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ABSTRACT: The Internet environment has provided massive data to the actual
industrial production process. It not only has large amounts of data but also has a high
data dimension, which brings challenges to the traditional statistical process
monitoring. Aiming at the nonlinearity and dynamics of industrial large-scale high-
dimensional data, an efficient iterative multiple dynamic kernel principal component
analysis (IMDKPCA) method is proposed to monitor the complex industrial process
with super-large-scale high-dimensional data. In KPCA, a new KKT matrix is first
created by using kernel matrix K. According to the properties of the symmetric matrix,
the newly constructed matrix has the same eigenvector as the original matrix K; hence,
each column of the matrix K can be used as the input sample of the iteration algorithm.
After iterative operation, the kernel principal component can be deduced fleetly
without the eigen decomposition. Because the kernel matrix is not stored in the
algorithm beforehand, it can effectively reduce the computation complexity of the
kernel. Especially for a tremendous data scale, the traditional eigen decomposition
technology is no longer appropriate, yet the presented method can be solved quickly. The autoregressive moving average (ARMA)
time series model and kernel principal component analysis (KPCA) are combined to build the IDKPCA model for dealing with the
dynamics and nonlinearity in the industrial process. Eventually, it is applied to monitor faults in the penicillin fermentation process
and compared with MKPCA to certify the accuracy and applicability of the proposed method.

■ INTRODUCTION

Batch processes have been exploited to manufacture high-value-
added products in pharmaceutical, chemical, and semiconductor
industries. To guarantee the high quality of production products
and the safety and reliability of production process, multivariate
statistical process monitoring has been broadly applied for
monitoring batch processes1−5 because complex process
mechanisms do not need to be considered when establishing
monitoring models, only process data are needed. For
monitoring the nonlinear batch processes, representative
methods include the multiway kernel principal component
analysis (MKPCA)6,7 and multiway partial kernel least square
method (MKPLS).8,9 However, a new problem arises in the
kernel training process, which requires the calculation and
storage of the kernel matrix. Because the square of the sampling
point determines the dimension of the kernel matrix, the
eigenvalue solution and the matrix inverse operation will lead to
a huge amount of computation facing a large number of sample
points, which will be very time consuming. For the dynamic
characteristics of the process, Yu10 proposed multiway discrete
hidden Markov models to realize the classification and fault
detection in the complicated batch process with intrinsic
uncertainty and dynamics. Two-dimensional dynamic

PCA11,12 was presented to catch the dynamics within and
between batches concurrently by depicting the batch process in
a two-dimensional space. To further capture nonlinearity and
dynamics in the process, Wang et al.13 developed two-
dimensional DKPCA to extract the foremost principal
components. Nonetheless, the probability of the false positive
error (type I error) enhances with the increase of the number of
principal components used by the KPCA coding structure. In
addition, the dimensionality of the kernel matrix is high. Jia et
al.14 developed a dynamic kernel principal component analysis
(BDKPCA) monitoring method which combined the ARMAX
time series models and kernel PCA. However, without
adequately considering the differences between batches, only
one model was built with all the batch data, as a result, the model
is not very sensitive to fault monitoring. Wang et al.15 proposed
up-down double limit multimodel DPCA for the processes with
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finite modeling data sets. Nevertheless, when numerical changes
of the normal new types of data are quite different from the
original modeling data, the monitoring results are prone to false
positives.
The emergence of various sensors can collect massive process

data in industrial processes. New problems arise from establish-
ing the monitoring model by using floods of process data
collected online, such as redundant data, long time con-
sumption, and large amount of calculation.16,17 Big data analysis
and processing brings new challenges to industrial process
monitoring, as well as a key enabler.
For some complex industrial processes, different kinds of

sensors embedded in the system collect a large amount of
monitoring data in real time, thus large-scale data sets are
obtained. A manifold-based machine learning approach was
presented to excavate patterns in correlated, enormous, high-
dimensional data.18 Liu19 developed a data-driven Takagi−
Sugeno fuzzy model to model an actual plant situation with
relevant inputs and nonlinear and time-varying input−output
relationships. Principal component analysis eliminated the
collinearity of inputs. Wang20 proposed a multiscale neighbor-
hood normalization-based multiple DPCA method to monitor
the process running status and detect fault in complicated batch
processes with relevant manipulations. This method canmanage
the strong non-Gaussian distribution problem. However, the
computational process of scouting the nearest neighbors is
intensive, especially for the large-scale data. Song et al.21

presented the minimum-spanning tree (MST) method-based
feature selection algorithm (FAST). The fast clustering-based
technique of FAST can obtain useful and independent feature
subset with high probability. Feature selection is beneficial to
obtain an accurate data model and simplify calculation.22

