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A B S T R A C T

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United
States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain,
a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have
demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hy-
potheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another
pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial
role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr
improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated
the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr
supplementation as a treatment for AD.
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Introduction
Adults aged 65þ represent the fastest-growing population

and the most affected age segment for neurodegenerative dis-
eases [1]. The most common neurodegenerative disease is Alz-
heimer’s disease (AD), which currently affects about 6.5 million
Americans and, by 2050, is expected to exceed 15 million [2].
This growth, combined with the lack of efficacious pharmaco-
logical treatments [3], constitutes a severe future risk to eco-
nomic and social stability in the United States. Thus, there is a
dire need for [1] effective preventive strategies that reduce AD
risk and [2] therapeutic interventions that ameliorate symptoms
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for those diagnosed with AD. For decades, the focus of the AD
drug development pipeline for treatment and prevention has
primarily targeted the amyloid-β (Aβ) plaques that accumulate as
a hallmark pathological change in the progression toward
symptomatic AD. Although novel Aβ antibody therapies have
shown promise in recent clinical trials [4, 5], Aβ-centric ap-
proaches have had a poor track record of treatment develop-
ment, leading to hypotheses that other AD pathology targets may
be more appropriate for prevention and treatment [6].

One such target is brain energy metabolism, termed “brain
bioenergetics.”Alongwith the classic hallmark pathological signs
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of AD, Aβ plaques and tau tangles, impaired brain metabolism is
also observed before and after the onset of symptomatic AD [7].
Mitochondrial dysfunction and impaired glucose utilization have
been consistently cited as contributing to AD progression [8], and
it is hypothesized that bioenergetic decline is an essential up-
stream contributor to AD development [7]. Indeed, adenosine
triphosphate (ATP), the body’s primary energy-providing mole-
cule, is decreased early inhippocampal and cortical neurons inAD
pathogenesis [9]. Cellular levels of ATP are a critical factor in
cellular survival [10], and reduced brain ATP is associated with
altered Aβ processing [11] and cerebral accumulation of Aβ pla-
ques [9]. Creatine (Cr) is an organic acid [12] important for
maintaining ATP and energy homeostasis in organs with high
energy flux, such as the brain [13]. Evidence suggests the brain Cr
system is perturbed in AD [14] and represents a potential bio-
energetic target for AD therapies.

Creatinemonohydrate (CrM) is an oral nutritional supplement
that safely and reliably increases intramuscular Cr levels and is
commonly used as an ergogenic aid for sports and exercise [15].
Recent evidence suggests CrM supplementation may improve
cognition in younger and older adults [13], and a few
small-sample studies suggest brain Cr may increase after supple-
mentation [16–23]. Dolan et al. [24] provide a detailed and
up-to-date review of the studies that have investigated brain Cr
and phosphorylated Cr (PCr) response to varying CrM in-
terventions and demographics. However, it remains unclear how
permissible the blood-brain barrier (BBB) is to peripheral Cr [25].
Emerging andpromising evidence fromADrodentmodels suggest
CrM supplementation may improve mitochondrial function and
be neuroprotective [26–28]. Thus, CrM may be a feasible sup-
plement for AD risk prevention and symptom treatment.

No clinical trials have investigated CrM supplementation as a
potential treatment in individuals with AD. Therefore, the pur-
pose of this review is to discuss the potential link between Cr and
AD, existing evidence for CrM in AD animal models, potential
beneficial mechanisms of CrM supplementation in AD, and the
need for CrM clinical trials to investigate the potential benefit of
CrM supplementation in treating humans with symptomatic and
prodromal AD.
Brain Cr and AD

