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Abstract: The EphA2 receptor and its ephrin-A1 ligand form a key cell communication 

system, which has been found overexpressed in many cancer types and involved in tumor 

growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low 

micromolar binders of the EphA2 receptor. However, these compounds suffer from poor 

physicochemical properties, hampering their use in vivo. The identification of compounds 

able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to  

new pharmacological tools suitable for in vivo studies. To identify the most promising 

virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated 

the ability of both ligand-based and structure-based approaches to retrieve known EphA2 

antagonists from libraries of decoys with similar molecular properties. While ligand-based 

VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, 

structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 

receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based 

approaches outperformed the structure-based ones, suggesting ligand-based methods using 

the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for 

novel EphA2 antagonists. 
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1. Introduction 

The erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest  

family of tyrosine kinase receptors in mammals and it includes at least fourteen members, such as  

the EphA1–EphA8, EphA10, EphB1–B4 and EphB6 receptor subtypes [1]. The Eph receptors are 

activated by membrane-anchored proteins, called ephrins, which are divided in ephrinA1–A5 and 

ephrinB1–B3 subclasses, respectively [2]. The Eph receptors and their ephrin ligands constitute a cell-cell 

communication system, which is essential for the regulation of several processes during the embryonic 

morphogenesis [3]. Eph-ephrin system preserves the cellular architecture in various epithelia and 

modulates tissue renewal in the adult. A deregulation of this system, and in particular of the activity of 

EphA2/ephrin-A1 signaling complex, has been related to cancer insurgence and progression [4]. Indeed, 

the EphA2 receptor has been found overexpressed in several cancer types [5], while the inhibition of 

EphA2 receptor with monoclonal antibodies [6] or soluble receptors [7] has been shown to effectively 

suppress cancer progression and angiogenesis in animal models [8]. For these reasons [9], the 

EphA2/ephrin-A1 interface is currently explored as a target for the development of new antitumorigenic 

and antiangiogenic treatments [10,11]. 

A screening campaign recently conducted in our laboratories allowed the identification of small 

molecules able to inhibit the EphA2/ephrin-A1 interaction, including the (3α,5β)-3-hydroxycholan-24-oic 

acid (lithocholic acid, LCA, Figure 1, [12]) which turned out to be a competitive antagonist of the  

EphA2 receptor [13]. Further medicinal chemistry efforts [14,15] led to the identification of the  

L-β-homo-tryptophan derivative of LCA (UniPR129, Figure 1) as a potent antagonist of the EphA2 

receptor, having an inhibitory constant (Ki) of 370 nM [16]. However, this compound had modest 

solubility, which hampered its use in vivo by the oral route [17]. The identification of new compounds 

able to disrupt the EphA2/ephrin-A1 complex may lead to pharmacological tools featured by better 

physicochemical properties and thus suitable for in vivo investigations. To search for better EphA2 

antagonists, we recently screened in silico a small collection of carboxylic acid derivatives 

available from Sigma-Aldrich (Saint Louis, MO, USA). A bunch of top-ranked compounds was 

purchased and tested in a wet binding assay. Among them, the 3β-hydroxy-Δ5-cholenic acid and 

the 4-(4-cyclopentylnaphthalen-1-yl)-4-oxobutanoic acid (Figure 1) were identified as inhibitors of the 

EphA2/ephrin-A1 interaction [18], with potency in the medium/high micromolar range. 

The ability of in silico screening approaches to identify novel EphA2 receptor antagonists, 

prompted us to evaluate the performance of a variety of virtual screening (VS) approaches, starting 

from known chemical libraries of ready-to-ship compounds, typically used in VS campaigns. In the 

present work, we carried out a computational analysis where we compared the ability of standard ligand- 

and structure-based approaches to retrieve known EphA2 antagonists from different libraries of decoys. 

We applied shape-similarity and pharmacophore match techniques available in the Phase software 

package [19], and flexible ligand docking available in the Glide program [20]. The EphA2 antagonist 
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UniPR129 and the ephrin-A1 peptide ligand were used as template structures to drive the search of 

actives by similarity and pharmacophore search. Docking runs were performed using the X-ray structure 

of EphA2/ephrin-A1 complex, recently reported in the literature [21]. The performance of each 

computational procedure was assessed by calculating the enrichment factor (EF), which is a measure 

of how many experimentally active compounds are found within a defined fraction of the ordered 

database relative to a random distribution [22]. 

