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 Background: Cancer stem cells (CSCs), in choriocarcinoma and other carcinomas, possess the ability of self-renewal and mul-
tilineage differentiation potential. We previous isolated choriocarcinoma cancer stem-like cells (CSLCs), which 
hold the stemness characteristics of CSCs. Epigenetic modifications have emerged as drivers in tumorigene-
sis, but the mechanisms of CSCs are largely unknown, and new drug therapies are needed to break the persis-
tence of CSCs.

 Material/Methods: Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the expression of 
DNMTs, HDACs, and stemness-genes. DNMTs and HDACs silencing and overexpressing lentivirus were trans-
fected into JEG-3 cells to investigate the epigenetic functions in CSLCs. In vivo expression of curcumol effects 
of CSLCs on DNMTs and HDACs were analyzed by immunohistochemistry.

 Results: Expression of DNMT1, DNMT3b, HDAC1, and HDAC3 were increased in choriocarcinoma CSLCs. Consistent with 
the inhibitory effect of 5-AzaC and TSA on CSLCs, DNMT/HDAC knockdown displayed significant repression of 
self-renewal in CSLCs. Curcumol inhibited the stemness ability of CSLCs in vitro and in vivo, and the inhibitory 
effect we observed was mediated in part through repressing activity of DNMTs and HDACs. Importantly, cur-
cumol showed a better effect than DNMT and HDAC inhibitors combined in eliminating CSLCs.

 Conclusions: These findings indicate that DNMT- and HDAC-mediated epigenetic regulation plays an important role in the 
biology of choriocarcinoma CSLCs, and curcumol has the potential to be a new drug to fight CSLCs, warranting 
further investigation of epigenetic-based therapies.
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Background

Choriocarcinoma is a highly malignant trophoblastic tumor 
characterized by abnormal trophoblastic hyperplasia, and is 
a type of gestational trophoblastic neoplasia. Despite well-
established chemotherapy, about 25% of choriocarcinoma 
patients showed incomplete response, or relapsed due to 
tumor remission [1,2]. Loss of fertility resulting in hysterec-
tomy is the most concern outcome for patients, and is the 
final problem remaining to be solved. Recently, the cancer 
stem cells (CSCs) subpopulation, which has a high tumor-
igenic character, has been discussed as an explanation for 
tumor development, chemoresistance, and relapse after ini-
tial treatment [3–5]. CSCs have 2 important characteristics: 
self-renewal and multipotency. Our previous study isolated 
the choriocarcinoma stem-like cells (CSLCs) from the human 
choriocarcinoma JEG-3 cell line, showing the characteristics 
of CSCs [6]. The driver mutations affect a wide range of epi-
genetic regulators in different cancers, which provides direct 
evidence for the importance of epigenetic dysregulation in 
the formation of CSCs [7,8].

Epigenetic modifications have emerged as drivers in tumori-
genesis [9,10]. Aberrant DNA methylation and histone deacet-
ylation are 2 principal factors in epigenetic phenomena, and 
have been verified to be related to tumorigenesis in many stud-
ies. As the key enzymes, DNA methyltransferases (DNMTs) and 
histone deacetylases (HDACs) were recognized as antitumor 
drug targets in terms of epigenetic therapy [11,12]. DNMT1 
maintains an established DNA methylation pattern, whereas 
DNMT3a and DNMT3b set up DNA methylation patterns in ear-
ly development. Abnormal methylation by DNMTs overexpres-
sion induces tumor-suppressor genes silencing in human can-
cers. Given the reversibility of DNA methylation, DNMTs can 
be viable targets for the treatment of cancer. It was found that 
DNMT3a- and DNMT3b-mediated epigenetic regulation is piv-
otal for appropriate trophoblastic invasion [13]. Acetyl groups 
are removed on both histone and non-histone by HDACs, re-
sulting in the alteration of protein functions [14]. HDACs have 
been shown to play crucial roles in the regulation of several 
proteins involved with cell cycle, proliferation, immunity, in-
flammation, and apoptosis [15,16]. Class I HDACs, especially 
HDAC1, HDAC2, and HDAC3, are found largely in the nucleus 
and account for the post-translational modification of histones 
into a deacetylated state, which cause transcription machinery 
alteration and alter nuclear signaling pathways relative to cell 
fate [17,18]. Especially in choriocarcinoma, HDAC1/2/3 inhibits 
the expression of multidrug resistance-associated protein 2 [19], 
and the HDAC inhibitor regulates the migration of JEG-3 cells 
[20]. Both DNMTs and HDACs induce tumor-genes silencing 
and cause the self-reinforcing nature of silencing mechanisms 
by interaction between them [21], and thus cause tumorigen-
esis by a bypass compensatory mechanism [22]. Interestingly, 

breast CSCs were recently reported to be affected by combin-
ing DNMT and HDAC inhibition [23].