The Cr system is integral in supporting both peripheral and
brain energy requirements. Its role may be especially vital in the
brain as it is a highly metabolic organ, demanding approximately
20% of total body energy [29], and can locally synthesize Cr
from its precursors [30]. In a 2-step process, nearly half of the
body’s Cr is synthesized from endogenous arginine, glycine, and
s-adenosyl methionine (SAM) [12]. The first step involves the
formation of guanidinoacetate (GAA) by glycine amidino-
transferase, mitochondrial (GATM) activity, which is then used
to synthesize Cr via guanidinoacetate N-methyltransferase
(GAMT) activity. Cr can also access the brain from the periphery
through the BBB via creatine transporter 1 (CRT1), though the
rate of uptake and optimal peripheral concentration to facilitate
increased uptake in the brain is not well understood [25]. Defi-
ciency of either enzyme (GATM or GAMT) or CRT1 results in a
cognitive disorder known as cerebral creatine deficiency syn-
drome (CCDS) [31].
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To meet rapid energy demand and maintain energy homeo-
stasis, Cr serves as the primary chaperone for transporting
energy-producing phosphate groups generated by mitochondrial
and cytosolic metabolism in muscle and brain cells [32, 33]. ATP
generated by the tricarboxylic acid cycle and the ETC in mito-
chondria donate phosphate to Cr via mitochondrial Cr kinase
(mtCK) activity to form PCr that then diffuses from the mito-
chondria into the cytosol. Likewise, brain-specific Cr kinase
(BB-CK) [14] in the cytosol phosphorylates Cr to form a cytosolic
pool of PCr. PCr is an important storage form of high energy
phosphates that can be rapidly donated to adenosine diphos-
phate (ADP) to form ATP energy molecules to meet energy de-
mand throughout the cell [34].

In individualswith AD, there is a recognized dysfunction in the
brain's Cr system [35]. This dysfunction manifests in various
ways. For instance, magnetic resonance spectroscopy imaging
(MRSI) studies have revealed decreased levels of PCr in the brains
of individualswithAD [36], and in the later stages of AD, there is a
significant reduction in the levels of BB-CK [37]. Furthermore,
nondemented older adults with at least one apolipoprotein E
epsilon 4 (APOE4) allele, the strongest genetic risk factor for
late-onset AD, had lower brain creatine levels than noncarriers
and lower Cr levels were correlated with worse cognitive test
performance [38]. This suggests Cr system impairments may be
involved in early disease pathogenesis, preceding onset of AD
symptoms.

Decreased brain Cr levels may be explained by brain hypo-
metabolism and acute cognitive stress. In times of hypo-
metabolism, brain PCr stores may be able to donate a phosphate
to regenerate ATP as a compensatory mechanism, but this may
only be effective for a limited time before PCr is depleted,
eventually leading to decreased brain Cr stores. In other condi-
tions where brain metabolism is impaired, such as in Down
syndrome [39–42], where individuals are at high risk of devel-
oping AD at a young age [43, 44], and in schizophrenia [45, 46],
it is similarly thought that PCr stores may be able to compensate
for brain hypometabolism until PCr is diminished, resulting in
decreased total brain Cr concentration. It remains unclear
whether changes in the brain Cr system in AD are a downstream
result of impaired energy metabolism or if dysfunction in the
brain Cr system contributes to impaired brain energy metabolism
and disease pathology. Nevertheless, brain Cr could be an
important bioenergetic target for AD. Figure 1 illustrates trans-
port, synthesis, bioenergetic roles, and potential mechanisms
related to AD for Cr in the brain.

Animal models suggest Cr supplementation
may be beneficial in AD

Evidence suggests there are potential benefits of CrM sup-
plementation in various populations [47–51]. Though no re-
ported trials have examined the effects of CrM supplementation
in individuals with AD, CrM supplementation may benefit
dysfunction of the brain Cr kinase system seen in humans with
AD [52]. Two studies of CrM supplementation in rodent AD and
mild cognitive impairment (MCI) models support this concept.

