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Abstract

Influenza results in approximately 3–5 million annual cases of severe illness and 250 000–500
000 deaths. We urgently need an accurate multi-step-ahead time-series forecasting model to
help hospitals to perform dynamical assignments of beds to influenza patients for the annu-
ally varied influenza season, and aid pharmaceutical companies to formulate a flexible plan of
manufacturing vaccine for the yearly different influenza vaccine. In this study, we utilised four
different multi-step prediction algorithms in the long short-term memory (LSTM). The result
showed that implementing multiple single-output prediction in a six-layer LSTM structure
achieved the best accuracy. The mean absolute percentage errors from two- to 13-step-
ahead prediction for the US influenza-like illness rates were all <15%, averagely 12.930%.
To the best of our knowledge, it is the first time that LSTM has been applied and refined
to perform multi-step-ahead prediction for influenza outbreaks. Hopefully, this modelling
methodology can be applied in other countries and therefore help prevent and control influ-
enza worldwide.

Introduction

Influenza, commonly known as flu, circulates worldwide and places a substantial burden on
people’s health every year. The flu outbreak resulted in approximately 3–5 million annual
cases of severe illness and 250 000–500 000 deaths [1]. In the USA, annual flu outbreak led
to an average of 610 660 life-years lost, 3.1 million hospitalised days and 31.4 million out-
patient visits. The total economic burden of annual flu outbreak using projected statistical
life values amounted to $87.1 billion [2]. Flu is one of the costliest epidemics worldwide.

The flu vaccine is one of the best ways to reduce the risk of getting sick with flu and spread-
ing it to others [3]. During the 2015–2016 flu season, flu vaccine prevented an estimated 5.1
million illnesses, 2.5 million medical visits, 71 000 hospitalisations and 3000 pneumonia and
influenza deaths [3]. However, because flu virus undergoes high mutation rates and frequent
genetic re-assortment [4–6], manufacturing flu vaccine suffers from a complicated process
every year. In Februaries, World Health Organization (WHO) assesses the strains of flu
virus that are most likely to be circulating over the following winter. Then, vaccine manufac-
turers produce flu vaccines in a very limited time [7]. Usually, the first batch of vaccine is
unavailable until Septembers [8, 9].

Moreover, hospital beds assignment to flu patients is also a challenging task due to the limited
capacity of hospital beds, time dependencies of bed request arrivals and unique treatment
requirements of flu patients [10]. Furthermore, flu seasons vary in timing, severity and duration
from one season to another [7]. Therefore, flu hospitalisation also varies by sites and time in each
season [11, 12], which makes beds assignment to flu patients more difficult for hospitals.

To help hospitals and pharmaceutical companies better prepare for an annual flu outbreak, we
need an accurate model to perform multi-step-ahead time-series prediction for flu outbreaks.
Multi-step-ahead time-series prediction, or simply ‘multi-step prediction’, is an analytical task
of predicting a sequence of values in future by analysing observed values in the past [13].
Nonetheless, not many past papers studied multi-step prediction for flu outbreaks. The possible
reason could be that multi-step prediction usually results in poor accuracy due to some insuper-
able problems, such as error accumulation. One compromising method is that one can aggregate
raw data to a larger time unit and then use the single-step prediction to avoid performing multi-
step prediction. For instance, if raw data are weekly based, we can aggregate weekly values to
monthly values and then perform a single-step prediction for the coming month (that is roughly
around 4 weeks). Although the single-step prediction avoids poor accuracy, it will hinder us from
understanding the trend and variation during the coming month.

In this study, we leveraged the deep learning model of long short-term memory (LSTM).
Our selection of LSTM was based on the theoretical and practical consideration. In theory,
the LSTM is a special kind of RNN. Its elaborate structure (multilayers and gated cells)
enables LSTM to learn simulate non-linear function, long-term dependencies [14] and refine
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time-series prediction [15]. In practice, we found that LSTM
achieved the best accuracy in all the six models (autoregressive
integrated moving average, support vector regression, random
forest, gradient boosting, artificial neural network and LSTM)
when we performed a single-step prediction for the US flu data
(the same data source with those of this study) in one of our pre-
vious studies [16].