Kohlert and König23 developed the one class classification
(OCC) approach to monitor the industrial production process,
which can obtain an accuracy as high as 99%. In recent years, the
hybrid soft computing method has been applied and achieved
quite a high degree of accuracy. However, the hybrid methods
are fairly complicated because of the process optimization.
Zaman and Hassan24 developed an efficient hybrid recognition
approach, which applies a fuzzy C-meansmethod to the adaptive
neuro-fuzzy reasoning system. The proposed approach can
identify eight types of X-bar control chart patterns, which has
been extensively surveyed and the accuracy rate can reach
99.82%. Chao25 combined multivariate statistical analysis with a
Bayesian inference method for large-scale high-dimensional
process monitoring and proposed a stochastic optimization
algorithm-based performance-driven process decomposition
method. By decomposing the process, the best monitoring
performance has been achieved. Unluckily, the methods
mentioned above are not absolutely trustworthy and hard to
guarantee the real-time monitoring performance.
Distinct from the methods mentioned above, an efficient

iterative DKPCA modeling method is developed to monitor the
batch processes with dynamics, nonlinearity, and large-scale
high-dimensional data sets. The data analysis efficiency and
modeling would be a challenge with the massive increase of a
large amount of data. In the proposed method, the principal
components can be obtained without decomposing the
characteristic matrix, so as to improve the modeling efficiency
and save the storage space.
The organization of the article is arranged as follows. The

IPCA, KPCA, and IKPCA algorithms are first introduced
sententiously. Next, the studied algorithm is developed

according to the modeling and online monitoring. Ultimately,
the proposed IMDKPCA monitoring method is applied in a
representative chemical process, and comparison is demon-
strated with the MKPCA monitoring method. The conclusions
of this work are summarized in the last section.

Iterative Kernel Principal Component Analyses.
Iterative Principal Component Analysis. The first principal
component is first considered. The sample vectors y(1), y(2),...
are infinite, each of which is a d-dimensional vector. The sample
is zero mean and A is the covariance matrix of d × d, then A =
{y(m) yT(m)}. Assuming that the eigenvector of matrix A is x,
then λx = Ax, where λ is the corresponding eigenvalue, the
covariance matrix is brought into A. In the iterative process, x(i)
is substituted for x in each step, and the following expression can
be obtained by v = λx.
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where v(m) is the estimation of v in step m, and the equation is
mainly determined by the statistical efficiency. If the estimation
of v is ideal, the eigenvalues λ = ∥v∥ and eigenvectors x = v/∥v∥
can be calculated. In eq 1, v(i − 1)/∥v(i − 1)∥ can be selected
instead of x(i), and the following incremental expression can be
derived
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First, setting the first direction v(0) = v(1) of data
propagation, the incremental estimation eq 2 can be expressed
in the recursive form
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where (m − 1)/m is the weight of the original estimate and 1/m
is the weight of the newly acquired data. It can be derived that
v1(m) → ±λ1e1 for m → ∞, thus, the eigenvalue of the largest
covariance matrix y(m) is expressed as λ1 and the corresponding
eigenvector is expressed as e1.
Equation 3 can estimate the first eigenvector. For other higher

order eigenvectors, stock gradation ascent (SGA) is used.
Starting from a set of normalized vectors, they are updated using
iterative steps, and orthogonality is restored using the Gram−
Schmidt orthogonalization method (GSO). To calculate the
second-order eigenvector, the projection needs to be subtracted
from the data, and then, the new data are used to estimate the
second-order eigenvector, as shown below
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where y1(m) = y(m), the residual is y2(m), which is the
complementary space of v1, and can be used as the input iterative
data.
The steps of applying an iterative method to solve the

principal element are as follows.
Input: y(1), y(2),...
Output: the first r principal components.
For m = 1,2,...

(1) Make y1(m) = y(m);
(2) Loop iteration for i = 1 to min(r,m)
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When i = m, initialize the ith principal element, and v1(m) =
yi(m)
When i ≠ m
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where l is the forgetting factor. If the forgetting factor is not
added, then
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where (m − 1)/m is the weight of the original estimate and 1/m
is the weight of the newly acquired data. vi is the estimate of λiei at
a certain time, then, the eigenvector ei = vi/∥vi∥ and the
eigenvalue λi = ∥vi∥. In this method, for each new sample data,
the first principal component estimation is updated and the next
principal component is updated in turn.
Iterative Kernel Principal Component Analysis. KPCA.