Snow et al. [27] demonstrated that between 8 and 9wk of CrM
supplementation in 7-mo old 3xTg mouse model, a mouse model
of AD that expresses Aβ plaques and tau neurofibrillary tangles



FIGURE 1. Creatine physiology in the brain and the proposed benefit of CrM in AD.
Cr in peripheral circulation is transported through the BBB via a Cr transporter, which may increase due to CrM supplementation. This Cr
transporter is also expressed by neurons to allow Cr transport into the cell. Neurons also endogenously produce creatine from the amino acids Arg
and Gly via a two-step process. The first step is the formation of GAA by GATM, which then forms Cr by GAMT activity. Cr helps maintain energy
flux as a chaperone for energy-producing phosphate groups. ATP generated by the ETC and the TCA cycle donate phosphate to Cr via mtCK to form
PCr. PCr is an important storage form of high energy phosphate that can meet energy demand throughout the cell. In the AD brain, ATP levels are
decreased. Increased Cr levels in the brain may signal mitochondria to upregulate aerobic respiration by replenishing free Cr chaperones for the Cr
Phosphate shuttle. Increased Cr levels in the brain may have several benefits: free Cr may have antioxidant properties and may be able to sequester
ROS, decrease neuroinflammation, increase mTORC1 signaling, and decrease AD neuropathologies. This figure was created with BioRender
(www.biorender.com).
Cr: creatine; CrM: creatine monohydrate; BBB: blood-brain barrier; CRT1: creatine transporter 1; Arg: arginine; Gly: glycine; GATM: glycine
amidinotransferase, mitochondrial; GAA: guanidinoacetate; GAMT: guanidinoacetate N-methyltransferase; MtCK: mitochondrial Cr kinase; PCr:
phosphorylated creatine; BB-CK: brain-specific Cr kinase; ATP: adenosine triphosphate; ADP: adenosine triphosphate; ETC: electron transport
chain; TCA: tricarboxylic acid cycle; ROS: reactive oxygen species; mTORC1: mammalian target of rapamycin complex 1. BioRender.com
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[53], improved several AD-related outcomemeasures.Mice in the
experimental group consumed ad libitum unpurified diet con-
taining 3% CrM by weight, whereas the control group’s unpuri-
fied diet was unmodified. After 8 wk of their respective diets, all
females had impaired Morris Water Maze (MWM) escape times,
yet CrM supplemented females escaped more quickly and
demonstrated improved spatial learning compared with control
females. Males in both groups had similar MWM performance,
with neither exhibiting impaired escape latency. Relative to
control, CrM-fed females had increased hippocampal expression
of proteins related to synaptic plasticity along with increased
high-molecular weight Aβ oligomers and lower expression of
low-weight Aβ oligomers, although amyloid precursor protein
(APP) was unchanged. The investigators speculate that these sex
differences were not likely due to sex differences in Cr meta-
bolism, but likely due to sex differences in 3xTg mice. For
instance, female 3xTg mice demonstrated worse initial cognitive
impairment and learning ability than male mice at the time of
study. Additionally, CrM supplementation in both males and
3

females improved hippocampal mitochondrial function respira-
tion. These data suggest a possible role for CrM in supporting
cognition and beneficially altering amyloidogenic processing in
AD.

Mao et al. [54] investigated the effects of 6 wk of Cr supple-
mentation (in unspecified supplemental form) on cognition and
the mammalian target of rapamycin complex 1 (mTORC1) in an
MCI rat model. Seven-wk-old female Wistar rats were allocated
to 3 different groups: one group was injected with vehicle,
whereas 2 groups were injected with lipopolysaccharide (LPS) to
induce an MCI-like condition where one received Cr and the
other received placebo. The Cr group received a loading dose of
1.542 g Cr/kg/d for the first wk and a maintenance dose of 0.385
g Cr/kg/d for the subsequent weeks. Compared with
LPS-injected control rats, Cr-supplemented rats completed the
Barnes maze test more quickly and spent more time observing
objects during the novel object recognition test, suggesting Cr
supplementation diminished expected LPS-induced cognitive
deficits. These mice also had upregulated mTORC1 and synaptic
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plasticity proteins in the dentate gyrus. In a second experiment
from this study featuring rats that did not receive LPS injection,
Cr-supplemented rats, similarly, had higher mTORC1 and syn-
aptic protein expression in the dentate gyrus than the control
mice. Unlike the LPS model, these rats did not have differing
cognitive performance.