Methods

Source data and metrics

We used the US flu data from the 40th week of 2002 to the 30th
week of 2017, collected from the ‘FluView’ Portal of Centre for
Disease Control and Prevention (CDC) [17]. To remove any pos-
sible variations in populations, we used the influenza-like illness
(ILI) rates as the response ( y) of models.

ILI rate = The number of ILI
Total number of Illness

.

Figure 1(a) illustrates the historical plot of the US flu data. We
split the duration into two parts: the first 2/3 (from the 40th week
of 2002 to the 44th week of 2012) for training and the last 1/3
(from the 45th week of 2012 to the 30th week of 2017) for testing.

Figure 1(b) describes the histogram of the weekly ILI rates. The
histogram is right-skewed. Generally, comparing accuracy of
models by mean absolute percentage error (MAPE) mainly
reflects the difference of the ‘median’; while comparing by root
mean square error primarily reflects the difference of the
‘mean’. The right-skewed histogram and the Kolmogorov–
Smirnov test (P < 0.05) showed that the US flu data followed a
non-normal distribution. Therefore, we expected that the accuracy
would reflect the difference of ‘median’ and thereby used MAPE
as a key performance indicator (KPI) for comparing models.

MAPE = 1
n

∑n

t=1

Ft − At

At

∣∣∣∣
∣∣∣∣ × 100%,

where At is the actual value and Ft is the forecast value.

Feature space and responses

For the feature space, we adopted the time lag of 52 weeks due to the
result of one of our previous studies. In the previous study, we used
the same US flu data and compared accuarcy of models of the dif-
ferent time lags of 2, 4, 9, 13, 26 and 52 weeks and found that of 52
weeks grew out the best accuracy [16]. Moreover, we calculated the
first-order differences as a part of the feature spaces, since some
past study found that first-order differences helped improve accur-
acy of the prediction models for flu data [18]. In brief, for feature
spaces, we used (I) the ILI rate of the current week, (II) the ILI
rates of the past 52 weeks and (III) the 52 first-order differences.
Totally, we have 105 features.

Regarding responses, we were forecasting the two-, three-,
four-, five-, six-, seven-, eight-, nine-, 10-, 11-, 12- and
13-step-ahead ILI rates.

Model

For multi-step prediction, there are mainly two types of method-
ologies: (I) ‘recursive’ prediction and (II) ‘jumping’ prediction.

Generally, the methodology of (I) predicts values step-by-step;
the methodology of (II) predicts some-step-ahead values inde-
pendently. The following (a), (b), (c) and (d) explain four multi-
step prediction algorithms [19].

(a) Multi-stage prediction (MSP)

MSP is a ‘recursive’ prediction. MSP uses one single-output
model, which is recursively applied in multiple-step prediction,
feeding through the previous output as its new input [20]. In
this study, as the first step, we predict Xt+1 using the 53 historical
values, i.e. Xt, Xt−1, Xt−2, … and Xt−52; as the second step, we pre-
dict Xt+2 based on Xt+1 (Xt+1 was predicted in the first step), Xt, Xt

−1, Xt−2, … and Xt−51; as the third step, we predict Xt+3 based on
Xt+2 (Xt+2 was predicted in the second step), Xt+1 (Xt+1 was pre-
dicted in the first step), Xt, Xt−1, Xt−2, … and Xt−50, etc.
Formula 1 describes the prediction process.