KPCA is a nonlinear extension of the PCA algorithm. First, the
input space is projected to a feature space by nonlinear
projecting. PCs are followed by extraction from the projected
feature space. Assuming that the input sample data xi ∈ Rm, i =
1,...,m, are projected to a feature space S. The dimension of
feature space S can be arbitrarily large or endless. Principal
components of KPCA are calculated by solving the eigenvalue
problem

λ =v C vF (8)
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where CF is the covariance matrix, eigenvalue λ ≥ 0. eq 8 can be
written with the kernel matrix

α α α αλα = = [ ]m K , ..., m1
T

(10)

where K is the Gram matrix, which is defined as [Kij] = Kij =
⟨Φ(xi),Φ(xj)⟩. Furthermore, by computing the projection on
the feature vector, we can obtain the score t of the nth sampling
point x, as shown below
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Iterative KPCA.When using the iterative method to solve the
kernel principal component, the following properties of linear
algebra are used.

ω = λωK

ω ω λ ω λ ω= = =K KK K2 2

where ω and λ are the eigenvectors and eigenvalues
corresponding to the matrix K, respectively. It can be seen
that matrix K and K2 have the same eigenvector, while the

eigenvalues λK2 = (λK2)/m are different, andm is the dimension
of matrix K. Due to
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whereK(xi) = (ki1,ki2,...,kim)
T. If each columnK(xi) of matrixK is

regarded as the input sample of the iterative algorithm, the
eigenvector of matrix KKT can be obtained quickly after a series
of iterations, and the eigenvector and eigenvalue need not be
solved by eigen decomposition matrix K. According to the
algebraic knowledge, assuming that the eigenvector correspond-
ing to matrix K2 is UK2 and the eigenvalue is λK2, then

ω λ= =n U K U( ) K K K
2

2 2 2 (13)

where ω(n) is the estimate of the eigenvector at time n. After
updating the estimation step by step, the eigenvector UK2 = ω/
∥ω∥ and eigenvalue λK2 = ∥ω∥ can be obtained. In the kernel
space, because the input samples are K(x1), K(x2),...,K(xm), the
new sample K(xi) can be substituted into the iterative algorithm
as input data in turn, in this way, the estimated value of the ith
order principal component at time n can be expressed as
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where Ki(xt) is the input sample, and its main function is to
update the first-order principal component at time t. When
calculating high-order principal components, the residual data
should be used as the input data for the iterative calculation. The
projection of the original data on the low-order eigenvector
should be first removed from the residual input data, where
K1(xn) = K(xn), the calculation formula is
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According to the above method, the required principal
element and eigenvalue can be obtained after a series of iterative
calculations.

Modeling and Monitoring Based on Iterative
MDKPCA. Establishment of the Iterative MDKPCA Model.
Considering the dynamics of the process, a ARMA time series
model is established. The ARMAX regression model for batch i
is listed as follows at sampling time a.

= [ − − ]X a X a X a X a d( ) ( ) ( 1) ( )i i i i
T T T

(16)

where d describes the delay duration. Similarly, the time-lagged
augmented matrix of the whole batch i can be built
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where selection method of d can be searched in the literature.26

Next iterative KPCA is applied to the model. Because the model

is established at each stage, the established model is called the

iterative MDKPCA model.

Because the influence factor l has an influence on
convergence, its value is generally taken as 0 or 2. Use 10
eigenvectors as an example to analyze l. When l = 0, as shown in
Figure 1, the convergence speed of the feature vector is relatively
slow andwhen l = 2, as shown in Figure 2, the convergence speed
is relatively fast. This is due to the larger forgetting factor
selected, the contribution of historical samples to the
eigenvector is smaller, and the contribution of new samples to
the eigenvector is larger; hence, the convergence is faster. If the
forgetting factor is small, the contribution of the new sample to
the principal component is small, in this way, the final principal
component estimation can well contain the main information.

Figure 1. Influence of the forgetting factor on the first 10 eigenvectors when l = 0.