Curcumol is one of the major active components of Curcuma 
zedoaria, like curcumin [24,25], which is traditionally used for 
the treatment of gynecological tumors in China. Curcumol has 
been reported to show anti-cancer effects in several cervical 
cancer cells and ovarian cancer cells [26,27]. Choriocarcinoma 
treatment using Chinese herbs uses Curcuma zedoaria for ad-
juvant therapy with chemotherapy. However, to the best of 
our knowledge, the effect of the single component, curcum-
ol, is still largely unknown in choriocarcinoma. In the present 
study, we tested the effect of curcumol on choriocarcinoma 
CSLCs via regulating epigenetic machinery.

Material and Methods

Drug and cell

Curcumol (purity ³96.7%), obtained from the National Institute 
for the Control of Pharmaceutical and Biological Products 
(Beijing, CN), was dissolved in DMSO and then diluted in 
PBS with 0.1% DMSO. DNMT inhibitor 5-azacytidine (5-AzaC) 
and HDAC inhibitor Trichostatin A (TSA) were procured from 
Selleck (Houston, USA). The human choriocarcinoma JEG-3 cell 
line was obtained from the American Type Culture Collection 
(ATCC, USA) [28]. The cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) with high glucose (Gibco, USA), 
supplemented with 10% fetal bovine serum (FBS) (Gibco, USA) 
and antibiotics (50 U/ml penicillin, and 50 μg/mL of streptomy-
cin) at 37°C in a humidified incubator with 5% CO2 atmosphere.

Sphere formation assay

JEG-3 CSLCs were isolated as described previously [6] for 7 
days. The spheres were dissociated into single cells, then re-
cultured for another 7 days. The first-generation spheres were 
treated with 5-zazcytidine (75 μM) or TSA (100 nM) for 7 days.

CD133+ cells isolation and flow cytometry analysis

The cells were labelled with a primary CD133 antibody (Miltenyi 
Biotec, GER), and the CD133+ and CD133− cells were subse-
quently magnetically isolated using the EasySep™ Human APC 
Positive Selection Kit (StemCell Technologies, CAN) following 
the manufacturer’s instructions. Trypan blue staining was used 
to assess the sorted cell viability, and higher than 90% viabili-
ty was considered acceptable for further downstream experi-
ments. The dissociated single cells from spheres were stained 
with anti-CD133/APC and analyzed using a FACSCanto II Flow 
Cytometer instrument (BD Biosciences, USA). Acquired data 
were analyzed with FlowJo software.
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Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted with TRIzol reagent (Life Technologies, 
USA) following the manufacturer’s protocol. The RNA was 
reverse transcribed to complementary DNA (cDNA) using a 
Transcriptor First Strand cDNA Synthesis Kit (Life Technologies, 
USA). qRT-PCR was performed using SYBR PremixEx Taq II meth-
od (Life Technologies, USA) on the ABI 7500 real-time PCR sys-
tem (Thermo Fisher, USA). The expression level was calculated 
using the 2–DDCt method. Experiments were repeated at least 
3 times. The following primers obtained from Sangon Biotech 
(Shanghai, China) were used:
DNMT1 forward: 5’-CAGGAAGAACGGCCGCAGCA-3’,
reverse: 5’-AGGCTTTGCCGGCTTCCACG-3’;
DNMT3a forward: 5’-CAGTGCAGGTGACGAACATT-3’,
reverse: 5’-TGTTCCACCACACCTGTTTTGA-3’;
DNMT3b forward: 5’-GGCAAGTTCTCCGAGGTCTCTG-3’,
reverse: 5’-TGGTACATGGCTTTTCGATAGGA-3’;
HDAC1 forward: 5’-GCCATCCTGGAACTGCTAAA-3’,
reverse: 5’-GGCTTGAAAATGGCCTCATA-3’;
HDAC2 forward: 5’-CCTGGAACAGGTGACATGTATGA-3’,
reverse: 5’-CGTAAGGGCACATTGAGACAATAG-3’;
NANOG forward: 5’-AGAACTCTCCAACATTCCTGAACCT-3’,
reverse: 5’-TGCCACCTCTTAGATTTCATTCTCT-3’;
OCT4 forward: 5’-CTTGCTGCAGAAGTGGGTGGAGGAA-3’,
reverse: 5’-CTGCAGTGTGGGTTTCGGGCA-3’;
SOX2 forward: 5’-GGGAAATGGGAGGGGTGCAAAAGA-3’,
reverse: 5’-TTGCGTGAGTGTGGATGGGATTGG-3’;
ABCG2 forward: 5’-GCAAGATGTACTGGCGAAGA-3’,
reverse: 5’-CAGGTAGGCAATTGTGAGGAA-3’.

