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Abstract: For the first time, compounds with lanthanum from the main family element Boron (LaBx)
were investigated as an active layer for thin-film transistors (TFTs). Detailed studies showed that
the room-temperature fabricated LaBx thin film was in the crystalline state with a relatively narrow
optical band gap of 2.28 eV. The atom ration of La/B was related to the working pressure during the
sputtering process and the atom ration of La/B increased with the increase of the working pressure,
which will result in the freer electrons in the LaBx thin film. LaBx-TFT without any intentionally
annealing steps exhibited a saturation mobility of 0.44 cm2·V−1·s−1, which is a subthreshold swing
(SS) of 0.26 V/decade and a Ion/Ioff ratio larger than 104. The room-temperature process is attractive
for its compatibility with almost all kinds of flexible substrates and the LaBx semiconductor may be
a new choice for the channel materials in TFTs.

Keywords: LaBx; thin film transistors; low temperature; field effect; flexible

1. Introduction

The flexible active matrix organic light-emitting diode (AMOLED) displays have been attracting
great attention because they have many outstanding advantages such as thin width, lightweight,
and superior flexibility [1–3]. As the key part of the AMOLED, thin film transistors (TFTs) with a low
temperature process become an inevitable trend in order to match flexible displays.

Over recent decades, amorphous silicon (a-Si) and polycrystalline silicon have been the main
choice for channels in TFTs. However, a-Si TFTs has a low mobility of less than 1 cm2·V−1·s−1,
which is too low to drive high resolution displays [4,5]. On the other hand, polycrystalline silicon
TFTs possess poor uniformity due to the grain boundary, which limits its application in large-size
displays [6,7]. Compared to silicon based TFTs, metal oxide TFTs (e.g., InGaZnO [8–10], InZnO [11–13],
and ZnO [14–16]) have a great potential in flat panel displays because of their high mobility, visible-light
transparency, satisfactory uniformity, and low temperature process [17,18]. However, TFTs based on
metal oxides are meeting a great challenge of long-term stability. Actually, InGaZnO (IGZO) was the
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most representative among oxide material systems. Since Nomura et al. [19] reported the flexible
TFTs based on IGZO, the IGZO has attracted extensive attention. Currently, with the efforts of many
scientific researchers, AMOLEDs based on IGZO-TFTs have entered people’s life. However, Indium
is a rare earth element and is becoming rarer. Therefore, the cost is very expensive. Furthermore,
considering the cost and stability, it is necessary to develop some new materials to fabricate TFTs at
a low temperature. To develop In-free materials, Alston et al. [20] reported TFTs with a GaSnZnO
(GSZO) active layer fabricated below 150 ◦C. However, the mobility was only 0.14 cm2·V−1·s−1.
Park et al. [21] reported solution-processed TFTs with an alkali metal doped ZnO active layer, but the
ZnO surface was sensitive to the atmosphere and the device stability was poor. Kim et al. [22] reported
TFTs with an Hf doped ZnO active layer, but the electrical performance was poor with a large
subthreshold swing (SS) of 1.09 V/decade and a turn-on voltage (Von) of −7 V. Jiang et al. [23] reported
TFTs with an Al doped ZnO active layer, but the mobility was only 0.17 cm2·V−1·s−1. It seems difficult
to attain high-performance TFTs with a ZnO based active layer without the Indium element. Therefore,
it is necessary to develop a new semiconductor material system suitable for an active layer in TFTs.

Lanthanum hexaboride (LaB6) is a known functional ceramic material in the photoelectric field due
to its high melting temperature, excellent chemical stability, and high hardness [24–27]. Furthermore,
La is relatively abundant in the earth’s crust with an annual output of 12,500 t compared to the In with
an annual output of 75 t and Ga with an annual output of 30 t. In and Ga are limited resources and
becoming rarer, so the relatively rich content in the earth’s crust means a lower price. Therefore, LaBx is
cheaper than In2O3 based material for an active layer in TFTs. Considering the physical properties and
cost, there is a great potential for LaB6 materials in the semiconductor field. Conventionally, LaB6 is
widely used as cathode emission material [28,29]. So far, there is no report about its application in the
TFTs field.

In our work, we report the fabrication and performance of TFTs that use compounds with
lanthanum and the main family element Boron (LaBx) for the active layer. This is the first time to
use LaBx thin film as the channel materials in TFTs. The LaBx-TFTs exhibited obvious field-effect
characteristics. The structure and performance of LaBx thin films were investigated by X-ray
photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-Visible spectrometer. Compared
to the TFTs with ZnO-TFTs with the In element, the outstanding advantages of LaBx-TFTs include
the following: the cost of LaB6 is relatively cheap due to the abundant content of La in the earth
crust, which is helpful for reducing the manufacturing cost and the stable chemical properties of LaB6,
which is beneficial for high-stability devices. Additionally, the LaB6 has a low coefficient of expansion
close to zero, so the stress between LaB6 and adjacent films is low and it is easy to attain high-stability
flexible devices. Therefore, it may provide a new choice for channel materials in TFTs.