Figure 2. Influence of the forgetting factor on the first 10 eigenvectors when l = 2.
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However, l cannot be infinite. If the features of the entire sample
are mainly concentrated in the historical sample, the forgetting
factor will lead to an overmuch weakening of the feature vector
in the early stage, which will eventually make the obtained
principal component estimation inaccurate. In order tomake the
principal component obtained by the iterative method contain
the original data information as much as possible, the forgetting
factor is chosen as 0.
Figure 3 shows the first 10 eigenvalues of a part of sample data

obtained by the iterative method. The eigenvalue corresponding

to the first eigenvector is the largest, while the others gradually
decrease. The cumulative contribution rate of the first 9
eigenvalues is over 85% by the cumulative contribution rate
method; therefore, the first nine principal components need to
be calculated iteratively, while the latter need not. At this time,
the first 9 principal components can reflect the main information
of the tested sample. According to this idea, only the first r
principal components need to be calculated iteratively during
the iterative calculation.
The convergence of eigenvalues is verified by experiments

with ∥vi∥/λi, where λi, i = 1,2,...,10, are the eigenvalues. Figure 4
is the convergence diagram of eigenvalues. The convergence of

eigenvalues approaches to 1 with the increase of the sample data
by applying the iterative method to solve the principal
component, as shown in Figure 4, which shows that the kernel
principal component and eigenvalues can be completely solved
by the iterative method when the samples are large enough.
In online monitoring, two typical statistics, Hotelling T2 and

SPE, are commonly applied to detect the operating status of the
industrial production process, as listed below.

= [ ]Λ [ ]−T t t t t, ..., , ...,r r
2

1
1

1
T

(18)

where t is the score, r is the number of PCs, andΛ−1is the inverse
of the diagonal matrix, which is obtained by solving eigenvalues
corresponding to the first r eigenvectors.
The control limit of Hotelling T2 can be achieved using the F-

distribution.

∼ −
− α−T

r n
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r n r
2
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where n is the number of sample points. Fr,n−r,α is the upper limit
value of an F-distribution with a degree of freedom r and n − r
with level of significance α.
SPE is obtained by
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The control limit of SPE can be achieved using χ2 distribution.

χ∼ = =α g g
u
v

h
v
u

SPE
2

2
h

2
2

(21)

where u and v are the statistical mean and variance of SPE
statistical values.27

Modeling and Monitoring Procedures. Modeling
program of iterative MDKPCA is as follows.

(1) Under normal operation, I batches’ data Xi = RJ×M, i =
1,...I, are collected as training samples.

(2) Stage division. The data of each stage is expressed as Xis, s
= 1,2,..., q, q is the stage number.

(3) Established time-lagged augmented matrices with the
whole batch data in each stage.

(4) Unfolded time-lagged augmented matrices by the
variable-wise method successively.

(5) Utilized the iterative MDKPCA method to establish the
model.

(6) Calculated the two statistics HotellingT2 and SPE (eqs 18
and 20) and solved the control limits of Hotelling T2 and
SPE (eqs 19 and 21).

The online application process is summarized as follows.

(1) For a new test sample xtest ∈ R1×J, determined the
belonged stage of the new test sample.

(2) Established the time series augmented matrix xtestd and
standardized it by employing the mean and standard
deviation of the corresponding model.

(3) Substituted the standardized xtest into the stage model and
then computed T2 and SPE.

(4) Used the two calculated statistical values of T2 and SPE
and the corresponding control limits to declare a fault if
any three continuous values of eitherT2 or SPE go beyond
the control limits.

Figure 3. Size of the first 10 eigenvalues.

Figure 4. Convergence accuracy of eigenvalues.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.0c06039
ACS Omega 2021, 6, 9989−9997

9993

https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c06039?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.0c06039?rel=cite-as&ref=PDF&jav=VoR


■ RESULTS AND DISCUSSION
The penicillin fermentation process is a representative multi-
stage and nonlinear dynamic production process. In this work,
the developed iterative MDKPCA approach is applied to detect
the various faults in fed-batch penicillin production. Themassive
modeling and monitoring data are generated by a penicillin fed-
batch simulator PenSim v2.0. The PenSim v2.0 can simulate the
velocity of the input flow, aeration rate, pH, temperature, heat
generated, CO2, substrate utilization, and concentrations of
penicillin under different conditions.
Experimental Design andModelingData. In this work, a

total of 40 batches were simulated to generate the normal
modeling batches. The ten variables monitored are listed in
Table 1. The duration of each batch is 500 h. Every batch

