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Abstract

In recent years, renewable energy sources have been considered the most encouraging

resources for grid and off-grid power generation. This paper presents an improved current

control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbal-

anced and nonlinear load conditions. It is challenging to suppress the harmonic content in

the output current below a pre-set value in the GCI. It is also difficult to compensate for

unbalanced loads even when the grid is under disruption due to total harmonic distortion

(THD) and unbalanced loads. The primary advantage and objective of this method is to

effectively compensate for the harmonic current content of the grid current and microgrid

without the use of any compensation devices, such as active and passive filters. This

method leads to a very low THD in both the GCI currents and the current exchanged with

the grid. The control approach is designed to control the active and reactive power and har-

monic current compensation, and it also corrects the system unbalance. The proposed con-

trol method features the synchronous reference frame (SRF) method. Simulation results are

presented to demonstrate the effective performance of the proposed method.

Introduction

Among the various renewable energy sources (RESs), photovoltaics (PVs) are the most prom-

ising environmental friendly and fastest growing clean and renewable energy source [1,2]. The

RESs are connected to the utility network or microgrid (MG) by an interface converter. An

MG is a local grid composed of distributed generators (DGs), energy storage systems and

loads and can operate in both grid-connected [3] and island modes [4]. Power quality prob-

lems are a specific concern with MGs because distortion harmonic sources can represent a

high proportion of the total loads or nonlinear loads (NLLs) in small-scale systems [5]. The

main limitation associated with MGs occurs when exchanging the current from the grid to the

MG [6–8]; this exchange is considered a source of harmonic distortion in a grid-connected

inverter (GCI) [9]. To improve the power quality in MGs, several approaches have been
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proposed [10]. Installing passive filters (PFs) in the appropriate locations, preferably close to

the harmonic generator, can lead to trapping of the harmonic currents near the source and

can reduce their distribution throughout the other parts of the system [11]. Active power filters

(APFs) have been proven as a flexible solution for compensating the harmonic distortion

caused by various NLLs in power distribution systems [12]. Hybrid compensation (HC) has

the advantages of both passive and active power filters for the improvement of power quality

problems [13]. Traditionally, the GCIs used in MGs connected to the main grid have behaved

as current sources [14]. The GCI controller should be able to correct an unbalanced system

and cancel the main harmonics to meet the waveform quality requirements of the local loads

and MGs [9]. The primary goal of a power-electronic interface inverter is to control the power

injection [15]. However, compensation for power quality problems, such as current harmon-

ics, can be achieved through appropriate control strategies. Consequently, the control of DGs

must be improved to meet the requirements when connected to the grid [16].

In the literature [9,17–24], several methods have been presented to control the DGs in

terms of a current harmonic compensator. The methods in [17] and [9] were proposed to

compensate for current harmonics in grid-connected MGs. The current controller proposed

in [17] uses the synchronous reference frame (SRF) and is composed of a proportional–inte-

gral (PI) controller and a repetitive controller (RC). The other study [9] proposed a cascaded

current and voltage control strategy for the interface converter in MGs. M. Hamzeh et al. [19]

proposed a control strategy that includes a harmonic impedance controller and a multi-pro-

portional resonant controller. Additionally, one researcher presented a control method for a

multi-bus MV MG under unbalanced and nonlinear load conditions [24]. Several controllers,

namely, PI controllers implemented in the dq frame as well (also constituting an SRF), a reso-

nant controller, a PI controller implemented in the abc frame, and a dead-beat (DB) predictive

controller, were proposed in [23]. In 2013 Savaghebi et al. published a paper in which they pro-

posed methods to compensate for the voltage unbalance at the RER terminal; the power quality

at the point of common coupling (PCC) is usually the main concern due to sensitive loads that

may be connected [25]. Mohamed Abbes et al. [26] proposed a control strategy for a three-

level, neutral point clamped (NPC) voltage source converter. Two current controllers were

designed to achieve grid current control.

Unfortunately, traditional APFs have several drawbacks, including higher cost, larger size,

higher power switch count, and complex control algorithms and interface circuits to compen-

sate for unbalanced and nonlinear loads.

Due to the aforementioned issues, this study presents a new inverter control method for

harmonic compensation. The proposed control strategy consists of an SRF method, which is

proposed to control power injection to the grid, provide harmonic current compensation and

correct the unbalanced system. The focus of the present paper is the reduction of total har-

monic distortion (THD) in the current flowing between the PCC and MG. Furthermore, simu-

lation studies are presented, discussed and analysed. The main proposed control methods are

as follows:

• voltage and current controllers;

• active and reactive power controllers;

• harmonic current compensation;

• current unbalance compensation.