Formula 1. Algorithm of MSP
prediction(t+1) = LSTM_MSP_MODEL#01(observation(t),

observation(t−1), observation(t−2), …, observation(t−52))
prediction(t+2) = LSTM_MSP_MODEL#01(prediction(t+1),

observation(t), observation(t−1), …, observation(t−51))
prediction(t+3) = LSTM_MSP_MODEL#01(prediction(t+2),

prediction(t+1), observation(t), observation(t−1), …, observation (t−50))
…
prediction(t+13) = LSTM_MSP_MODEL#01(prediction (t+12),

prediction(t+11), prediction(t+10), …, prediction(t+1), observation(t),
observation(t−1), …, observation(t−40))

(b) Adjusted multi-stage prediction (AMSP)

AMSP is a refined version of MSP. Comparatively, when
AMSP predicting Xt+p (P≥ 2), it uses another model instead of
using the same model repeatedly. Such a modification helps sup-
press error accumulation [21, 22]. Formula 2 illustrates the algo-
rithm of AMSP.

Formula 2. Algorithm of AMSP
prediction(t+1) = LSTM_AMSP_MODEL#01(observation(t),

observation(t−1), observation(t−2), …, observation(t−52))
prediction(t+2) = LSTM_AMSP_MODEL#02(prediction(t+1),

observation(t), observation(t−1), …, observation(t−51))
prediction(t+3) = LSTM_MSP_MODEL#03(prediction(t+2),

prediction(t+1), observation(t), observation(t−1),…, observation(t−50))
…
prediction(t+13) = LSTM_AMSP_MODEL#13(prediction(t+12),

prediction(t+11), prediction(t+10), …, prediction(t+1), observation(t),
observation(t−1), …, observation(t−40))

(c) Multiple single-output prediction (MSOP)

MSOP is a ‘jumping’ prediction. MSOP directly predicts a
p-step-ahead (P≥ 2) value only by historical values: Xt, Xt−1, Xt−2,
…, Xt–n. Formula 3 explains the algorithm of MSOP.

Formula 3. Algorithm of MSOP
prediction(t+1) = LSTM_MSOP_MODEL#01(observation(t),

observation (t−1), observation(t−2), …, observation(t−52))
prediction(t+2) = LSTM_MSOP_MODEL#02(observation(t),

observation(t−1), observation(t−2), …, observation(t−52))
prediction(t+3) = LSTM_MSOP_MODEL#03(observation(t),

observation(t−1), observation(t−2), …, observation(t−52))
…
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prediction(t+13) = LSTM_MSOP_MODEL#13(observation(t),
observation(t−1), observation(t−2), …, observation(t−52))

(d) Multiple-output prediction (MOP)

MOP can be regarded as a merged version of MSOP. MOP
uses one model to predict many some-step-ahead values all at
once. In other fields, MOP was also implemented by multiple
support vector regression [20, 23, 24]. Formula 4 outlines the
algorithm of MOP.

Formula 4. Algorithm of MOP
prediction(t+1), prediction(t+2), …, prediction(t+13) = LSTM_

MOP_MODEL#01(observation(t), observation(t−1), observation(t−2),
…, observation(t−52))

Coding

We used Python and Keras package (Version 2.0.4) [25] based on
Tensorflow (Version 1.1.0) [26]. We adopted an ‘early-stopping’
algorithm with a ‘patience’ of 100 epochs (for a total of 1000
epochs) and compared the predicting accuracy of LSTM models
of the number of layers: 3–6 and 10.

Results

Results of MSP

Table 1(a) illustrates the MAPEs of LSTM with MSP algorithm.
The three-layer LSTM with MSP algorithm achieved the

predicting MAPEs of 19.757, 32.969, 49.096, 67.866, 89.892,
114.977, 143.999, 177.719, 217.721, 267.335, 332.577 and
426.828%, when forecasting the ILI rates of the coming second
to 13th weeks. The MAPE increased by nearly 22 times as the
number of predicting steps increased. Comparatively, the
MAPEs of the four-layer LSTM with MSP algorithm increased
limitedly, from 9.57% to 13.77% with some slight setbacks in
10-, 11- and 12-step prediction. The similar phenomena occurred
in the MAPEs of LSTM of five, six and 10 layers with MSP
(Fig. 2).