consists of two stages: the pre-culture stage and the fed-batch
stage. In the data generated by the simulator, the sampling
interval of the modeling data is 0.05 h, and the sampling interval
of the online monitoring data is set to be1.0 h. Slight changes are
added to mimic the actual process perturbations and random
features under the normal running status. The ranges of initial
conditions and set points used to simulate the penicillin
fermentation process are given in Table 2.
On-LineMonitoringMKPCA and IterativeMDKPCA. As

a comparison, the measurement data sets can be used to
construct the MKPCA and iterative MDKPCA models. In this
work, the high-dimensional feature space projection uses the
second-order polynomial kernel function because it is more
conducive to capturing the nonlinearity of the considered
system. On-line monitoring is carried out with a control limit of
95% confidence level. The delay durations are 1 and 2 in the first
and second stages for iterative MDKPCA, respectively. For
MKPCA, thirty-five and sixty-four PCs are solved by the average
eigenvalue method for the two stages, which can express 99.78

and 99.97% variations, respectively. For iterative MDKPCA,
thirty-two and sixty principal components are selected for the
two stages, which can express 99.6 and 99.94% variations,
respectively.
To illustrate the monitoring performance of MKPCA and

iterative MDKPCA, four scenarios including three types of
process faults and one normal operation are designed and
examined with MKPCA and iterative MDKPCA, as shown in
Table 3. (1) Normal batch, (2) linearly decreased aeration rate,
(3) step-decreased agitation power, and (4) linearly decreased
glucose feed rate.

In the first test scenario, it is a normal batch. The test results of
MKPCA and iterative MDKPCA methods are shown in Figure
5, respectively. It shows that the entire batch is not beyond the
control limits for the twomethods from beginning to end, which
indicates that the first test process is normal. Two empirical
models, MKPCA and iterative MDKPCA, can be used to
describe the fermentation trajectory.
In the second test case, the ramp error in the aeration rate

occurs from the 250th h and lasts to the 500th h of the batch
operation. The test results of the twomodels are shown in Figure
6. In the case of MKPCA, the corresponding SPE and T2 surpass
the control limits at 266 and 255 h, respectively. Comparing the
actual fault generation time points, the delays are 16 and 5 h,
respectively, as shown in Figure 6a.Compared withMKPCA, the
Hotelling’s T2 control chart and SPE control chart of iterative
MDKPCA exceed control limits at the 252nd h.
For the second fault batch, the step error occurs in the

agitation power from the 200th to the 400th h of batch
operation. The agitation power determines the quality level of
oxygen dissolved in the fermentation broth, and the decrease of
agitation power reduces the oxygen content in the fermentation
broth, which reduces the product concentration. The test results
are shown in Figure 7. For MKPCA, SPE fails to identify this
step fault, while T2 only identifies the fault in a small part of the
time during the fault, as shown in Figure 7a. In contrast, the SPE
chart of the iterative MDKPCA method can accurately identify
the beginning and end time of the fault. Unfortunately, the test

Table 1. Monitored Variables in the Penicillin Fermentation
Process

no. monitored variables

1 cooling water flow rate/h−1

2 pH
3 dissolved oxygen concentration/% (saturation)
4 substrate feed temperature/K
5 culture volume/L
6 bioreactor temperature/K
7 substrate concentration/gL−1

8 agitator power/W
9 carbon dioxide concentration/mmol L−1

10 aeration rate/h−1

Table 2. Ranges of Initial Conditions and Set Points of Operation Parameters

initial conditions range set points range

dissolved oxygen concentration (mmol/L) 1.05−1.25 (g/L) bioreactor temperature 295−299 (K)
penicillin concentration 0 (g/L) agitator power 28.5−31.5 (W)
biomass concentration 0.05−0.1 (g/L) substrate feed flow rate 0.036−0.042 (L/h)
substrate concentration 13−18 (g/L) substrate feed temperature 296−299 (K)
culture volume 100−104 (L) aeration rate 8−9 (g/h)
bioreactor temperature 298−299 (K) pH 5.1−5.2
carbon dioxide concentration (mmol/L) 0.5−0.6 (g/L)
PH 4.5−5.5
generated heat 0 (kcal)

Table 3. Four Test Cases in Penicillin Fermentation

no. scenarios fault description

1 normal normal batch
2 ramp

fault 1
linearly decreased aeration rate at a slope of 0.05 from 250 h to
the end of batch operation.

3 step
fault 2

step decreased agitation power by 5% from 200 to 400 h of
batch operation.