 

Figure 1. Chemical structures of selected EphA2 receptor antagonists. 

2. Results and Discussion 

A retrospective evaluation of VS methods requires a set of active compounds and one or more chemical 

libraries of bona fide inactive compounds (decoys) [23]. In this study, the set of actives was composed 

by 10 inhibitors of the EphA2/ephrin-A1 interaction (Figure 2), representative of three main classes of 

available small-molecule antagonists of the EphA2 receptor. These were (A) bile acid analogues, including 

LCA (1) [12], INT-747 (2) [24] and 3β-hydroxy-Δ5-cholenic acid (3) [18]; (B) amino acid conjugates 

of LCA, with glycine (4), L-tryptophan (UniPR126, (5) D-tryptophan (6) [15], L-β-homo-tryptophan 

(UniPR129, 7) [16]; and (C) three alkyl aryl carboxylic acids consisting of two stilbene derivatives, 

GW4064 (8) and PCM303 (9) [24] and the 4-(4-cyclopentylnaphthalen-1-yl)-4-oxobutanoic acid (10) [18]. 

As datasets of decoys, we selected two different chemical libraries of commercially available compounds, 

(i) the ChemDiv library [25] focused on protein–protein interaction (PPI) inhibitors and (ii) the complete 

ChemBridge library available at the ZINC website [26]. As the presence of a carboxylic acid group 

appeared to be a crucial feature to experimentally bind the EphA2 receptor [13], only compounds 

bearing at least one carboxylic acid group were selected from the ChemDiv PPI-focused database and 

from the ChemBridge library. The resulting libraries of carboxylic acids were further filtered to retain 

decoys with molecular properties (i.e., MW, A log P, number of rotatable bonds) similar to those 

displayed by the known EphA2 antagonists here considered. The application of these filters was needed 
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to avoid artificially high EF values caused by an excessively large structural diversity between active 

compounds and library decoys [27,28]. 

 

Figure 2. Known antagonists of the EphA2 receptor included in the VS analysis, divided 

according to their chemotype. 

The EphA2 antagonists 1–10 possess physicochemical properties comparable to those shown by 

known PPI inhibitors reported in two independent studies reported by Sperandio [29] and Roche [30] 

research groups. Figure 3 shows the distribution of molecular properties for the decoys after the 

filtering procedure. Both ChemDiv and ChemBridge libraries do not fully covers the property range of 

the actives, at least in the case of lipophilicity (AlogP). Indeed, in the case of compounds 1–10, AlogP 

distribution has a median of 4.9 units, whereas ChemDiv and ChemBridge libraries have AlogP 

distribution with medians of 3.2 and 3.5, respectively. Some small but significant differences can be 

detected among the distributions of the molecular weights, as the medians of MWs for the actives, 
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ChemDiv and ChemBridge libraries are 487, 442 and 428, respectively. Finally, no significant disparities 

exist in terms of number of rotatable bonds, being the medians for the actives, ChemDiv and ChemBridge 

libraries of 7, 6 and 6, respectively. The differences in the molecular property profiles likely originates 

from the presence of several classes of compounds designed to bind “classical” targets (G-protein couple 

receptors, kinases and ion channels) in the commercial libraries [31]. Even after the applications of filters, 

which should realign the chemical space window of compound collections with the chemical requirements 

of PPI inhibitors [32], the composition of the ChemDiv and ChemBridge libraries remains biased 

toward compounds more hydrophilic and smaller than compounds present in the dataset of actives. 

 

Figure 3. Histograms of selected molecular descriptors for the set of active compounds 

and the decoy datasets. 

We next performed VS runs on the filtered ChemDiv and ChemBridge libraries, applying both  

ligand-based and structure-based techniques according to the workflow reported in Figure 4. Given the 

“active” 3D conformation of one or more ligands, either obtained from X-ray, NMR or molecular 

modeling studies [33], 3D-similarity and pharmacophore searches can be used to virtually screen large 

chemical libraries at a reasonable computational cost [34]. Herein, we used the shape screening [35] 

and the pharmacophore search [36] modules available in Phase, which have been shown to give 

remarkable screening performances both in retrospective analysis [37] and hit-finding campaigns [38]. 