Western blot analysis

The cells were harvested and lysed using ice-cold RIPA lysis 
buffer (Beyotime Biotechnology, CN). Following denaturation, 
equivalent amounts of protein from each sample (30–50 μg) 
were separated on 10% SDS-PAGE. For immunodetection, re-
solved proteins were transferred onto polyvinylidene difluo-
ride (PVDF) membranes (Merck, Germany) in a semidry blot-
ter (Bio-Rad) for 2 h using transfer buffer. The membranes 
were then blocked with TBST supplemented with 5% BSA for 
1 h at room temperature, and then probed with indicated pri-
mary antibodies at 4°C overnight with gentle shaking. All the 
primary antibodies of DNMT1, DNMT3b, HDAC1, and HDAC3 
were purchased from CST (Germany). The membranes were 
incubated with a secondary horseradish peroxidase (HRP)-
conjugated antibody for 1 h. The bands of the target proteins 
were detected using enhanced chemiluminescence (ECL) re-
agent (Millipore, USA), and acquired by chemiluminescence 
system (Syngene, UK). The gray value of each band was mea-
sured by Image J software.

Global DNA methylation quantification

The MethylFlash Methylated DNA Quantification kit (Epigentek 
Inc., NY) was used to measure the levels of the DNA methyl-
ation mark 5-methylcytosine (5-mC). The genomic DNA was 
isolated first, then the methylation of DNA was detected by 
the antibody, and the absorbance was read using a microplate 
spectrophotometer (Thermo Fisher, USA). The percentage of 
5-mC in total DNA was calculated.

HDAC activity analysis

The HDAC activity was analyzed using a colorimetric assay kit 
(Bio Vision, USA), according to the manufacturer’s protocol. 
Briefly, nuclear cell lysates were extracted using the Nuclear 
Extract Kit (Active Motif, Belgium) and were incubated with 
the HDAC colorimetric substrate, the density was read at 405 
nm on a Multimode Reader (Promega, USA).

Cell transfection

Cells were seeded into 6-well plates before the day of transfec-
tion. At 30%–50% fusion, cells were transfected with different 
lentiviruses using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) 
according to the manufacturer’s protocol. After 12 h, the trans-
fection medium was replaced with normal growth medium. The 
mRNA expression was assessed using qRT-PCR. The LV-RNAi 
of DNMT1 (CCGGCGACTACATCAAAGGCAGCAACTCGAGTTGCTG 
CCTTTGATGTAGTCGTTTTT), DNMT3b (CCGGCCTGTCATTGTT 
TGATGGCATCTCGAGATGCCATCAAACAATGACAGGTTTTTG), 
HDAC1 (CCGGGCTGCTCAACTATGGTCTCTACTCGAGTAGAGAC 
CATAGTTGAGCAGCTTTTT) and HDAC3 (CCGGCCTGCATTA 
TGGTCTCTATAACTCGAGTTATA GAGACCATAATGCAGGTTTTTG) 
and over-expression lentivirus (DNMT1 and HDAC1) were all 
provided by Genechem (Shanghai, China).

Xenograft tumorigenicity assay

All animal care and experimental procedures were approved 
by the Institutional Animal Care and Use Committee of Central 
South University (ID: 201603115).