This paper is organized as follows. The proposed control scheme for the DG GCI is dis-

cussed in Section II. In this section, details of the entire control structure, including the active
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and reactive power control unit and harmonic current compensation unit, are explained. Sim-

ulation results with three case studies are presented in Section III. Finally, conclusions are pre-

sented in Section IV.

The proposed control method

To enhance grid and MG current quality, an advanced current control method for the GCI is

presented. The proposed method contains two units: the active and reactive power control

unit and the harmonic current compensation unit. Fig 1 presents a schematic block diagram

of the proposed control strategy for the GCI. This block diagram is applicable for main and

remaining harmonic compensation, reactive power supply for distortion sources and system

unbalance correction.

Active and reactive power control unit

In the grid-connected power control mode, essentially all the available power that can be

achieved from the microturbine (MT) [27], fuel cell (FC) [28] and PV is delivered to the grid

[29]. Furthermore, compensation of the reactive power is possible. A block diagram of the con-

trol arrangement for the grid-connected control mode is shown in Fig 2.

Fig 1. Block diagram of the GCI’s proposed control method.

doi:10.1371/journal.pone.0164856.g001
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Certain controllers, namely, the PI controllers, are implemented in the dq frame (also called

the SRF) to adjust the grid currents in the dq-synchronous frame. The well-known SRF

method can be used for control of the APF and GCI, and it also can be designed as in [30].

This method uses a reference frame transformation module, abc!dq. The dq transformation

can be used to convert the three phase currents injected by the inverter into three constant DC

components defined as the direct, quadrature and zero components: Id, Iq and I0, respectively.

In general, three phase voltages and currents are transformed into dq0 coordinates by the Park

transformation, as shown by the matrix [L]:
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Fig 2. Block diagram of the control active and reactive powers.

doi:10.1371/journal.pone.0164856.g002
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The phase angles of the voltage and current signals are set as a reference current, which

achieves the SRF while I
�

d = 0. Fig 1 shows the current controller of interest [31]. The sinusoi-

dal pulse width modulation (SPWM) voltage frame is guaranteed. The voltage reference and

design phase-locked loop (PLL) synchronize the inverter with the grid. Thus, I
�

d and I
�

q as the

reference currents in the dq transform are re-calculated as follows:

The reference currents in the dq-axis, I
�

d and I
�

q, can be obtained from the following rela-

tions:

P ¼ VdId þ VqIq!
Vq¼0

I�d ¼
P�

Vd
ð3Þ

Q ¼ VdIq � VqId!
Vq¼0

I�q ¼
Q�

Vd
ð4Þ

where Vd and Vq are the grid voltages in the dq transform. Furthermore, the inverter is able to

deliver P
�

and Q
�
, which are the reference active and reactive power, respectively.

The simplified active and reactive powers are calculated as:

P ¼ VdId
Q ¼ VdIq

ð5Þ

Eq 5 shows that although the system voltage is constant (Vd), the currents of dq control the

active and reactive powers.

The real power injection from the GCI is controlled by the reference signal of I
�

d, whereas

the reactive power is set to zero (I
�

q = 0). The reference current I
�

d is extracted from dynamic

analysis of the DC-link capacitor. A constant DC voltage across the capacitor shows that the

DG matches the power. The equation is:

d
dt

V2

DC ¼
2

C
Pin � Poutð Þ ð6Þ

The DC-DC converter controls the power input (Pin) to the capacitor to generate the maxi-

mum DG output power. To keep the inverter output voltage constant, the inverter controls the

capacitor output power (Pout). The reference current is extracted from the difference between

Pin and Pout using the PI controller.

I�d ¼
1

Vd
Kp Pin � Poutð Þ þ KI

R
ðPin � PoutÞdtÞ ð7Þ

�

From these parameters, the command voltages V
�

d and V
�

q for the inverter gates SPWM

can be acquired using:

V�d ¼ KpðI�d � IdÞ þ KI

R
ðI�d � IdÞdt � oLf Iq þ VdÞ

V�q ¼ KpðI�q � IqÞ þ KI

R
ðI�q � IqÞdt � oLf Id þ VqÞ

ð8Þ

The command voltages are directed to the inverter for PWM. The control strategy applied

to the interface converter usually includes two cascaded loops. An external voltage loop con-

trols the DC-link voltage, and a fast internal current loop regulates the grid current. The DC-

link voltage in this structure is controlled by the essential output power, which is the reference

for the active current controller. Typically, the dq control methods are associated with PI con-

trollers because they have satisfactory behaviour when regulating DC variables [32]. Eq 9 gives

ISRF for PVGCI under unbalanced load
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the matrix transfer function in dq coordinates:

GðdqÞPI sð Þ ¼
Kp þ

Ki

s
0
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s

2

6
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3

7
7
5 ð9Þ

where Kp and Ki are the proportional and integral gain of the controller, respectively.