When the 3D-structure of a given target is known, ligands can be submitted to molecular docking 

(and scoring) to provide potential candidates for synthesis and experimental testing [39]. Due to  

the complexity of the energetics governing the protein–ligand association, the docking approach is 

generally the computationally most demanding VS procedure, although not necessarily the most 

effective in terms of performance [34]. Among the plethora of available docking software, we selected 

Glide program, considering the acceptable accuracy of its scoring functions [40,41], as well as the 

reasonable computational cost required by it for screening thousands of compounds even coupling 

docking runs to conformational search for each 3D entry of the chemical libraries (see Methods).  

For each chemical library, compounds (actives and decoys) were independently ranked according to their 

similarity score (shape screening), fitness score (pharmacophore search) or binding energy (docking 

simulations). Then, the performance of each VS run was assessed by calculating the enrichment factor 

(EF), which is a measure of how many actives are found within a defined fraction of the ordered 

database relative to a random distribution [22]. As only a small fraction of a given database is usually 
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tested experimentally after a VS-based selection, EF factors were calculated considering the top 2% 

and 5% of the screened database (see Equation (1) in the Methods Section). In this way, it is possible 

to compare different VS methods on the basis of their ability to recognize actives as “early” as 

possible. By definition, EF can go from 0 to a maximum that depends (i) on the ratio between the 

number of actives and the total number of screened compounds and (ii) on the fraction of the database 

in which one may expect to find the actives. In our case, when the top 2% and 5% of the ranked database 

are selected, the maximum values of EF are 50 and 20, respectively. 

 

Figure 4. Virtual screening workflow applied in the present computational analysis. 

2.1. Shape-Screening 

Shape-based screening relies on the underlying assumption that the shape of a query molecule that  

is known to be active against a target of interest contains useful information that can help to retrieve 

other active molecules from a database of compounds. The shape screening protocol implemented in 

Phase performs an initial 3D alignment of each database compound to the query structure, which is 

followed by a scoring step, allows ranking all the entries, active compounds and decoys [35]. 

Here, we conducted shape screenings using the reference EphA2 antagonist UniPR129 in its global 

energy minimum conformation (Figure 5A) or the X-ray coordinates of G-H loop of ephrinA1 (Figure 5B) 

as query structures. The shape screenings were performed in three different modes [35]: (i) treating  

all atoms as equivalent during the alignment of a 3D entry to the template (shape-only); (ii) favoring 

alignments superimposing atoms of the same macromodel atom type (mmod); or (iii) favoring alignments 

superimposing the same pharmacophore features (pharm), according to a Phase standard definition. 

Table 1 reports the EF values at 2% and 5% of the screened database for the shape-screening runs. 

When UniPR129 was used as template structure, shape-screening runs always yielded high EF2% and 

EF5% values, regardless of the rules employed to align each 3D entry to the template structures or of 

the type of chemical library. Indeed shape-screening runs performed in mmod and pharm modes were 

able to retrieve up to seven active compounds in the top 2% of both libraries, giving an EF2% of 35. 
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Figure 5. (A) 3D representation of UniPR129 in its minimum-energy conformation with  

its shape represented as a set of van der Waals spheres; and (B) X-ray structure (PDB: 

3HEI) of EphA2 (white carbons) in complex with ephrin-A1 (orange carbons). The shape 

of the G-H loop of ephrin-A1 involved in the interaction with EphA2 is depicted with van 

der Waals spheres. 

Table 1. EF values calculated at 2% and 5% for the shape-screening simulations. 

Template Method 
ChemDiv ChemBridge 

EF2% EF5% EF2% EF5% 

UniPR129 
shape-only 25 (5) 14 (7) 25 (5) 14 (7) 

mmod 35 (7) 14 (7) 35 (7) 14 (7) 
Pharm 35 (7) 14 (7) 35 (7) 14 (7) 

G-H loop 
shape-only 20 (4) 10 (5) 15 (3) 6 (3) 

mmod 15 (3) 6 (3) 15 (3) 6 (3) 
Pharm 0 (0) 0 (0) 0 (0) 0 (0) 

The number of actives found at 2% or 5% of the screened databases is reported in brackets. 