Results of AMSP, MSOP and MOP

Tables 1(b–d) display the MAPEs of LSTM with AMSP, MSOP
and MOP algorithm. In AMSP, the average MAPE increased
from 9.171% to 14.715% as the number of predicting steps
increased from two to 13, and varied from 13.626% to 13.911%
as the number of layers of LSTM increased from three to 10
layers.

The average MAPEs of LSTM of both MSOP and MOP had a
slight upward trend as the number of predicting steps increased
(from 8.911% to 14.064% in MSOP; from 10.747% to 26.389%
in MOP); and varied limitedly as the number of layers of LSTM
increased (from 12.935% to 13.386% in MSOP; from 17.9100%
to 20.684% in MOP).

In sharp contrast to MSP, the accuracy of AMSP, MSOP and
MOP had little improvement when we used more layers of
LSTM.

Fig. 1. The US flu data from the 40th week of 2002 to the 30th week of 2017. (a) We split the data into the training set and the testing set. The y-axis represents the
weekly ILI rates, and the x-axis represents the time series (from the 40th week of 2002 to the 30th week of 2017). The dashed line is the first 2/3 of the data (from
the 40th week of 2002 to the 52nd week of 2012) that were used for training, and the solid line is the last 1/3 of the data (from the first week of 2013 to the 30th
week of 2017) that were used for testing. (b) The histogram of the weekly ILI rates of the US flu data. The y-axis represents the frequency, and the x-axis represents
weekly ILI rates. The histogram is right-skewed.
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(b) The MAPEs of LSTM with the AMSP algorithm

The number of
multi-steps

MAPEs of AMSP
of three-layer
LSTM (%)

MAPEs of AMSP
of four-layer
LSTM (%)

MAPEs of AMSP
of five-layer
LSTM (%)

MAPEs of
AMSP of

six-layer LSTM
(%)

MAPEs of AMSP
of ten-layer
LSTM (%)

Average MAPE of
AMSP of three-,
four-, five-, six-,

10-layer LSTM (%)

2 8.883 9.287 9.453 9.361 8.870 9.171

3 11.326 11.346 11.312 11.377 11.050 11.282

4 12.655 12.906 13.066 12.974 12.378 12.796

5 13.258 13.572 14.078 13.773 13.482 13.633

6 13.897 13.984 14.556 13.245 13.917 13.920

7 14.747 13.676 14.678 14.325 14.283 14.342

8 15.208 14.548 14.110 14.474 15.390 14.746

9 14.631 13.774 15.500 14.406 15.260 14.714

10 14.908 14.616 14.004 13.702 15.213 14.488

11 14.582 15.142 15.307 14.802 17.347 15.436

12 14.718 15.109 15.247 13.616 15.455 14.829

13 14.702 14.569 15.163 14.849 14.292 14.715

Average MAPE of
AMSP of all
multi-steps (%)

13.626 13.544 13.873 13.409 13.911

MAPEs, mean absolute percentage errors; AMSP, adjusted multi-stage prediction; LSTM, long short-term memory.

Table 1. The MAPEs of LSTM with the multi-step predicting algorithms of MSP, AMSP, MSOP and MOP

(a) The MAPEs of LSTM with the MSP algorithm

The numbers of
multisteps

MAPEs of MSP of
three-layer LSTM

(%)

MAPEs of MSP
of four-layer
LSTM (%)

MAPEs of MSP
of five-layer
LSTM (%)

MAPEs of MSP
of six-layer
LSTM (%)

MAPEs of MSP
of 10-layer
LSTM (%)

Average MAPE of MSP
of three-, four-, five-,
six-, 10-layer LSTM

(%)

2 19.757 9.568 9.604 9.018 9.352 11.460

3 32.969 11.960 11.913 11.482 11.778 16.020

4 49.096 13.256 13.223 13.111 13.512 20.439

5 67.866 13.677 13.928 14.552 14.899 24.984

6 89.892 13.794 14.389 16.172 16.272 30.104

7 114.977 14.077 14.899 17.187 17.354 35.699

8 143.999 14.088 15.098 17.439 18.304 41.786

9 177.719 14.100 15.174 16.979 18.894 48.573

10 217.721 13.930 15.202 16.695 19.408 56.591

11 267.335 13.793 15.136 16.894 19.765 66.585

12 332.577 13.763 15.272 17.135 19.880 79.725

13 426.828 13.770 15.320 17.749 19.931 98.720

Average MAPE of
MSP of all
multi-steps (%)

