Yang 2012 [143]

O, T,N,M –Miller 2003 [28]

O, T,N,M,G – Al-Kasspooles 1993 [142]

O,T,N,G – Itakura 1994 [31]

AC

US

SCC

SCC

AC

AC

SCC

Res

Mixed

Res

Res

Res

Res

Res

D

D

D

D

C

C

D

OPB: 0.96 (0.6–1.53)

T: 0.51 (0.37–0.71)

N: 0.95 (0.41–2.16)

M: 0.91 (0.29–2.87)

G: 1.24 (0.70–2.20)

PB – Corrected for Kitagawa 1996

9.27

2.31

8.44

1.38

3.36

35

0

41

0

8

6

5

6

3

3

0.850

< 0.001

0.890

0.870

0.460

Continued
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Table 4. Continued

LOE Variant Gene Association –mutant No association Cell type Population LOE Meta OR [effect allele / genotype / haplotype] Chi I2 N P

Loss of heterozygosity

III LOH 3p14.2 TA – Qin 2008 [144] N, M, G – Qin 2008 [144] SCC Res C T: 5.67 (1.77–18.2) NA NA 1 0.003

III LOH 13q T, G –Huang 2002 [145]

N –Harada 1999 [146]

N – Shibagaki 1994 [132]

N – Huang 2002 [145]

T,M,H,O – Harada 1999 [146]

SCC

SCC

SCC

Res

Res

Res

C

C

C

T: 3.08 (0.17–60.8)

N: 4.17 (1.84–9.47)

5.04

3.06

80

35

2

3

0.440

6x10−4

Chromosomal instability

III CIN T,N,G Yu 1989 [147]

G – Doki 1993 [88]

T,N - Kuwano 1995 [92]

N, Ohno 1989 [91]

T,/N – Doki 1993 [88]

N,V,G – Kuwano 1995 [92]

O,T - Ohno 1989 [91]

T,N,G – Tsutsui 1992 [89]

T,L,G – Edwards 1989 [93]

O, T, N G –Wang 1999

T – Kaketani 1989 [90]

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

SCC

Res

Res

Res

Res +/− NACRT

Res

Res

Res +/− AR

Res

Res

C

D

C

C

D

D

D

D

D

O: 2.68 (1.10–6.54)

T: 1.41 (0.97–2.05)

N: 2.18 (1.06–4.47)

G: 1.51 (0.99–2.31)

2.01

7.21

18.2

5.29

0

0

57

5

2

9

7

6

0.030

0.070

0.030

0.060

Microsatellite instability

IV MSI 17q24-25 + Bethesda

markers

T –Matsumoto 2007 [148] N,G,O –Matsumoto 2007 [148] SCC Res D T: 0.325 (0.11–0.96) NA NA 1 0.043

AC = adenocarcinoma; SCC = squamous cell carcinoma; US = unspecified carcinoma; NAC = neoadjuvant chemotherapy; NACRT = neoadjuvant chemoradiotherapy; CF = cisplatin and 5-fluoruracil;
T = T stage (III/IV versus I/II); N = nodal stage(N0 versus ≥N1); M =metastatic stage (M0 versus M1); G = cell grade (III/IV versus I/II); O = overall stage (III/IV versus I/II); R = resection stage (R1 versus
R0); L = L stage (L1 versus L0); V = venous invasion (V1 versus V0); Res = resection; PB = corrected for publication bias; LOE = level of evidence; LOH = Loss of Heterozygosity; CIN = chromosomal
instability; NA = not applicable
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Table 5. Reported germline markers (polymorphisms) associated with stage of esophageal cancer

LOE Variant Gene Association—
variant

Association—wild
type

No association Cell
type

Population LOE Meta OR [effect allele/
genotype/haplotype]

Chi I2 N P

II rs6573
(C/A)

RAP1A
RAS oncogene

OA—Wang 2012
[149]

SCC Mixed B OA: 1.89 (1.06–3.36) [CA/AA;
Chinese]

NA NA 1 0.030

II rs1800471
(G/C)

TGFB1
Growth factor
regulator

O, G—Tang 2013
[117]

SCC Mixed B O: ORA 2.71 (1.44–5.09) [GC/
CC; Chinese]
G: ORA 2.65 (1.44–4.87)

NA

NA

NA

NA

1

1

<0.001

0.002
III rs353163

(T/C)
TMPRSS11A
Serine peptidase

N—Umar 2013b
[150]