When the shape screening was performed in shape-only mode the performance was slightly lower, 

yielding an EF2% value of 25 for both libraries. Interestingly, visual inspection of the resulting hits at 

5% of both screened databases, showed that mmod and pharm approaches were able to correctly identify 

only the steroidal derivatives (compounds 1–7) as actives, classifying the remaining compounds (8–10) 

as false negatives. Conversely, the shape-only mode correctly retrieved at least one compound for 

chemical class (A, B or C) as active, being able to score compounds 1–2, 4–7 and 9 within the 5% of 

both ranked databases. 

The remarkable performance of the shape-screening approach is likely due to the low variability of 

the chemical structure of active compounds compared to the reference one. Indeed, as the shape-screening 

algorithm aligns molecules by selecting atom pairs with a similar local 3D environment, steroidal 

compounds 1–6 always obtain high shape similarity score when UniPR129 is used as query. 
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To challenge the shape-screening approach in a less biased scenario, we performed another shape-based 

VS using a reference query not derived from compounds 1–10. More specifically, we selected the 

Phe111-Leu116 fragment of the G-H loop of ephrin-A1 as query structure. This small peptide fragment 

has been shown to be fundamental for the binding of ephrin-A1 ligand to EphA2 high affinity site [42] 

and thus its shape might be effective in retrieving active compounds. In this condition, the EFs were 

significantly lower than those obtained using UniPR129 as a query. In particular, the shape screenings 

performed on the G-H loop poorly performed in the case of the ChemBridge library, as only compounds 

5–7 were found in early fractions of the screened database, yielding EF2% and EF5% values ranging 

from 0 to 15 and from 0 to 6, respectively (Table 1). That said, the shape screening was rather effective 

in identifying compounds 5–8 and 5–9 in the first 2% and 5%, respectively, of the screened ChemDiv 

library when the shape-only mode was applied. Accordingly, EF2% and EF5% values calculated for this 

run were 20 and 10, respectively. 

To analyze further the ability of the different shape-screening methods to correctly identify active 

compounds, we also calculated enrichment curves (Figure 6). These curves to evaluate how the 

fraction of actives recovered varies with the percent of the database screened, giving a measure of the 

overall performance of the VS run. Figure 5 shows enrichment curves obtained for ChemDiv and 

ChemBridge libraries applying the shape-only approach on both query structures, i.e., UniPR129 and 

the G-H loop. The curves obtained for the ChemDiv remarkably deviates from the random selection 

distribution, confirming a fair ability of both VS runs to detect active compounds. Conversely, the 

screening based on ephrin-A1 G-H loop poorly performed for the ChemBridge library as indicated by  

the EF accumulation curve, which remains close to the random selection distribution. This modest 

performance could be to the unbalance between the molecular properties of the decoys, especially 

those of the ChemBridge library (median MW = 428, median Alog p = 3.5) and the molecular properties 

of the G-H loop of ephrin-A1 (MW =780; Alog p = 0.3). 

 

Figure 6. Enrichment curves obtained from shape screenings performed on ChemDiv (left) 

and Chembridge (right) libraries. 

2.2. Pharmacophore Search 

Pharmacophore models represent the spatial arrangement of chemical features of one or more 

ligands that are needed for binding to a given receptor [43]. Ligand-based pharmacophore models can 
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be applied when ligand’s active conformation is experimentally available or can be deduced from a set of 

structurally diverse ligands with known biological activity [44]. With this in mind, we used two 

independent sources of information to build pharmacophore models for VS applications. A first model 

was built starting from the common pharmacophore features shared by compounds 1–10 (Model I, 

Figure 7A), following the procedure described in the method section. A second pharmacophore model 

was built starting from the G-H loop of ephrinA1 (Model II, Figure 7B) through the application of a 

computational alanine-scanning procedure aimed at identifying a small group of ephrin-A1residues, 

critical for EphA2 binding, to be used as pharmacophore sites (see methods). 