161.728 13.315 14.096 15.368 16.612

MAPEs, mean absolute percentage errors; MSP, multi-stage prediction; LSTM, long short-term memory.
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(d) The MAPEs of LSTM with the MOP algorithm

The number of
multi-steps

MAPEs of MOP of
three-layer LSTM

(%)

MAPEs of MOP
of four-layer
LSTM (%)

MAPEs of MOP
of five-layer
LSTM (%)

MAPEs of MOP
of six-layer
LSTM (%)

MAPEs of MOP
of 10-layer of
LSTM (%)

Average MAPE of
MOP of three-, four-,
five-, six-, 10-layer

LSTM (%)

2 11.766 10.163 9.879 10.345 11.581 10.747

3 13.043 13.609 11.728 12.451 12.871 12.740

4 18.158 16.142 13.528 15.252 16.663 15.949

5 19.728 17.442 14.985 19.175 15.292 17.324

6 19.253 18.237 14.882 18.512 24.393 19.055

7 21.221 20.625 16.826 18.690 20.154 19.503

8 20.350 20.560 17.933 20.814 20.864 20.104

9 24.043 24.871 20.444 18.006 23.792 22.231

10 22.487 24.197 21.250 21.708 20.632 22.055

11 22.679 19.278 21.047 22.339 27.194 22.507

12 23.095 24.249 22.869 23.707 26.795 24.143

13 24.532 24.571 29.554 25.307 27.979 26.389

Average MAPE of
MOP of all
multi-steps (%)

20.030 19.495 17.910 18.859 20.684

MAPEs, mean absolute percentage errors; MOP, multiple-output prediction; LSTM, long short-term memory.

(c) The MAPEs of LSTM with the MSOP algorithm

The number of
multi-steps

MAPEs of MSOP
of three-layer
LSTM (%)

MAPEs of MSOP
of four-layer
LSTM (%)

MAPEs of MSOP
of five-layer
LSTM (%)

MAPEs of
MSOP of

six-layer LSTM
(%)

MAPEs of
MSOP of

ten-layer LSTM
(%)

Average MAPE of
MSOP of three-,
four-, five-, six-,

10-layer LSTM (%)

2 8.759 8.842 8.965 9.110 8.878 8.911

3 10.780 10.492 10.162 10.456 10.712 10.520

4 12.035 12.199 12.365 12.114 11.954 12.133

5 12.990 12.776 13.097 12.978 13.137 12.996

6 13.411 13.315 13.504 12.871 13.688 13.358

7 14.075 14.210 14.087 13.780 13.993 14.029

8 14.557 13.718 14.550 14.189 15.098 14.422

9 14.527 13.726 14.325 14.090 14.669 14.267

10 14.395 13.826 14.222 14.564 15.668 14.535

11 14.725 13.972 14.288 13.299 14.497 14.156

12 13.981 13.809 14.585 13.672 14.256 14.061

13 14.415 14.333 13.450 14.036 14.087 14.064

Average MAPE of
AMSOP of all
multi-steps (%)

13.221 12.935 13.133 12.930 13.386

MAPEs, mean absolute percentage errors; MSOP, multiple single-output prediction; LSTM, long short-term memory.
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Comparison of the average MAPE of MSP, AMSP, MSOP and
MOP

Figure 3 compares the average MAPEs of LSTM with multi-step
predicting algorithms of MSP, AMSP, MSOP and MOP. The dif-
ferent numbers of the layers impacted the predicting accuracy
tremendously in MSP (from 13.315% to 161.728%); slightly in

MOP (from 17.910% to 20.684%), and barely in AMSP (from
13.626% to 13.911%) and MSOP (from 12.930% to 13.386%).
Implementing MSOP in the six-layer LSTM structure achieved
the best accuracy in this study. The MAPEs from two-step-ahead
to 13-step-ahead prediction for the US ILI rates were all <15%,
averagely 12.930%.