To provide the phase information of the grid voltage, the PLL technique [33] can be used,

which is required to generate the current reference iref and is also used to maintain the GCI

synchronism with the grid. To create the three current references, a PLL system has been pro-

posed in which the error of each is directed into the controller, and the corresponding mea-

sured current can be compared. Regarding the switches in the GCI, the switching of the

output of these controllers is noteworthy. When three PI controllers are used, the modulator is

essential for creating the duty cycles for the SPWM pattern. The PLL schematic is illustrated in

Fig 3.

In this synchronization structure, ωff and ω are the fixed frequency and the estimated grid

frequency, respectively. As depicted in Fig 3, the value of the rated frequency normally consists

of a feed-forward ωff to improve the dynamics of the phase estimation θ, which is obtained by

integrating ω.

Harmonic current compensation control unit

In the control unit for the compensation of harmonic currents, a three-phase stationary rotat-

ing frame is converted to a synchronous rotating frame via Park’s transformation. This trans-

form for the active and reactive components of the load voltage and current [34] is illustrated

Fig 3. PLL structure of the three phase.

doi:10.1371/journal.pone.0164856.g003
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in (10):
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The active and reactive components of the current are decomposed into the dq components

in (11) and (12).

The current source generates the fundamental component of the d-axis of the load and the

filter DC component associated with the strategy of harmonic compensation.

The steady-state error of the inverter’s DC component is eliminated by the PI controller to

keep the voltage across the capacitor constant. The error voltage is computed by comparing

the DC capacitor voltage with the reference voltage. Moreover, to regulate the capacitor under

dynamic conditions and mitigate the steady-state error, the output of the PI controller is modi-

fied. The PLL performance has a significant effect on the dq transform of the output signal. In

a PLL, the rotating reference frame (ωt) is set as a fundamental component. Application of the

inverse of Park’s transformation is represented in (13) through (15). The dq rotating frame is

converted back to a three-phase stationery frame:

i�sa ¼ idsinðotÞ þ cosðotÞ ð13Þ

i�sb ¼ idsin ot �
2p

3

� �

þ cos ot �
2p

3
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i�sc ¼ idsin ot þ
2p
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� �

þ cos ot þ
2p

3

� �

ð15Þ

This theory is only applicable to the three-phase system. Because the harmonic current

compensation controller addresses DC quantities, its control unit is entirely stable. However,

there is a time delay in filtering the DC quantities due to the instantaneous computation of

quantities [35]. The extracted reference signal is then used to trigger the gate driver controller,

which will allow the inverter to introduce the desired compensation current into the system.

Simulation results

In a basic MG architecture (Fig 4), the system is assumed to be radial with several feeders and

a collection of NLLs. To demonstrate the effectiveness of the proposed control strategy, the

system in Fig 4 was simulated in MATLAB/Simulink.

This MG includes three DGs, namely, the PV, MT and FC, which are connected to the grid

by the power electronic interface. The proposed control methods are applied to the PV; how-

ever, the FC is connected to the grid by the ordinary interface converter without the control

strategy. The MT has a frequency of 1,500 Hz, which is similar to a normal generator, but its

output voltage has a frequency of 1,500 Hz. Therefore, the effective voltage of the output phase

of this 220 V MT has a frequency of 1,500 Hz, but this source cannot be connected to a power

system with a frequency of 50 Hz. For this purpose, the input voltage must first be rectified

ISRF for PVGCI under unbalanced load
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using a diode rectifier, and the maximum output voltage of the rectifier will be 530 V. Then,

the level of the output voltage can be raised to 750 V using a boost convertor connected to an

inverter transformer. Thereafter, the DC voltage is applied to the interface converter, which is

controlled by the SRF controller.

Furthermore, the FC has an output of 50 kW at 625 VDC and is connected to the grid by an

ordinary AC/DC convertor. Another side of this system consists of two NLLs, such as the

three unbalanced single-phase diode rectifiers and the three-phase diode rectifier, which pro-

duced the distorted waveform.