Figure 7 reported a graphical representation of the resulting pharmacophore models. Model I is 

constituted by four pharmacophore sites, three hydrophobic (H) and one negatively charged (N). These 

can be easily identified on the structure of some representative EphA2 antagonists, i.e., UniPR129 

(compound 7), GW4064 (compound 8) and 4-(4-cyclopentylnaphthalen-1-yl)-4-oxobutanoic acid 

(compound 10), as reported in Figure 7A. Model II is a five point pharmacophore composed by three 

hydrophobic sites (H), corresponding to the side chains of Pro113, Phe114, and Leu116, one aromatic 

site (R), corresponding to the side chain of Phe111, and one negatively charged area (N) corresponding 

to Glu119 (Figure 7B). 

 

Figure 7. Pharmacophore models employed for VS. Pharmacophore sites are represented  

as spheres: hydrophobic (green), negatively charged (red), aromatic (magenta). (A) Model I 

superposed on the aligned structures of compounds 7 (cyan carbons), 8 (orange carbons), 10 

(magenta carbons); (B) Model II represented on the crystallized conformation of the G-H loop 

of ephrin-A1 (orange carbons) within the structure of EphA2 (white cartoons and carbons). 

Table 2 reports the EF values at 2% and 5% of the screened database for the pharmacophore VS 

runs. Model I always outperformed Model II, giving high EF2% and EF5% values regardless of the 

chemical library employed in the screening. The application of Model I gave EF values comparable to 

those obtained with the shape screening on UniPR129 as query structure with both chemical libraries. 

Indeed, pharmacophore Model I was able to retrieve up seven actives (compounds 1, 3, 4–7, 8) in the 

top 5% of both ChemDiv and Chembridge datasets of decoys, correctly identifying as active at least 

one compound for each chemical class. 
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Table 2. EF values at 2% and 5% obtained from pharmacophore searches. 

Method 
ChemDiv ChemBridge 

EF2% EF5% EF2% EF5% 

Model I 25(5) 14 (7) 30 (6) 14 (7) 
Model II 15 (3) 6 (3) 15 (3) 6 (3) 

The number of actives found at 2% or 5% of the screened databases is reported in brackets. 

Model II gave lower performances compared to Model I, as the VS runs based on this pharmacophore 

were able to retrieve only three active compounds (5–7, all belonging to class B of actives) at 2% and 

5% of both libraries. This modest result is term of EF is probably due to the rather high number and 

type of pharmacophore sites required to match Model II. 

In addition, in the case of pharmacophore VSs enrichment, curves were built to have a measure of 

the overall performance of the two different models employed as a query. The enrichment curves 

reported in Figure 8 confirmed the trend observed with EF2% and EF5% with some of active compounds 

(i.e., 2, 10 for Model I,) and (i.e., 2, 4, 8–10 for Model II) being found only at a high fraction of the 

screened databases. Some of the actives (9 for Model I and 1 and 3 for Model II) could not be found at 

all by these VS procedures as they were discarded by the Phase scoring function. 

 

Figure 8. Enrichment curves obtained from pharmacophore searches performed on 

ChemDiv (left) and Chembridge (right) databases. 

2.3. Docking 

Docking is an established structure-based method to investigate the binding mode of small molecules 

into a well-defined protein pocket. The main advantage of docking is that it uses the structural 

information of protein binding site to drive the VS without being biased towards existing chemical 

classes of active compounds. In the present work, docking simulations were performed using the X-ray 

coordinate of the ligand binding domain of the EphA2 receptor, taken from its complex with ephrin-A1 

ligand [21]. Docking runs were performed with Glide [20] using two different computational protocols. 

The first VS was based on a blind approach, while the second VS was a knowledge-based docking in 

which positional constraints were applied to select only those docking poses in which a given 3D-entry 

was occupying the binding region of the G-H loop of ephrin-A1. These positional constraints were a  
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(i) hydrophobic region corresponding to the side chain of residues 114–116; (ii) an aromatic site placed 

on the side chain of Phe111; and (iii) a hydrogen bonding acceptor group to mimic the hydrogen bonding 

properties of Glu119 (Figure 9). To avoid a potential bias associated with the starting geometry of the 

ligand [45] a quick conformational search was performed on each 3D entry to retrieve ten different 

conformations to be used in docking calculations. 