SCC RT/DCRT (CF) C N: 3.27 (1.68–6.39)
[CC; Indian]

NA NA 1 <0.001

III rs2273535
(A/T)

AURKA
Cell cycle kinase

O—Miao 2004
[151]

SCC Res C O: 2.13 (1.04–4.39
[TT; Chinese]

NA NA 1 <0.05

III rs7121
(C/T)

GNAS1

G protein subunit

O, N—Vashist 2011
[125]

T, M, G—Vashist
2011
T, N, R—Alakus
2009 [126]

US

US

Res

Res + NACRT
(CF)

C

B

O: 2.10 (1.17–3.76)

[T; Caucasian]

N: 1.16 (0.76–1.77) [T]

NA

3.94

NA

49

1

3

0.013

0.500

AC, adenocarcinoma; SCC, squamous cell carcinoma; US, unspecified carcinoma; NACRT, neoadjuvant chemoradiotherapy; RT, radiotherapy; DCRT, definitive chemoradiotherapy; T, T stage (III/IV versus
I/II); N, nodal stage (≥N1 versus N0); M, metastatic stage (M0 versus M1); G, cell grade (III/IV versus I/II); O, overall stage (III/IV versus I/II); R, resection stage; L, L stage; CF, cisplatin–5FU; Res, resection;
LOE, level of evidence; NA, not applicable.
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funnel plot asymmetry, heterogeneity
and publication bias
Begg’s and Egger’s tests were nonsignificant for all meta-ana-
lyses (supplementary Table S26, available at Annals of Oncology
online). Visual inspection of plots identified asymmetry for nine
outcome analyses: mutant TP53 (OS overall, adjusted HR, SCC
and unspecified cell types, neoadjuvant therapy and SSCP/direct
sequencing analyses; supplementary Tables S2 and S3, available
at Annals of Oncology online), ERRBB2/HER2 (OS) and FGF3
(OS), and three stage analyses: EGFR (overall) and ERBB2/
HER2 (N and grade). These were interpreted as likely publica-
tion bias and corrected (without affecting any conclusions). All
sensitivity analyses were negative.

conclusions
We identified 182 studies, which assessed a total of 165 candi-
date genomic markers. Overall, 91 markers were reported to
have significant associations with esophageal cancer outcome,
and 41 with stage. Overall study quality was poor: most studies
were retrospective with small sample sizes, and all except 5
(2.75%) were of level C or D quality. There was considerable het-
erogeneity in patient selection, treatment approach, genotyping
techniques and definitions used. Common areas of weakness
were failure to perform subgroup analysis for AC and SCC;
failure of quality control such as reporting call rates and Hardy–
Weinberg equilibrium; failure to perform/report multivariate
adjustment of HRs; and failure to adjust for multiple compari-
sons. Furthermore, just 30.2% of reported markers subsequently
had attempted validation data published.
Despite these limitations, sufficient data were available for ap-

propriate meta-analyses. These demonstrated a small number of
associations of DNA sequence markers with worse survival
(mutant TP53, HER2, CCND1 and FGF3 copy number gain and
CIN) and resistance to chemo–radio ± therapy (TP53).
As far as we are aware, this is the first attempt to collate and

evaluate all evidence of DNA sequence markers and esophageal
cancer, and to demonstrate the above associations by meta-ana-
lysis. As such it has a number of generic and specific strengths
and weaknesses. A comprehensive search strategy was used to
minimize identification and selection bias (requiring detailed
appraisal of studies including gastric cancer, cell lines and ex-
pression data), it is possible that studies were not identified. For
those included, methodological heterogeneity and small sample
sizes introduce potential for bias. Although there was no statis-
tical evidence of funnel plot asymmetry using Begg’s and
Egger’s tests, these are underpowered in meta-analyses of fewer
than 25 studies [152]; we therefore inspected all funnel plots,
explored the reasons for any apparent asymmetry, and corrected
eight analyses for likely publication bias (without altering
overall effects). While the small number of studies involved in
each analysis precluded meaningful meta-regression to explore
additional potential confounding factors [153], we sought to
address potential bias by performing subgroup analyses, includ-
ing cell type genotyping techniques and ethnicity. There are also
limitations to the revised American Society of Clinical Oncology
guidelines in this context; firstly, regarding capture of the com-
plexity inherent in data quality, and secondly determination of