BALB/c-nude mice (female, 4–5 weeks of age, body weight 
18–20 g) were purchased from the Experimental Animal Center 
of Central South University. The animals were acclimated to 
their new environment for 1 week; the cells were inoculated 
subcutaneously into the left flank of mice. Tumor formation 
was monitored after inoculation. Tumors measuring at least 
5 mm in diameter were considered to demonstrate success-
ful model establishment. Tumor volume was calculated every 
4 days using the equation (L*W2)/2. After 3 weeks, mice were 
sacrificed after injection of cells, and the tumors were stripped 

463
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Peng Z. et al.: 
Curcumol controls choriocarcinoma stem-like cells self-renewal…
© Med Sci Monit, 2018; 24: 461-472

LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



and weighed. The overall survival analysis was performed and 
recorded as the whole survival time per mouse.

Immunohistochemistry analysis

Fresh tissues were immediately fixed with 4% paraformalde-
hyde and paraffin-embedded. All the tissue samples were sec-
tioned into 4-μm sections. Slides were deparaffinized, rehydrat-
ed, and treated with 3% hydrogen peroxide. Antigen retrieval 
was performed by boiling the sections for 10 min in citrate buf-
fer antigen retrieval solution (pH 6.0) at 100°C for 3 min. The 
sections were subsequently incubated overnight with prima-
ry antibody (DNMT1, 1: 200, DNMT3b, 1: 200, HDAC1, 1: 100, 
HDAC3, 1: 200), and then were washed with PBS and incubat-
ed with IgG anti-rabbit HRP-conjugated secondary antibodies 
IgG (CST, Darmstadt) for 30 min. The slides were stained with 
DAB (Solarbio, Beijing, China) and the stained cells were then 
analyzed. Five fields were randomly selected. The IHC scores 
were calculated according the method described previously [29].

Statistical analysis

All data are expressed as means ±SD. Differences were deter-
mined by one-way ANOVA test and chi-square test. Data not 
conforming to the homogeneity of variance were analyzed us-
ing the Kruskal-Wallis test. Survival curves were plotted by the 
Kaplan-Meier method and compared by log-rank test. A prob-
ability of p<0.05 was considered statistically significant. All 
statistical analyses were performed using SPSS 17.0 software.

Results

Increased expression of DNMTs and HDACs in 
choriocarcinoma CSLCs

The choriocarcinoma CSLCs were isolated using 2 different 
methodologies. The first one, using free-serum spheres forma-
tion, was as we described earlier. In another, using the CSC ge-
netic marker, we separated CD133+ cells from CD133– cells by 
FACS sorting. To determine the DNA methylation levels in CSLCs 
and non-CSLCs, we measured the levels of the DNA methyla-
tion markers 5-mC. The results showed that the CSLC popula-
tion exhibited significantly higher expression of 5-mC, irrespec-
tive of the method used for isolating CSLCs (Figure 1A, JEG-3 
vs. Sphere, p<0.01; CD133– vs. CD133+, p<0.001). Further, sig-
nificantly higher mRNA and protein expression of DNMT1 and 
DNMT3b were observed in the CSLCs, regardless of the isola-
tion method used (Figure 1B, 1C; p<0.05). Moreover, the HDAC 
activity was higher in CSLCs than in non-CSLCs (Figure 1D; 
p<0.05). In both of the 2 different isolation methods, signifi-
cantly higher mRNA (Figure 1E, p<0.05) and protein (Figure 1C, 
p<0.001) expression of HDAC1 and HDAC3 were found in all 

CSLCs except for HDAC2. However, no significant difference was 
observed in the expression of HDAC2 mRNA in CD133+ cells 
as compared to CD133– cells. These findings indicate higher 
expression of DNMTs and HDACs in CSLCs.

Inhibition of DNMTs and HDACs suppresses CSLCs 
self-renewal

To further confirm the results above, DNMTs inhibitor 5-AzaC 
and HDACs inhibitor TSA were used to assess whether DNMT 
and HDAC inhibition could ablate choriocarcinoma CSLCs 
self-renewal. JEG-3 cells were treated with 5-AzaC or TSA in 
the process of sphere formation every other day for 7 days. 
DNMT1 and DNMT3b expression were reduced by 5-AzaC in 
spheres at both the mRNA and protein levels (Figure 2A, 2B, 
p<0.01). Similar suppression in the HDAC activity in spheres 
was observed with the treatment of TSA (Figure 2C, p<0.05); 
however, a significant decrease in HDAC1 and HDAC3 mRNA 
(Figure 2D, p<0.05) and protein (Figure 2A, p<0.01) expression 
was observed. For the self-renewal, 5-AzaC and TSA were sig-
nificantly abrogated by CSLCs in both first- and second-gener-
ation (Figure 2E, p<0.05) and reduced the expression of stem-
ness-associated genes, including NANOG, OCT4, SOX2, and 
ABCG2 (Figure 2F, p<0.01). The CD133 cell surface expres-
sion levels were significantly suppressed in spheres treated 
with 5-AzaC and TSA (Figure 2G, p<0.05). These data indicat-
ed that DNMTs and HDACs play significant roles in preserving 
the stemness state of CSLCs.