The PFs are distributive and are connected near the unbalanced NLLs and DGs in the sys-

tem; an APF is connected at the PCC. In operation, the PF is used to compensate for the major

harmonics. The APF is located at the upstream position to correct the unbalance of the system

and to remove the remaining harmonics.

The parameters of the three-phase power line [13], load/DGs and control method parame-

ters can be found in Tables 1, 2 and 3, respectively. In this system, the voltage is assumed to be

sinusoidal.

Fig 4. Study system configuration with DGs and distorted loads.

doi:10.1371/journal.pone.0164856.g004
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In the simulation, three case studies are taken into account. The configurations of the three

case studies are illustrated in Fig 5.

Case study I: Without any compensation devices.

Case study II: With an APF and distributed PFs.

Case study III: Without any compensation devices, such as APF and PFs, and with only the

proposed control method on the PV.

Fig 5 shows the three studied system configurations. Fig 5(A) consist of DG units and NLLs

connected to the grid without any compensation devices. As shown in Fig 5(B), each PF is con-

nected near the DGs and NLLs and designed to eliminate main harmonics and supply reactive

power to the MG.

Case study I

The currents of DGs and NLLs, equipped without any compensation devices and the proposed

control strategy, are shown in Fig 6. The GCI and NLLs make the system current nonlinear

and unbalanced and also require the injection of harmonic currents into the MG and grid.

The waveforms of the three-phase output currents and the distortion currents of the DGs

under NLL conditions are depicted in Fig 6(A). All output currents of the DGs and NLLs have

an effect on the system currents and produce a distortion waveform with 13.5% THD. The out-

put currents of three DGs are highly distorted with sharp spikes. Fig 6(B) shows the PV array

output current. The PV is connected to the MG through a GCI, which produces the distorted

waveforms with 11.04% THD. Furthermore, the MT and FC are connected to the system

through power electronic converters. Normally, the GCI discussed in the paper is considered

as a harmonic current source; in this case, the parallel compensation system is the best choice.

Table 1. Power Line Parameters.

ZL1 ZL2 ZL3 ZL4 ZL5 ZL6 Lt Ls

R (Ω) 0.263 0.524 0.781 0.134 0.280 0.134 - -

L (mH) 0.631 1.33 1.92 0.312 0.652 0.312 0.165 0.015

doi:10.1371/journal.pone.0164856.t001

Table 2. Load/DG Parameters.

Load/DGs Parameters Values

MT Inverter switching frequency 4 kHz

Inverter resistance 4 Ω
Inverter capacitance 5 μF

DC-link voltage 545 V

PV Inverter switching frequency 4 kHz

Inverter resistance 0.2 mΩ
Inverter capacitance 5 μF

DC-link voltage 675 V

FC Inverter resistance 0.1 mΩ
Inverter capacitance 0.1 μF

DC-link voltage 625 V

Battery Inverter resistance 4 Ω
Inverter capacitance 5 μF

DC-link voltage 750 V

Rating of NLL 1 RL 30 kW, 10 kVAr

Rating of NLL 2 Resistor 0.3 Ω

doi:10.1371/journal.pone.0164856.t002

ISRF for PVGCI under unbalanced load
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Thus, the DGs and NLLs may be considered to be current sources in terms of harmonic distor-

tion. Fig 6(E) and 6(F) illustrate the NLL current waveform and the associated harmonic

spectra.

Case study II

This case study consists of an APF and a distributed PF. Each PF is connected to DGs and

NLLs and is designed to eliminate the main harmonics and supply reactive power for NLLs,

while the APF is responsible for the correction of the system unbalance and the removal of the

remaining harmonics. Fig 7 shows the dq current control block diagram of the APF.

Table 3. Control Parameters.

Controller Parameter value

VDC (V) 688

Proportional gain (Kp) 0.4

Integral gain (Ki) 10

Fundamental frequency (Hz) 50

Vabc (V) and Vabc DG (V) 220

Iabc (A) 210

Iinjected (A) 47

doi:10.1371/journal.pone.0164856.t003

Fig 5. Schematics of a system and an MG: (a) without any compensation devices; (b) with active and passive filters; (c) using just the proposed control

method on the PV.

doi:10.1371/journal.pone.0164856.g005
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A system waveform using active and passive filter compensation is shown in Fig 8. An

active filter is connected to the system; the system harmonics and unbalanced current are com-

pensated. Fig 8(A) provides the results obtained from the simulation after the connection of

dedicated compensation devices that can reduce the THD in the system from 13.5% to 2.02%.