Evidence from these 2 studies in AD and MCI rodent models
suggests CrM supplementation is potentially beneficial for
cognition, bioenergetics, and AD-related biomarkers and may act
in a sex-specific manner [27]. Clinical trials testing the effects of
CrM on mechanisms and symptoms in AD are warranted and to
determine if possible sex differences are directly related to sex or
instead an advanced condition state.
Potential mechanisms for Cr in AD

ThecauseofAD is still notwell understood, andmany important
etiological hypotheses attempt to explain its basis, including the
leading hypothesis that Aβ initiates the disease cascade [55], as
well as alternative hypotheses implicating impairedmitochondrial
bioenergetics [7] or inflammation and oxidative stress [56]. CrM
supplementation may be beneficial in AD as it is purported to in-
fluence each of the key components of these hypotheses as well as
other potentially important mechanisms.

Decades prior to the development of histological and clinical
manifestations of AD, brain mitochondrial bioenergetics and
glucose metabolism are reduced [57]. Specifically, impairments
have been found in the electron transport chain (ETC) com-
plexes, including complex I [58], which is responsible for con-
trolling a significant portion of mitochondrial respiration in
synaptic mitochondria [59]. Evidence suggests mitochondrial
respiration is partially regulated by the PCr/Cr ratio in human
skeletal muscle [60], which could also be true in the brain. In
mice, oral Cr supplementation increases mitochondrial respira-
tion in the hippocampus. Specifically, Cr supplementation has
been demonstrated to enhance the function of ETC complex I in
healthy mice [26] and both ETC complexes I and III in mouse
models of AD [27]. This suggests supplementing with CrM may
signal mitochondria to upregulate respiration by increasing free
Cr chaperones for the Cr Phosphate shuttle in the brain.

Brain insulin resistance is increasingly implicated in AD and
may partially explain impaired brain glucose uptake in AD [61].
Therapies targeting brain insulin resistance have had mixed
success [62, 63], yet this concept remains a reasonable bio-
energetic target. In vitro and animal studies suggest Cr supple-
mentation may improve peripheral insulin sensitivity [64, 65],
though human trials have not affirmed these findings [66, 67].
Cr supplementation increases insulin-dependent GLUT-4 activity
in muscle [68], a glucose transporter also expressed in the neu-
rons of select brain regions [69], which facilitates increased
glucose uptake [67]. Therefore, it is possible that Cr supple-
mentation may enhance brain glucose uptake to provide key
substrates for energy metabolism in the AD brain.

Oxidative stress is also implicated in the development and
progression of AD [70, 71]. Oxidative stress is caused by exces-
sive production of reactive oxygen species (ROS) due to aberrant
mitochondrial and cytosolic energy metabolism [72, 73]. Free Cr
may have direct effects as an antioxidant as it has been shown to
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have ROS scavenging properties [74, 75]. Evidence suggests free
Cr antioxidant activity may be particularly important for pro-
tecting mitochondria from ROS damage, which are susceptible to
oxidative stress that can exacerbate mitochondrial impairment
[76]. Furthermore, the BB-CK is a prime target of oxidative
damage by free radicals and is perturbed in AD [77, 78]. Cr
supplementation has been shown to attenuate the deleterious
effects of oxidative stress on the CK isoforms [76, 79]; therefore,
Cr supplementation may protect CK from oxidative damage in
the brain, which is observed in cognitive decline [77].