 

Figure 9. Constraints employed during knowledge-based docking runs. Constraints sites 

(hydrophobic, green; negatively charged, red; aromatic, magenta) are represented as 

spheres on the G-H loop of ephrin-A1 in complex with EphA2. 

Table 3 reports the EF values at 2% and 5% of the screened database for the docking simulations. The 

blind docking protocol gave very modest EF2% and EF5% values close to 0 for both chemical libraries. On 

the contrary, the knowledge-based gave a much better performance with the ChemDiv library being 

able to identify three (5–7) and six (1, 4–7 and 10) active compounds in the first 2% and 5% of the 

screened database, respectively, yielding EF2% and EF5% values of 15 and 12. The knowledge-based 

approach showed lower performances in the case of the Chembridge library, as only one (6) and three 

(5–7) active compounds were found at 2% and 5%, of the screened database, respectively. 

Table 3. EF values at 2% and 5% obtained from docking simulations. 

Method 
ChemDiv ChemBridge

EF2% EF5% EF2% EF5% 

blind 0 (0) 2 (1) 0 (0) 0 (0) 
knowledge-based 15 (3) 12 (6) 5 (1) 6 (3) 

The number of actives found at 2% or 5% of the screened databases is reported in brackets. 

Figure 10 shows enrichment curves obtained with the docking protocols described previously.  

The knowledge-based procedure produced accumulation curves for both ChemDiv and ChemBridge 
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libraries different from that corresponding to a random selection. Conversely, the blind docking runs gave 

lower VS performances, resulting in enrichment trends similar to that attainable with a random selection. 

 

Figure 10. Enrichment curves obtained from docking simulations performed on ChemDiv 

(left) and Chembridge (right) libraries. 

The unsatisfactory screening performances obtained with docking could be due to some issues 

related to the standard precision (SP) scoring function implemented in Glide. Glide scoring function 

estimates the free energy of binding with an empirical equation, which neglects an explicit treatment of 

entropic and desolvation contributions, two critical drivers of the interaction between large protein 

interfaces and compounds featured by rather high lipophilicity and molecular weight [46]. 

3. Materials and Methods 

3.1. Database Preparation 

Two libraries of 2D decoys, constituted by (i) a subset of the ChemDiv database [25] focused on 

PPI inhibitors and (ii) the whole ChemBridge library downloaded from Zinc database [26], were used 

in VS campaigns. Decoy molecules were selected to avoid biasing screening results. In particular, both 

libraries were initially filtered taking into account known structure-activity relationships (SARs) for 

known EphA2 antagonists. As the carboxylic group was found as a crucial feature EphA2 antagonist 

activity [13], two initial subsets of 3201 and 58000 compounds bearing at least one carboxylic acid group 

were selected from the ChemDiv PPI-focused database and from the ChemBridge library, respectively. 

A second filtering procedure aimed at retaining molecules with computed molecular properties close  

to those of compounds 1–10 (i.e., MW 295–575, AlogP 2–8, rotatable bonds 4–9) was applied, The 

filtering procedure was conducted with the Ligfilter utility implemented in Maestro 9.6 [47]. This filtering 

procedure yielded 1646 and 2955 decoys for the ChemDiv PPI-focused and for the ChemBridge 

database, respectively. The 2D structures of the active compounds and of the selected decoys were 

converted in 3D structures with LigPrep 2.5 [48]. Only the most abundant ionization state at pH 7.4 

was modeled according to calculations performed with Epik 2.2 [49]. The final databases contained a 

single conformation for each 3D entry as a throughout conformational analysis was performed prior to 

all VS calculations. 
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3.2. Shape-Screening 

Shape screenings were conducted with Phase 3.7 [19]. The global minimum energy conformation  

of the EphA2 antagonist UniPR129 or the crystallographic coordinates of the G-H loop of ephrin-A1 

extracted from the X-ray structure of the EphA2-ephrinA1 complex (PDB: 3HEI, [21]) were used as 

template structures. The global minimum-energy conformation of UniPR129 was found applying a 

conformational search performed using the mixed torsional/low-mode sampling approach (MCMM/ 

LMOD) implemented in Macromodel [50], with default settings. 