2. Experimental

The LaBx-TFTs were fabricated with a top contact configuration (see Figure 1) by using a heavily
doped n-type silicon wafer with a 300 nm thick layer of thermally oxidized SiO2 (11.4 nF/cm2),
which serves as the gate electrode and gate insulator, respectively. The wafers were cleaned in
an ultrasonic bath with acetone, de-ionized water, detergent, de-ionized water, and isopropanol
for 10 min in sequence. The LaBx thin films with a thickness of 40 nm (optimized thickness)
were deposited on the silicon wafer by DC magnetron sputtering with LaB6 target in a pure argon
atmosphere with a flow of 25 sccm and patterned by a shadow mask with an area of 500 µm × 800 µm.
For the source/drain electrodes, 380-nm-layer of ITO was sputtered through a shadow mask defining
a channel width/length (W/L) of 300/300 µm. The whole preparation process was completed at room
temperature. We compared the device A to device B and made a detailed investigation on the different
electrical performances between device A and B. In this scenario, the only difference between device
A and B is that the LaBx channel layer was prepared under different working pressure. For device
A, the LaBx thin film was deposited in pure argon atmosphere with a flow rate of 25 sccm under
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a working pressure of 0.25 Pa. At the same time, the LaBx thin film was deposited under a working
pressure of 3.8 Pa for device B.

Figure 1. The schematic structure of LaBx-TFT.

3. Results and Discussion

3.1. Electrical Properties

Figure 2a,b show the output curves for LaBx TFTs fabricated under the different working
pressure of 0.25 Pa and 3.8 Pa, respectively. Both device A and B exhibited strongly-saturated
output characteristics. Additionally, device A exhibited a larger output current than device B in
a saturation region. The comparison between the transfer curves for device A and B is shown in
Figure 2c, respectively. The corresponding properties were summarized in Table 1. Device B exhibited
a poor electrical performance with a saturation mobility (µsat) of 0.13 cm2·V−1·s−1, a subthreshold
swing (SS) of 0.89 V, a negative turn-on voltage (Von) of −5.31 V, a negative threshold voltage (VT) of
−2.51 V, and a current on/off (Ion/Ioff) larger than 103. At the same time, device A exhibited a relative
satisfactory electrical performance with a higher µsat of 0.44 cm2·V−1·s−1, a lower SS of 0.26 V/decade,
a Von of −0.44 V, a VT of −2.27 V, and a Ion/Ioff ratio larger than 104.

Figure 2. Output curves for device A (a) and device B (b). (c) Transfer curves for device A and device B.
(Device A: LaBx active layer was prepared in pure argon atmosphere with a flow rate of 25 sccm under
a working pressure of 0.25 Pa. Device B: LaBx active layer was prepared in pure argon atmosphere
with a flow rate of 25 sccm under a working pressure of 3.8 Pa).

Table 1. Comparison of device properties for device A and B.

Device Number µ/(cm2·V−1·s−1) Ion/off Von/(V) VT/(V) s/(V/decade)

Device A 0.44 1.24 × 104 −0.44 2.27 0.26
Device B 0.13 1.22 × 103 −5.31 −2.51 0.89
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The significant difference between device A and B was mainly ascribed to the different chemical
structure and atom ratio for La/B under a different working pressure [30,31]. For LaBx film,
the working pressure plays a very important role in the deposition process. Zhao et al. [32] pointed
out that LaB6 thin films, which were deposited at 1.0 Pa, have a higher degree of crystalline structure
and superior physical properties in comparison with the other films. Hu et al. [33] also reported that
argon pressure strongly influenced the condensing particles’ kinetic energy clearly by affecting the
scattering processes of sputtered energetic particles and LaB6 film deposited at 1.0 Pa showed a higher
crystallinity degree. However, the optimal conditions are not applicable to LaBx films in this work,
which can be used as an active layer for TFTs. It’s noted that the huge difference of atomic weight
between La and B is extremely large. For the La atom, the atomic weight is 138.9 while, for the B atom,
the atomic weight is only 10.8. This means that the scattering probability of those atoms in discharge
space by Ar atoms is very different from each other. The scattering of La atoms is small and La atoms
are relatively easy to place at the substrate. On the other hand, B atoms are likely to be scattered
by Ar. Therefore, some of them will arrive at the substrate level but some will be deposited at the
chamber wall or evacuated by the vacuum pump. This implies that the La/B stoichiometric ratio of
LaBx film will be changed when deposited under different working pressures. The structure of LaB6

is similar to the that of CsCl, which exhibits a body centered cubic shape [34]. The difference is that
the B6 octahedral clusters occupy the position of the Cl atom and the La atom occupies the position
of the Cs atom. To keep the stability of the B6 octahedral network, two electrons are needed. So the
La atom with three electrons in the outermost electron orbital will be electronically spared and the
extra electron will be free to move around the La atom. In other words, the electrical properties of LaBx

thin film will be largely dependent on the chemical structure and the ratio of La and B. It is reasonable
to suppose that the free electrons will increase with the increase of the La/B stoichiometric ratios.
However, the resistivity (carrier concentration or mobility) is nonlinear with the La/B stoichiometric
ratios because it is also affected by the degree of crystallization and the grain boundary scattering
in addition to the La/B stoichiometric ratios [33]. To explain the different properties for TFTs with
the LaBx active layer prepared under different working pressures, the measurement of XPS, XRD,
and UV-visible spectrometer were performed.