LOE: evidence can be upgraded by validation studies, yet dis-
agreement of effect size and direction between studies is not
always reflected in the ultimate LOE.
The strongest evidence we found for an outcome marker was

tumor TP53 mutation. Association with worse survival was
demonstrated for both AC and SCC. Whether this is truly inde-
pendent of the association demonstrated with T and N stage (in-
dependent pathological markers of outcome) [154] was not
conclusively demonstrated, and indeed only assessed by six
studies. Although four reported significant adjusted HR, the re-
sultant meta-analyzed direction of effect was concordant but not
significant due to the use of a random-effects model. We also
found TP53mutant tumors to be less chemo(radio)sensitive.
As other recent meta-analyses have reported similar findings

in breast and colorectal carcinoma [155, 156], this is of particu-
lar translatable relevance. TP53 is one of the most frequently
mutated and studied genes in human cancer [157], with result-
ant attempts to develop targeted therapies [158]. Ninety-five
percent of functional mutations occur within exons 5–9, which
encode the DNA binding domain, and typically cause loss of ef-
ficacy either directly by disrupting DNA contact, or indirectly
by aberrant protein folding [159]. Subsequently, cell cycle, DNA
repair and apoptotic regulation may fail [160], although onco-
genic gains of function are occasionally seen [161]. The most
characterized variant is the germline rs1042522 G > C substitu-
tion, itself conferring a worse HR for both OS and DFS in this
meta-analysis.
TP53 as an esophageal tumor biomarker is often considered

in terms of TP53 status: aberrant expression, with or without
mutation. An association with expression alone and worse
outcome has been demonstrated on meta-analysis for SCC
[162], as has aberrant status [increased expression (28 studies)
with or without mutation (3 studies)] and reduced likelihood of
response to chemotherapy [163]. However, TP53 mutational
and expression statuses may be discordant [164] particularly in
the case of high-impact mutations precluding expression, or
dramatically reducing half-life. The ability to predict this from
sequencing data reinforces the need to explore the interaction of
these aspects of status in parallel [165, 166].
Typically, resection specimens are used to assess associations

between tumor markers and pathological response to chemother-
apy. However, by definition these comprise clonal populations
selected for chemo/radio-resistance. While such tumors appear to
be disproportionately TP53 mutated, deep re-sequencing and
clonal studies comparing the prevalence and associations of pre-
and post-treatment tumor are required to establish the true pre-
treatment predictive utility of TP53mutations in this regard.
Three associations between tumor copy number gain (albeit

variably quantified) were demonstrated by meta-analysis:
ERBB2/HER2, CCND1 and FGF3 gain. ERBB2/HER2 is particu-
larly relevant; a proto-oncogene, it is the sole molecular marker
in clinical use for gastroesophageal cancer, guiding the use of
targeted therapies [14]. Our findings build on a recent meta-
analysis of HER2 status, defining positivity by overexpression or
amplification, including six of the studies included in this meta-
analysis [15]. We found gain to confer a worse prognosis for
both AC and SCC, independent of stage. Interestingly, all
patients in 10 of the 11 studies underwent radical treatment
with resection; while palliative monoclonal antibody therapy for
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HER2-positive gastroesophageal AC is effective in prolonging
survival [167], an urgent unanswered question is therefore
whether it has a role in curative treatment.
Similarly, regarding the cell cycle regulator CCND1, phase I

and II data have suggested a possible role for cyclin-dependent
kinase inhibitors in nongastroesophgageal cancer [168, 169]. Our
findings therefore suggest the need to assess their effect in esopha-
geal tumors with CCND1 gain. EGFR, a tyrosine kinase receptor,
has also been extensively investigated within gastroesophageal
cancer; phase II data support targeted therapy (antibodies and
tyrosine kinase inhibitors) for metastatic disease [170, 171], al-
though not yet neoadjuvant regimens [172, 173]. While we found
no association with outcome using the requisite random-effects
model, significant effects were evident with a fixed model; conse-
quently, there may be an undetected association. We also found
CIN to be associated with worse outcome, in keeping with a pre-
vious colorectal cancer meta-analysis [174], although whether it
modulates chemo-sensitivity is unclear.
We also demonstrated survival associations for six common

germline polymorphisms by meta-analysis: ERCC1 rs3212986
(for cisplatin treatment and Caucasian ethnicity), ERCC2
rs1799793 (cisplatin and Caucasian), TP53 rs1042522
(Caucasian), MDM2 rs2279744 (Caucasian), TYMS rs34743033
(Japanese) ABCB1 rs1045642 (both Caucasian and Japanese).
The association of VEGFA rs2010963 was evident only on com-
bining Taiwanese and Japanese study populations. MTHFR
rs1801133 was associated with recurrence in Caucasians.
XRCC1 rs25487 and ERCC1 rs11615 were associated with re-
sponse to chemotherapy in Caucasians. These associations are
likely to be due to aberrant protein expression or function.
rs3212986 modifies ERCC1 mRNA stability [175], a compo-