Furthermore, CrM supplementation may be protective of
neuroinflammation in AD. Aberrations to transcription factor
nuclear factor kappa-b (NF-kB) have been found in AD, which
may stimulate transcription of proinflammatory cytokines [80].
Although focus on NF-kB has been primarily on cancer and
inflammation, it plays integral roles in memory and synaptic
function [80]. NFk-B has been shown to target neurons and
negatively affect APP and Aβ aggregation in AD [80]. Cr sup-
plementation in rodents has been shown to decrease levels of
NF-kB in the brain and is associated with enhanced learning,
memory, and hippocampal mitochondrial function [26]. Cr
supplementation has also been shown to augment synaptic pro-
teins implicated in memory formation and learning with con-
current enhanced hippocampal-associated learning, memory,
and mitochondrial function in a rodent model [81].

CrM supplementation may benefit patients with AD by
modulating classical AD pathologies. Brain Aβ accumulation and
bioenergetic impairment are cited as 2 of the first AD pathology
changes [82] that are believed to cyclically influence each other
[83]. Downstream of these initial changes, neurofibrillary tangles
of phosphorylated tau (pTau) aggregate followed by frank neu-
rodegeneration and onset of AD symptoms [82]. One preclinical
study demonstrated that cultured hippocampal neurons treated
with Cr were protected from neurotoxic effects from adding Aβ
and glutamate to the cell cultures [28]. These effects coincided
with a large increase in phosphorylation of Cr to form PCr and the
ratio of PCr/ATP compared with the control, suggesting protec-
tion was conferred by increased neuronal energy potential and
reserve. In female 3xTg mice, Cr supplementation altered Aβ
processing by upregulating expression of high-molecular weight
species and downregulating the low-molecular weight 12kDa
mOC87 Aβ oligomer, the only Aβ species where higher concen-
tration was correlated with worse cognitive impairment in this
study [27]. In both sexes, 3xTg mice with higher Cr hippocampal
concentration had a lower concentration of pTau/Tau [27]. These
data suggest the potential bioenergetic effects of CrM in AD may
influence processing and phosphorylation of the hallmark pro-
teins, A-beta and tau.

The upregulation of mTORC1 signaling seen in mice repre-
sents another pathway Cr supplementation may provide benefit
in AD [54, 84]. mTORC1 is an anabolic pathway that responds to
feeding and stimulates protein synthesis [85]. Aside from its role
in muscle hypertrophy, mTORC1 may play a role in memory
formation [54]. For example, a rat study showed it has a role in
regulating long-term potentiation in the hippocampus [86], a
process that connects changes in synaptic strength to changes in
long-term behavior. However, it is hypothesized perpetual acti-
vation of mTORC1 may negatively impact the aging brain [87].
Mice studies suggest chronically active mTORC1 may upregulate
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Aβ accumulation and down-regulate autophagy, which both play
a role in cognitive impairment in AD [87, 88]. Therefore, it may
be prudent to selectively regulate mTORC1 in different phases of
life. The aforementioned study by Mao et al. [54] supports the
beneficial effects of Cr supplementation mediated through
mTORC1 on the aging rodent brain.

CrM supplementation may have peripheral benefits outside of
the brain. Specifically, Cr has the potential to enhance muscle
protein synthesis by triggering signaling pathways activated
through the osmotic effect of Cr in muscle cells [89]. In addition,
Cr may promote muscle hypertrophy through various cellular
mechanisms, including the inhibition of myostatin [90] and the
activation of insulin-like growth factor/mTOR [54, 91]. Thus,
CrM may be beneficial in AD because loss of lean body mass,
primarily skeletal muscle, has been cross-sectionally associated
with AD [92]. However, prospective studies show that muscle
function and strength are better predictors for reducing risk of
developing AD compared with maintenance of skeletal muscle
mass volume [93–96]. Cr supplementation has been shown to
increase muscle strength, lean body mass, and muscle function in
diverse populations, although data are less conclusive in in-
terventions without concomitant exercise [97–102]. Although
speculative, Cr supplementation may help prevent and improve
symptoms of AD through its effects on skeletal mass, muscle
volume, and function [99, 103–107], which warrants future
investigation.