During the shape screenings, an “on-the-fly” conformational search was performed with ConfGen [51] 

on each molecule of the libraries, generating up to 100 conformers that were treated as a set of hard 

spheres and flexibly superposed atom-to-atom on the template molecules. A shape-similarity score was 

thus calculated from the overlap between hard-spheres volumes of superposed atoms. The shape-screening 

algorithm can compute a similarity metric regardless of the atom types of the superposing atoms 

(shape-only), or it can compute a similarity score only for those superimpose atoms sharing the same 

macromodel atom type (mmod) or the same pharmacophoric features (pharm) [35]. The screened 

databases were ranked according to the shape-similarity score, and only the best scored conformer for 

each compound was retained. 

3.3. Pharmacophore Models Building 

Phase 3.7 was used to generate pharmacophore models starting from the 3D structures of compounds 

1–10 (Model I) or from the X-ray structure of the ephrin-A1 ligand (Model II). For the building of Model I, 

compounds 1–10 were submitted to a conformational analysis using Macromodel. The conformational 

searches were carried out with the mixed torsional/low-mode sampling approach (MCMM/LMOD) using 

default settings retaining up to 30 conformers for each ligand. The pharmacophore sites were assigned 

to each conformer using the default set of features implemented in Phase. Several pharmacophore 

hypotheses were developed starting from the set of conformers identified for compounds 1–10 by the 

MCMM/LMOD procedure and subsequently ranked according to the Phase scoring function. Only 

hypotheses based on three hydrophobic (H) and one negatively charged (N) features were considered as 

they gave pharmacophore models shared by at least 8 active compounds. Among the different HHHN 

pharmacophore models, the one having the highest Phase score was retained and used for VS calculations. 

The construction of Model II involved the selection of the most critical residues of the G-H loop for 

EphA2 binding (residues 111–119). To this aim, we performed a computational alanine-scanning [52] 

procedure using the MM-GBSA method implemented in Prime 3.4 [53] in combination with energy 

minimization. During this procedure, only the G-H loop of ephrin-A1 as well as all EphA2 residues 

located 8 Å far from it were treated flexibly. Pharmacophore features were then mapped on the residues 

that produced an increase in estimated free energy of at least 2 kcal/mol once mutated in alanine 

(Figure 11). The type of pharmacophore feature mapped on the each selected residue was selected on 

the basis of the properties of its side chain. The final pharmacophore model was constituted by five sites, 

three of which were hydrophobic (Pro113, Phe114, Leu116), one negatively charged (Glu119) and one 

aromatic (Phe111). 
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Figure 11. Estimated ΔΔG after mutation in alanine for residues 111–116 and 119 of the  

G-H loop of ephrin-A1. 

3.4. Pharmacophore Search 

For each active and decoy compound, an “on-the-fly” conformational search was performed during 

the pharmacophore screening with ConfGen, generating up to 1000 conformers that were aligned on 

models I and II and subsequently ranked according to the Phase Fitness score [36]. For Model I, the 

criteria of hit retrieval was the match of all pharmacophore sites with a distance tolerance of 2 Å.  

For Model II, the criteria of hit retrieval was the match of at least two hydrophobic (Pro113, Leu116) 

and the negatively charged sites (Glu119) with a distance tolerance of 3 Å. The weights applied to the 

components of the Phase scoring function were left unchanged. 

3.5. Docking 

The EphA2/ephrin-A1 complex crystal structure (PDB: 3HEI, [21]) was first processed with the 

protein preparation tool of Maestro [47] which added missing hydrogen atoms and optimized the 

overall hydrogen bonding network by adjusting the tautomerization and protonation states of histidine, 

aspartate and glutamate residues and by sampling the orientation of water hydrogens and of the side 

chains of polar amino acids. The resulting complex structure was submitted to a restrained 

minimization applying the OPLS2005 force field [54] to a RMSD value of 0.3 Å calculated on protein 

heavy atoms. The ephrin-A1 ligand and all water molecules, which did not form key hydrogen bond 

interactions within the EphA2 binding site, were deleted prior to docking calculations. The docking 

grid was centered in a region delimited by Arg103, Phe156 and Arg159, which encompasses the main 

hydrophobic channel of the EphA2 receptor. Dimensions of enclosing and bounding boxes were set to 