3.2. XPS Measurement

In order to figure out the composition change of LaBx thin film deposited under different working
pressures, the XPS measurement was performed. The 300-nm-thick LaBx thin film samples were
prepared on silicon substrate by magnetron sputtering with a LaB6 ceramic target. The LaBx thin
film samples measured for XRD were prepared under the same conditions. Sample A and sample B
denoted for the 300-nm-thick LaBx film were prepared with a working pressure of 0.25 Pa and 3.8 Pa,
respectively. In addition, the atomic percentage of each element for sample A and B were summarized
in Table 2. As shown in Table 2, there are nearly identical atom percentages of La for sample A
(14.0%) and B (15.3%) while a significant difference of atom percentage happened between sample
A (49.58%) and sample B (36.9%). The atom ratio of La/B increased from 28.1% to 41.5% with the
working pressure increased from 0.25 Pa to 3.8 Pa, which indicates that the relative content of La was
increased. This resulted in more free electrons in LaBx thin film. Additionally, this is consistent with the
transfer characteristics shown in Figure 2c where the LaBx TFT prepared under the working pressure
of 3.8 Pa exhibited a more negative threshold voltage. In addition, the relatively small on-current may
be ascribed to the carrier scattering with the increase in carrier concentration.
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Table 2. The atomic percentage of each element for the LaBx thin films deposited under different
working pressure. (Sample A: a 300-nm LaBx was prepared on silicon substrate by magnetron
sputtering with a working pressure of 0.25 Pa. Sample B: a 300-nm LaBx was prepared on silicon
substrate by magnetron sputtering with a working pressure of 3.8 Pa).

Sample Number La/at% B/at% O/at% La/B

Sample A 14.0 49.8 36.2 28.1%
Sample B 15.3 36.9 47.8 41.5%

3.3. XRD Patterns

The crystal structure of LaBx thin films deposited under different working pressures were
investigated by using XRD, which is shown in Figure 3. It is easy to find that the LaBx thin films
prepared under different working pressures exhibited obvious crystalline. However, it is noted that
we could not match the acquired diffraction patterns to the standard diffraction patterns for LaB6.
This difficulty can be accounted for by using the following two reasons [35]. First, there is a large
thermal mismatch between the LaB6 thin film and the Si substrate. The thermal expansion coefficients
are 6.0 × 10−6 K−1 for LaB6 versus 2.6 × 10−6 K−1 for Si and the difference can induce thermal stress
in thin films and shift the patterns. Second, due to the Ar implantation, film deposited by sputtering
usually has additional problems such as the deviation in the stoichiometric ratio, the defect state’s
creation and structural change, which result in the mismatch between the acquired diffraction patterns
and reference patterns.

Figure 3. XRD patterns of LaBx thin films prepared under different working pressure. (300 nm on
silicon substrate).

3.4. Optical Gap

To evaluate the optical bandgap energy (Eopt), the UV-Visible light absorption spectrum was
measured. The 40-nm-thick LaBx thin film sample was prepared on quartz glass by magnetron
sputtering under a working pressure of 0.25 Pa. The absorption spectrum for LaBx thin film was shown
in Figure 4. The Tauc model [36,37] indicates the relationship between the photon energy (hν) and the
optical-absorption coefficient (a). Additionally, the plot of (ahν)1/2 vs. photon energy was shown in
the inset in Figure 4. The Eopt value can be obtained by extrapolating the linear portion to the photon
energy axis in the plot of (ahν)1/2 vs. photon energy. The Eopt value is calculated to be about 2.28 eV.
The relatively narrow band gap can lead to smaller activation energies and accumulates the thermally
activated carries, which is consistent with the electrical characteristic for LaBx TFT annealed at 400 ◦C
(not shown).
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Figure 4. Absorption spectrum of the 40-nm-thick LaBx thin film on quartz glass and the inset shows
the plot of (ahν)1/2 vs. photon energy.

4. Conclusions

In conclusion, LaBx thin films prepared under different working pressures by DC magnetron
sputtering were investigated as an active layer for TFTs. The element distribution and structural
properties of LaBx thin films were analyzed by using XPS, XRD, and UV-visible spectrometers. The XPS
results demonstrated that the atom ratio for La/B was related to the working pressure during the
sputtering process and enhanced with the increase in the working pressure. The XRD results showed
that the LaBx thin film was polycrystalline. According to the absorption spectrum, the Eopt value was
calculated to be about 2.28 eV from the plot of (ahν)1/2 vs. photon energy. The room-temperature
fabricated LaBx-TFT exhibited a µsat of 0.44 cm2·V−1·s−1, a SS of 0.26 V/decade, and an Ion/Ioff ratio
larger than 104. The room-temperature processes without intentionally annealing steps show a great
potential for the applications in the flexible displays. The LaBx may be a new choice for the channel
materials in TFTs.
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