nent of the nucleotide excision repair (NER) pathway, variants
of which are associated with platinum sensitivity and survival in
pancreatic, gastric, colorectal and lung cancers [95–177]. The
missense rs1799793 SNP results in an aspartate–asparagine sub-
stitution at codon 312 of the ERCC2 component of the NER
pathway, and has been similarly associated with survival in
gastric and other cancers [178]. The rs10456402 SNP in exon 26
of ABCB1 (Multi Drug Resistance 1) reduces expression (and
consequent platinum-analogue membrane transportation)
[179], and is similarly associated with colorectal cancer progno-
sis [180]. rs2279744 increases mRNA expression of MDM2,
which suppresses TP53 activity [181], and is associated with
increased susceptibility to a number of cancers (including
gastric) [182]. rs34743033 is a 28-bp variable number tandem
repeat in TYMS (thymidylate synthase), with enhancer function
correlating with increased TYMS expression [183], and survival
in platinum-treatment nonsmall-cell lung carcinoma [184]. The
rs1801133 missense SNP induces an alanine–valine substitution
at codon 222, with reduced activity of methylenetetrahydrofo-
late reductase [185], and increased susceptibility to gastric
cancer [186]. rs25487 induces a glutamine-arginine substation
in codon 399, with resultant reduction in function of the DNA
repair gene XRCC1 [187], and an association with survival of
lung cancer [188]. rs11615 reduces ERCC1 expression [189],
and increases likelihood of response to platinum chemotherapy
in gastric and colorectal cancer [176].
Biomarkers themselves carry a number of limitations. Typically,

they are classified as ‘prognostic’ or ‘predictive’; however, in reality,

these are not mutually exclusive, and we therefore did not attempt
classification. Biomarker development culminates in demonstra-
tion of clinical, requiring at least multicenter prospective valid-
ation for prognosis, and incorporation into interaction
randomized controlled trials for prediction. These challenges re-
inforce the utility of retrospectively analyzing samples archived
during prospective trials. Other challenges include the use of pre-
treatment biopsies. First, analysis may be impaired by inclusion of
noncancerous tissue; while this can be mitigated by techniques
such as laser-capture microdissection and higher depth sequen-
cing, these are time and cost-intensive. More profound is the chal-
lenge of intratumoral heterogeneity and clonality: a single biopsy
is representative of just 34% of the mutational burden of a ‘single’
cancer [190], and will not include metastatic subclones. How to
surmount this is not yet clear.
Finally, while it may be pragmatic to consider DNA sequence

variants in isolation, their effects (and therefore utility) are
subject to complicated modulation by the other ‘omics’, (epige-
nomics, transcriptomics, metabolomics and proteomics), genes
and clinical and environmental covariates [191, 192]. While a
discrete variable might provide useful complementary informa-
tion of itself, this complexity at present precludes its use to di-
chotomize decision making. Consequently, a robust approach to
personalized cancer medicine must incorporate parallel process-
ing of DNA, RNA, proteins and metabolites.
In conclusion, numerous DNA sequence markers have been

described for esophageal cancer. However, as with complemen-
tary fields within personalized cancer research, the underlying
research is largely poor in quality and disparate in methodology,
with a lack of robust validation of markers and incorporation
into trials. While a number of promising candidates have been
identified the data required to incorporate these into prognostic/
predictive models do not yet exist; future validation will require
larger studies, with improvements in the standardized collection
of samples for analysis, parallel assessment of expression and
the incorporation of parallel biomarkers within high-quality
clinical trials, robust adjustment for confounding variables and
sharing of resultant data with multicenter collaboration.
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Background: A wide variety of follow-up strategies are used for patients with colorectal cancer (CRC) after curative
surgery. The aim of this study is to review the evidence of the impact of different follow-up strategies in patients with non-
metastatic CRC after curative surgery, in relation to overall survival and other outcomes.
Patients and methods: A systematic search of PubMed, EMBASE, SCOPUS and ISI Web of Knowledge up to June
2014 was carried out. Eligible studies were all randomized clinical trials comparing the effectiveness of different follow-up
strategies after curative resection in nonmetastatic CRC.
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