Fig. 2. The MAPEs of LSTM with MSP. The y-axis represents the MAPE of the predictions and the x-axis represents multi-steps of the predictions. The (a–e) illustrate
the MAPEs with the MSP algorithm of three-, four-, five-, six-, 10-layer LSTM, respectively.

Fig. 3. The average MAPEs of LSTM with MSP, AMSP, MSOP and MOP. The y-axis represents the MAPE of the predictions and the x-axis represents the models of
three-, four-, five-, six- and 10-layer LSTM with the multi-step predicting algorithms of MSP, AMSP, MSOP and MOP. Implementing MSOP in the six-layer LSTM
achieved the lowest average MAPE of 12.930% in this study.
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Discussion

Past studies

We did not find past studies that performed auto-regression in the
multi-step prediction for flu outbreaks. Regarding multi-step pre-
diction for studies in other fields, MSP is one of the most popular
methodologies probably because many types of models can be
used for this purpose, such as linear regression, support vector
regression [27], random forest, gradient boosting, artificial neural
network [28], etc. However, any such model inevitably introduces
errors and tends to suffer from error accumulation problem when
the predicted period is long. This is because the bias and variance
from previous predictions impact future predictions [20]. These
compounding errors change the input distribution for future pre-
diction steps, breaking the train-test independent and identically
distributed assumption common in supervised learning [20].

Comparison of accuracy of MSP, AMSP, MSOP and MOP

When comparing four different multi-step predicting algorithms,
we found that the MAPEs of AMSP were less than those of MSP,
which demonstrated AMSP suppressed the accumulated errors
effectively based on its refined algorithm. Besides, the MAPEs of
MSOP are less than those of MOP. As we mentioned in section
‘Methods’, to predict the ILI rates of the coming second to 13th
weeks, MOP trained only one model while MSOP trained 13 mod-
els. As a result, MSOP can predict with no necessity of sharing neu-
rons in LSTM structure, while MOP has to share neurons in LSTM
structure. Consequently, the accuracy of MSOP performed better.
Moreover, the average MAPEs of MSOP are slightly less than
those of AMSP. The explanation is thatMSOP does not accumulate
errors at all, while AMSP just adjusted its accumulated errors by
training new models. Therefore, MSOP performed best.

Other features

In our opinion, including other features in multi-step predicting
models impacts models’ accuracy positively and negatively. For
one thing, when predicting future values, other features could help
predict more accurately, especially at turning points, such as an
abrupt decrease in temperature. For another thing, before forecasting
future ILI rates, we need to forecast other features (e.g. we need wea-
ther forecast for temperature and humidity). The error in former
prediction could enlarge the error in later prediction. The mechan-
ism is similar to MSP, which accumulates error step by step. In con-
clusion, whether the accuracy improves or deteriorates might depend
on different data in different season from different countries.

In this study, we only performed auto-regression based on two
pieces of consideration. First, we regard historical values as a
response of all related features, such as temperature, humidity,
etc. Therefore, to some extent, taking historical values as feature
space includes all related features/factors in models. Besides,
how to include temperature or humidity of the whole country
in the models is a challenge work. Simply averaging temperature
or humidity of all the places (cities and towns) of the USA might
bring other problems, such as overlooking in population size,
population density, life styles, etc. in different places.

Conclusion

In this study, we adjusted the LSTM model by the four multi-step
prediction algorithms. The result showed that implementing

MSOP in a six-layer LSTM structure achieved the best accuracy.
The MAPEs from two-step-ahead to 13-step-ahead prediction
for the US ILI rates were all <15%, averagely 12.930%.
Hopefully, this accurate modelling approach will positively help
hospitals, pharmaceutical companies, individuals and govern-
ments better prepare for the flu seasons and therefore prevent
and control flu outbreaks worldwide.
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