Comparing the waveforms in Figs 6(B)–6(F) and 8(B)–8(F), the effects of the PFs and APF can

be clearly identified.

After the active filter is connected, the source current becomes balanced and sinusoidal.

Without any compensation, the system current THD is 13.56%; after compensation, the THD

is reduced to 2.02%.

Case study III

This case study indicates improved power quality with the absence of compensation devices in

the MG. The main contribution of this study is the harmonic current compensation between

the PCC and the MG. The compensated system currents are explained in this subsection. The

proposed control method can be applied to the GCI of the PV. Fig 9 shows a block diagram of

the power electronic interface configuration for the MT, FC and PV with installation of the

proposed control method.

Fig 6. System DG unit currents and NLL current waveforms with THD without any compensation: (a) system currents; (b) PV

currents; (c) MT currents; (d) FC currents; (e) NLL 1 currents; (f) NLL 2 currents.

doi:10.1371/journal.pone.0164856.g006

ISRF for PVGCI under unbalanced load
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Before the GCI with proposed control method is switched in, the system current contains

harmonics and is unbalanced. The proposed control method is effective in correcting the

distortion. Fig 10(A) and 10(B) show the effective compensation values of the harmonic

current for the system and PV, respectively. This case study shows that the proposed control

method can compensate for the current system (PCC) and DGs in the absence of power

compensation devices and an APF. The output currents of phase ‘a’ in the PV and their har-

monic spectra, without the harmonic compensation loop, are depicted in Fig 6. The output

currents of phase ‘a’ in the PV are distorted because of the connection of the three-phase

NLL. Both negative and zero sequence harmonics, consisting of the 3rd, 5th, 7th, 9th, 11th

and 13th harmonics, can cause power quality problems in the grid-connected MG. The out-

put current quality for PV can be improved using the proposed harmonic compensator

loop that consists of six modules, tuned at the 3rd, 5th, 7th, 9th, 11th and 13th harmonic fre-

quencies. For performance comparison, the output current of phase ‘a’ in the DGs and their

harmonic spectra, with the proposed harmonic controller, are shown in Fig 10. When com-

paring the output current waveforms in phase ‘a’, it is notable that by employing the pro-

posed control method, the 3rd, 5th, 7th, 9th, 11th and 13th harmonics in the current are

substantially suppressed.

When all of the loads and DGs are connected, the THD in the system without any compen-

sation is 13.5% (Fig 6(A)). As shown in Fig 10(A), the THD is reduced to 1.69% at the PCC

with the proposed control method. The simulation results of Fig 10(A) and 10(B) show the

performance of the proposed control method for compensating the distorted waveform of Fig

6(A) and 6(B). The effects of the proposed control method can be clearly observed by compar-

ing the bold values in Table 4 (between case study I and case study III). Thus, this approach is

verified to be capable of meeting IEEE 519–1992 recommended harmonic standard limits. The

Fig 7. Block diagram of the control system for the APF.

doi:10.1371/journal.pone.0164856.g007

ISRF for PVGCI under unbalanced load
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currents and the THD value of the system in all case studies are given in Table 4. Full names

corresponding to nomenclature are shown in S1 File.

Conclusions

This study proposes a new control strategy for harmonic current compensation for DG inter-

face converters in an MG. The proposed control method consists of the SRF control method.

When nonlinear, unbalanced loads and DGs are connected to the grid, the proposed strategy

significantly and simultaneously improves the THD of the interface converter for DGs and the

grid current.

In the proposed method, the harmonic currents of the NLLs and DGs in the MG and at the

PCC are completely compensated. The proposed control is responsible for controlling the

active and reactive power injection to the grid; it is also responsible for compensating for the

harmonic currents due to the unbalanced load. The presented simulation results show that the

PCC harmonic currents due to unbalanced loads, NLLs and DGs are compensated to the

desired value. This strategy can be used for single-phase and three-phase systems. The simula-

tion results verify the feasibility and effectiveness of the newly designed control method for a

grid-connected converter in an MG.

Fig 8. System DG unit current waveforms with THD after compensation with active and passive filters: (a) system currents; (b) PV

currents, (c) MT currents; (d) FC currents; (e) NLL 1 currents; (f) NLL 2 currents.

doi:10.1371/journal.pone.0164856.g008
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Fig 9. Block diagram of the power electronic interface configuration.

doi:10.1371/journal.pone.0164856.g009

Fig 10. System and DG unit current waveforms with THD without any compensation devices except for the

proposed control method on the PV: (a) system currents; (b) PV currents.

doi:10.1371/journal.pone.0164856.g010
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