Inhibition of CSLCs self-renewal with RNAi of DNMT1/3b 
and HDAC1/3

To further verify our hypothesis that DNMT and HDAC were 
indeed crucial for maintaining the stemness of CSLCs, we es-
tablished transfected cells with LV-shRNA of DNMT1/3b and 
HDAC1/3 alone or combined. The expression of DNMT1/3b 
and HDAC1/3 protein decreased significantly in the transfected 
cells (Figure 3A, 3B, p<0.001). Further, the RNAi of DNMTs and 
HDACs inhibited the sphere formation (Figure 3C, p<0.05) and 
expression of stemness-associated genes (Figure 3D, p<0.05). 
Taken together, the results further support the vital role of 
DNMTs and HDACs in choriocarcinoma CSLCs.

Curcumol suppresses CSLCs self-renewal and DNMT/HDAC 
activity in vitro and in vivo

Next, to investigate the effect of curcumol (Figure 4A) on cho-
riocarcinoma, 75 μg/ml curcumol was used in JEG-3 cells, and 
the mean 50% inhibitory concentrations (IC50) of cell growth 
(Figure 4B) was calculated. Primary JEG-3 cells were treated 
with 75 μg/ml curcumol every other day for 7 days for sphere 
formation. The treatment for functional level: (1) reduced the 
sphere formation rate (Figure 4C, p<0.001), (2) suppressed the 
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Figure 1.  Higher DNMT and HDAC expression in choriocarcinoma CSLCs. (A) Quantification of 5-mC in non-CSLCs versus CSLCs (JEG-
3 vs. sphere and CD133– vs. CD133+). Data are shown as relative expression compared with non-CSLCs (JEG-3 and CD133–). 
(B) RT-PCR analysis of DNMTs mRNA levels in non-CSLCs vs. CSLCs. (C) Western blot analysis of DNMT1, DNMT3b, HDAC1, 
and HDAC3 protein levels in non-CSLCs vs. CSLCs. GAPDH was used as the internal control (left). Respective relative changes 
in DNMTs (middle) and HDACs (right) protein levels. (D) Total HDAC activity of non-CSLCs vs. CSLCs. (E) RT-PCR analysis of 
HDACs mRNA levels in non-CSLCs vs. CSLCs. Data represent mean ±SD from at least 3 independent experiments, * p<0.05; 
** p<0.01; *** p<0.001.

CD133 surface expression percent (Figure 4D, p<0.01), and 
(3) decreased the expression of stemness-associated genes 
(Figure 4E, p<0.001). In terms of epigenetic profile, a high-
er expression of 5-mC indicated DNA methylation in CSLCs 
was abrogated by curcumol treatment (Figure 4F, p<0.001). 
Furthermore, the treatment led to a significant reduction in 

the expression of DNMT1 and DNMT3b (Figure 4G, 4H, p<0.05). 
Consistent with these findings, curcumol decreased HDAC activ-
ity in spheres (Figure 4I, p<0.01) and also significantly reduced 
the expression of the HDAC1/3 protein (Figure 4G, p<0.05) and 
mRNA (Figure 4H, p<0.001).
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Figure 2.  DNMT and HDAC inhibition decrease CSLCs self-renewal. (A) Western blot was used to analyze DNMT1/3b and HDAC1/3 
protein levels following 5-AzaC or TSA treatment (left). Respective changes in DNMTs (middle) and HDACs (right) protein 
levels. (B) RT-PCR analysis of DNMT1 and DNMT3b mRNA levels with 5-AzaC treatment. (C) Total HDAC activity of CSLCs with 
TSA treatment. (D) RT-PCR analysis of HDAC1 and HDAC3 mRNA levels with TSA treatment. (E) Representative images of 
spheres (10×, left) and sphere counts (right) in first- and second-generation in cells with 5-AzaC or TSA treatment. (F) RT-PCR 
analysis of stemness-associated genes in sphere cells with 5-AzaC or TSA treatment (groups of 5-AzaC, TSA and 5-AzaC+TSA 
vs. DMSO group). Results were normalized to expression of GAPDH. (G) Flow cytometry analysis of CD133 cell surface 
expression in sphere cells with 5-AzaC or TSA treatment. Data represent mean ±SD from at least 3 independent experiments, 
* p<0.05; ** p<0.01; ***p<0.001.