4 ramp
fault 3

linearly decreased substrate feed rate at a slope of 0.002 from
200 h to the end of batch operation.
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results of T2 also fail to identify the fault. From the overall
monitoring results, the iterative MDKPCA method can still
identify this fast changing fault.
For the third fault batch, the ramp error in the substrate feed

rate is added to the fed-batch operation in the 200th h and
remains for 300 h. The substrate feed rate is the main source of
carbon in the reaction, which can increase the biomass, penicillin
synthesis efficiency, and maintain metabolism. If the accel-
eration rate of the bottom stream decreases, the yield and
efficiency of the penicillin fermentation synthesis will also
decrease. The test results are shown in Figure 8. The SPE chart
and T2 chart of MKPCA overstep the control limits at 209 and
210 h, which are lagged behind 9 and 10 h, respectively.
Compared with MKPCA, the two statistics SPE and T2 of
iterative MDKPCA are beyond the control limits at time 201 h,
which is 1 h later than the time when the fault occurs.
Computational Complexity Analysis.The computational

complexity of the two algorithms is analyzed by the time

consumed in the process. There are 40 batches of modeling data,
and the running time is 500 h. The matrix dimension is 1800 ×
10 after expansion by the variables for the first stage; in the
second stage, the dimension of the matrix is 18,200 × 10 after
expansion by variables. For the MKPCAmethod, the dimension
of the kernel matrix in the first stage can reach 1800 × 1800, and
in the second stage can reach 18,200 × 18,200. When using the
MKPCA method to solve principal components, it is
indispensable to decompose the covariance matrix, so the
amount of computation becomes very large. When using the
iterative MDKPCA method to solve the principal components
of the kernel space matrix, we only need to take the kernel matrix
as a sample to input data in turn, and then iteratively solve the
corresponding principal components in the two stages.
The running time is selected as the comparison standard, and

the simulation environment is MATLAB 16; CPU: Intel(R)
Core(TM) i7-8565U; memory: 16 G; basic frequency: 2.19 G;
operating system: Windows 10. The running time is mainly

Figure 5. Monitoring results of the normal batch. (a) SPE and T2 control charts of MKPCA. (b) SPE and T2 control charts of iterative MDKPCA.

Figure 6. Monitoring results of fault 1. (a) SPE and T2 control charts of MKPCA. (b) SPE and T2 control charts of iterative MDKPCA.
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obtained by internal instructions. Table 4 shows the running
results.
As seen in Table 4, MKPCA takes more time in each stage

than the iterative MDKPCA method, especially in the modeling
stage.Moreover, the modeling time of the second stage is as high
as about 255 h, which is much higher than that in the iterative
MDKPCA method.

■ CONCLUSIONS

Aiming at the high computational complexity problem in the
complicated industrial processes with large-scale high-dimen-
sional data sets, an efficient iterative multiple DKPCA
monitoring method is presented successfully. In this method,
the principal component is calculated by using the iterative
technique of statistical efficiency estimation. Using sample data
to input and iterate one by one, the principal component
information is obtained without using the feature decom-
position of the sample covariance matrix to solve the feature
vector, which greatly reduces the calculation time in the process
of modeling and monitoring, reduces the storage space, and
improves the work efficiency.
The proposed iterative MDKPCA approach is used to detect

the different faults of the penicillin fermentation process. The
experimental results show that the developed iterative approach
has a better monitoring effect than the conventional MKPCA

Figure 7. Monitoring results of fault 2. (a) SPE and T2 control charts of MKPCA. (b) SPE and T2 control charts of iterative MDKPCA.

Figure 8. Monitoring results of fault 3. (a) SPE and T2 control charts of MKPCA. (b) SPE and T2 control charts of iterative MDKPCA.

Table 4. Time Comparison Between Two Modeling
Monitoring Methods

modeling

method
stage 1
(s) stage 2

fault 1
(s)

fault 2
(s)

fault 3
(s)

MKPCA 101.8 254.7 h 17.1 16.9 17.2
Iterative
MDKPCA

12.1 312.7 s 4.3 4.9 5.0
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approach in the short delay, high accuracy of various types of
faults. Besides, this method also greatly reduces the
computation, storage space, and running time of the algorithm,
particularly these advantages are more obvious when the
amount of data is enormous. On this basis, our future work
will study the determination of the process state evaluation grade
and the identification of nonoptimal reasons.
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