30 Å and 10 Å for each side, respectively. Prior to docking calculations, each molecule of the database 

was subjected to a conformational search (with MCMM/LMOD, using default settings) to generate up to 

10 ligand conformations, which were subsequently submitted to docking simulations. Docking runs 

were performed with Glide in Standard Precision (SP) mode, both in presence and in absence of 

constraints involving (i) an hydrophobic region corresponding to the side chain of residues 114–116;  

(ii) an aromatic site placed on the side chain of Phe111; and (iii) a hydrogen bonding group to mimic 

the hydrogen bonding properties of Glu119. Five docking poses were collected for each compound and 

only the top ranked solution in terms of Docking Score was retained. 



Molecules 2015, 20 17146 

 

 

3.6. Performance Assessment 

Several metrics for assessing VS performance have been proposed [55]. As in a real-case scenario 

only a small fraction of a database could be tested experimentally, it is often important to recognize 

actives in the first fraction of the ranked database. In the present work, we used the EF as screening metric, 

which is a measure of how many actives are found within a defined fraction of the ordered database 

relative to a random distribution [22]. A percentage threshold x% is chosen to define the fraction of 

interest of the ranked database and the number of actives found within this percentage is compared to 

the number of actives one would expect to find from a random selection, using the following equation: 

EFx% = 
act n⁄

ACT N⁄  
 

(1)

where act is the number of actives retrieved in the first n positions of the database and ACT is the total 

number of actives included in the database of N compounds. In this study, EFs were calculated at 2% 

and 5% of the total database screened and enrichment curves were built by plotting the number of 

actives found as a function of the percentage of the screened database. 

4. Conclusions 

We performed a retrospective analysis of different ligand- and structure-based screening methods  

to find a VS protocol that can be effectively applied in prospective drug design campaigns aimed at 

identifying novel EphA2 antagonists. 

A comparison of EF values obtained from the different VS methodologies showed that ligand-based 

approaches outperformed the structure-based ones, with the shape similarity showing the best 

performances. Nevertheless, few pitfalls can be identified for each ligand-based method. Indeed, the 

shape similarity approach resulted strongly affected by the choice of the reference structure, giving 

artificially high enrichment factors when the query molecule was structurally related to the active 

compounds. Moreover, results showed that only the shape-similarity screening in shape-only mode and 

pharmacophore search with Model I were able to retrieve at least one active compound for each 

chemical class. 

Despite its higher computational cost, docking-based VSs offered rather poor performances.  

These could be ascribed to (i) a lack of an exhaustive conformational search protocol and/or (ii) the 

scoring function, which may not be properly calibrated to model ligand accommodation into wide  

and solvent exposed surfaces such as those involved in PPI, leading to a remarkable increase in the 

number of false positives [56]. In this study, we tried to overcome the potential bias associated with the 

starting ligand geometry applying a conformational search on each molecule of the databases before 

docking calculations [57]. However, the docking process still gave poor performances, indicating that 

Glide SP scoring function was not able to distinguish actives from decoys, even after the application  

of positional constraints biasing the position of each docked ligand toward a pose resembling that  

one assumed by the G-H loop of ephrin-A1 in its X-ray structure with EphA2 [21]. Blind docking runs 

performed with AutoDock Vina [58] produce enrichment curves comparable to those obtained with 

Glide (data not shown), confirming the trend that shape screening and pharmacophore search outperform 

docking runs in the case of the EphA2 receptor. 
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That said, a “combined” approach taking into account both target- and ligand-based information 

could represent a valuable computational strategy to search for novel active compounds [59]. In our case, 

the crystallographic-derived pharmacophore model (Model II) emerges as a reasonable compromise 

between structure- and ligand-based methodologies in term of performance and computational cost. Indeed, 

despite not being able to identify all the active compounds in an early stage of the screening, 

pharmacophore Model II retrieved both steroidal and non-steroidal compounds, suggesting that it 

might be exploited for scaffold-hopping campaigns aimed at searching for novel structurally unrelated 

EphA2 antagonists. 
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