466
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Peng Z. et al.: 
Curcumol controls choriocarcinoma stem-like cells self-renewal…

© Med Sci Monit, 2018; 24: 461-472
LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



Further, for the in vivo studies, choriocarcinoma CSLCs tu-
mor-bearing nude mice were orally treated with curcumol 
(200 mg/kg) daily for 10 days when the tumor grew to 100 mm3. 
Two weeks after the termination of treatment, changes in 
the tumors in mice were observed (Figure 5A). A significant 
shrinkage both in tumor volume and weight was observed af-
ter treatment with curcumol (Figure 5B, 5C, p<0.001). Further, 
IHC analysis showed that the curcumol-treated xenografts 
exhibited elevated DNMT1, DNMT3b, HDAC1, and HDAC3 ex-
pression (Figure 5D). The Kaplan-Meier analysis revealed that 
mice treated with curcumol survived longer than in the DMSO 
group (Figure 5E, p=0.0027). These data demonstrate that 

inhibition of curcumol overcomes the stemness potential of 
choriocarcinoma CSLCs.

Curcumol affects CSLCs through regulation of DNMTs and 
HDACs

Next, we assessed whether the inhibition of curcumol in cho-
riocarcinoma CSLCs is through the regulation of DNMTs and 
HDACs. The primary cells treated with curcumol had signifi-
cantly fewer sphere counts as compared to the combination of 
5-AzaC and TSA in the secondary generation (p<0.05), and the 
NANOG, OCT4, SOX2, and ABCG2 expression levels (p<0.05). 
Further, the treatments of curcumol combined with 5-AzaC or 
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Figure 4.  Curcumol decreases CSLCs self-renewal and DNMT/HDAC activity in vitro. (A) Chemical structure of curcumol. (B) IC50 
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images (10×) of DMSO and treated 75 μg/ml curcumol for 7 days (left) and sphere counts in first- and second-generation 
in cells (right). (D) Flow cytometry analysis of CD133 cell surface expression in sphere cells with curcumol treatment. 
(E) RT-PCR analysis of NANOG, OCT4, SOX2, and ABCG2 mRNA expression levels in sphere cells with curcumol treatment. 
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TSA were also evaluated. When curcumol was combined with 
5-AzaC or TSA, both the combinations significantly enhanced 
the inhibition of CSLCs phenotypes, which was represent-
ed by decreased sphere formation rate and stemness-associ-
ated genes expression (Figure 6A, 6B, p<0.05). Nevertheless, 
given the exceptional role of DNMT1 and HDAC1 in CSLCs, we 
transfected their over-expression lentivirus into primary JEG-
3 cells (Figure 6C, p<0.01). The curcumol-mediated reduction 
of CSLCs was reversed by DNMT1 and HDAC1 over-expression, 
including stemness-associated genes (Figure 6D, 6E, p<0.05). 
These results demonstrate that curcumol suppresses CSLCs 
through the significant regulation of DNMTs and HDACs in 
choriocarcinoma.

Discussion

Because cancer stem cells play pivotal roles in occurrence, de-
velopment, recurrence, and metastasis of cancer, it is impera-
tive to elucidate the underlying molecular mechanisms of CSCs. 
Recently, the CSC epigenetics was shown to explain the signif-
icance of epigenetic-modifying agents in the stem-like charac-
teristics of tumor cells [30]. The present study demonstrated 

that curcumol could reduce the self-renewal of choriocarcino-
ma CSLCs with repression of the DNMT- and HDAC-mediated 
epigenetic regulation.

Epigenetic regulation is a heritable mechanism during stem 
cell fate specification [31], which involves intrinsic and extrin-
sic mechanisms deciding cell fate [32]. CSCs exhibit remark-
able functional differences from their progenies that share the 
same genetic information, indicating the epigenetic changes 
they regulate. Thus, epigenetics must be the potential driver 
of the inherent heterogeneity [33]. Chemotherapy is the first-
line therapy in choriocarcinoma patients; however, due to the 
childbearing age and the intrinsic chemotherapeutic sensitiv-
ity, there is a serious shortage of grouped clinical specimens. 
Despite this limitation, the present in vitro study supports that 
hypermethylation and activated histone deacetylation are con-
sistent differential factors in CSCs as compared to non-CSCs.