Taken together, it is reasonable to hypothesize that Cr sup-
plementation may offer benefits to humans in prevention as well
as the early stages of AD through both brain bioenergetic and
peripheral mechanisms. These mechanisms in brain health are
summarized in Table 1.

Opportunities for Cr supplementation trials in
humans

CrM supplementation trials in humans with AD are needed to
glean essential knowledge regarding the utility of CrM as
TABLE 1
Putative roles for creatine in brain health

Putative role for creatine in brain health References

Phosphate carrier Wyss et al. [12]
Hemmer et al. [14]
Bonvento et al. [32]
Bessman et al. [33]

ROS scavenging properties Tarafdar et al. [73]
Lawler et al. [74]
Sestil et al. [75]
Sestill et al. [76]
Stachowiak et al. [79]

Improved energy metabolism Snow et al. [26]
Snow et al. [27]
Brewer et al. [28]
Snow et al. [80]

Protection against inflammation Snow et al. [26]
Snow et al. [80]

Modulation of AD neuropathology Snow et al. [26]
Snow et al. [27]
Brewer et al. [28]

mTORC1 signaling Mao et al. [54]
Pazini et al. [84]

AD, Alzheimer's Disease; ROS, reactive oxygen species.
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potential adjuvant therapy in AD. The mechanisms mentioned
above about Cr in AD have not been tested in humans.

Currently, our group is conducting a single-arm proof-of-
principle trial (NCT05383833) to determine if individuals with
AD (n¼20) can adhere to a 20 g/d CrM intervention for 8 wk.
Our trial will generate preliminary data for key questions in AD,
including change in the brain Cr levels, mitochondrial function,
cognition, and muscle function and morphology to inform
future, large-scale clinical trials. Our trial is a single-arm pilot
trial; thus, all future results should be cautiously interpreted as
preliminary, but our trial may serve as important justification for
future investigation. Although this is a first step in the investi-
gation of CrM for AD, other trials with larger sample size, a
placebo control group, and an array of measures that interrogate
different AD-related mechanisms and function will be necessary
to determine efficacy and optimal dose in this population. For
instance, since the ability of supplemental CrM to raise brain Cr
levels still needs to be elucidated [13, 16, 17], future trials will
be tasked with establishing optimal CrM dosing and interval
required to effectively change brain Cr levels. Because the goal of
AD therapies is to improve function and quality of life in in-
dividuals with AD, it will take large sample trials with an inter-
vention interval of 1 y or longer to investigate whether CrM
supplementation is beneficial for cognition and symptoms in AD.

Because bioenergetic decline is a progressive process that
occurs early in AD's pathology physiology [7, 108], trials are also
warranted to ascertain if CrM supplementation is valuable for AD
prevention. In prodromal AD, there is a minor decrease in brain
bioenergetics, but the brain may compensate until a threshold is
exceeded, whereafter, a significant bioenergetic decline ensues,
and AD symptoms are present [108]. Thus, a CrM intervention
may be best suited early in AD pathophysiology to help delay the
progression from preclinical or prodromal AD to symptomatic
AD. Taken together, there is a strong rationale for Cr pilot trials
in AD and those at high risk for AD.

Conclusions

It is imperative to identify effective, early treatments for AD. Cr
is an important bioenergetic molecule, and the Cr system is shown
to be dysfunctional in the brain of individuals with AD. Therefore,
Cr may serve as a potential target for prevention and therapy and
CrMsupplementationmaybebeneficial inAD.Todate, only rodent
studies have investigated the use of CrM as a treatment for AD.
Thus, clinical trials investigating the effects of CrM on cognition
andCrM’smechanisms inhumanswithADaswell as its potential as
a strategy to prevent cognitive decline in those with normal
cognition, are needed. There is much to be learned about CrM
intervention and brain health in different life and disease phases.
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