Embryonic stem cells that lack DNA methyltransferases remain 
viable; however, they die when induced to differentiate [34]. 
Numerous studies reported that DNMTs are essential for can-
cer stem cell maintenance and tumorigenesis [35,36], including 
DNMTs themselves and DNMT-mediated epigenetics [37,38]. 
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Figure 5.  Curcumol decreases CSLCs self-renewal in vivo. (A) Tumor-bearing nude mice were treated with (200 mg/kg/day) orally for 
10 days when the tumor grew to 100 mm3. Subcutaneous tumor in DMSO group vs. curcumol group of nude mice. (B) Tumor 
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vs. curcumol group). (D) IHC staining displaying the DNMT1, DNMT3b, HDAC1, and HDAC3 protein expression between DMSO 
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Data represent mean ±SD from at least 3 independent experiments, ** p<0.01; *** p<0.001.
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Figure 6.  Curcumol affects CSLCs via regulation of DNMT and HDAC. With the treatment of curcumol combined with 5-AzaC or TSA, 
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In another choriocarcinoma cell line, BeWo cells, both DNMT3a 
and DNMT3b, were found to affect migration and invasion [13]. 
Furthermore, the epigenetic mechanism has also been found 
to play a dynamic role in oncogenes. For instance, DNA meth-
ylation of E-cadherin promotor helps to recruit HDACs to the 
site, leading to histone deacetylation and transcriptional si-
lencing [39]. The combination of DNMT and HDAC inhibitors, 
one of the most common combination therapies, have been 
extensively evaluated in clinical trials for the treatment of a 

variety of cancers [40]. In the present study, DNMT1/3b and 
HDAC1/3 expression were consistently upregulated in CSLCs. 
The combination of 5-AzaC and TSA showed a noticeable ef-
fect on multipotential stemness, which indicated the critical 
role of DNMTs and HDACs in CSLCs.

Besides these known single-target compounds, many other mul-
tipotent-drugs are being developed and investigated in clini-
cal trials. Thus, we sought to evaluate the effectiveness of the 
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traditional drugs with new and pleiotropic functions in can-
cer therapy. As an active component of a traditional Chinese 
medicine used in gynecological therapy, curcumol attracted 
our attention due to its low toxicity and its anti-cancer ef-
fects on many tumors. Therefore, in this study we investigat-
ed the anti-cancer activities of curcumol against choriocarci-
noma CSLCs. Numerous studies have reported the anti-cancer 
mechanisms of curcumol. For instance, it repressed colorectal 
cancer cells via regulating IGF-R and p38 MAPK signaling path-
ways [41] and Akt/GSK3b/cyclin D1 pathways [42]. Some tradi-
tional Chinese medicines, such as curcumin, have been shown 
to affect epigenetic regulation in cancer cells [43,44]. However, 
there are no reports on its epigenetic-regulatory effect in can-
cer cells, particularly in CSCs. Notably, in the present study, the 
stemness repression in choriocarcinoma CSLCs was observed 
in both in vitro and in vivo studies with treatment of curcum-
ol. Moreover, curcumol enhanced the overall survival rate of 
tumor-bearing mice. We further investigated the underlying 
regulatory mechanisms of curcumol. As hypothesized, DNMTs 
and HDACs expressions were significantly decreased in CSLCs 
by curcumol, and the stemness repression of curcumol can be 

abrogated by DNMT/HDAC overexpression, remarkably. These 
findings indicated that DNMT/HDAC is the potential target of 
curcumol, which warrants further investigation. Moreover, we 
found that curcumol exhibited a significantly greater effect on 
stemness repression in CSLCs as compared to the combina-
tion of DNMT and HDAC inhibitors. Experimentation with var-
ious other types of inhibitors is required.

Conclusions

In conclusion, our results underlined the significance of epi-
genetic mechanism in choriocarcinoma CSLCs through regula-
tion of DNMTs and HDACs. Our results also demonstrated the 
effectiveness of curcumol against CSLCs, indicating its poten-
tial therapeutic role in epigenetic cancer therapies.
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