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Recently expanded estimates for when humans arrived on Madagascar (up to
approximately 10 000 years ago) highlight questions about the causes of the
island’s relatively late megafaunal extinctions (approximately 2000–500
years ago). Introduced domesticated animals could have contributed to extinc-
tions, but the arrival times and past diets of exotic animals are poorly known.
To conduct the first explicit test of the potential for competition between intro-
duced livestock and extinct endemic megafauna in southern and western
Madagascar, we generated new radiocarbon and stable carbon and nitrogen
isotope data from the bone collagen of introduced ungulates (zebu cattle,
ovicaprids and bushpigs, n = 66) and endemic megafauna (pygmy hippo-
potamuses, giant tortoises and elephant birds, n = 68), and combined these
data with existing data from endemic megafauna (n = 282, including giant
lemurs). Radiocarbon dates confirm that introduced and endemic herbivores
briefly overlapped chronologically in this region between 1000 and 800 cali-
brated years before present (cal BP). Moreover, stable isotope data suggest
that goats, tortoises and hippos had broadly similar diets or exploited similar
habitats. These data support the potential for both direct and indirect forms
of competition between introduced and endemic herbivores. We argue that
competition with introduced herbivores, mediated by opportunistic hunting
by humans and exacerbated by environmental change, contributed to the
late extinction of endemic megafauna on Madagascar.

1. Introduction
Until quite recently, Madagascar’s diverse endemic fauna included gorilla-sized
lemurs (Archaeoindris fontoynontii), giant tortoises (Aldabrachelys spp.), three-
metre-tall elephant birds (Aepyornis maximus) and one-metre-tall pygmy
hippos (Hippopotamus spp.). However, all of the island’s endemic animals
greater than 10 kg are now extinct, and introduced zebu cattle (Bos taurus indi-
cus) are currently the largest animal on the island. A wide range of potential
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Figure 1. Two possible scenarios for megafaunal extinction, with human arrival and megafaunal extinction estimates drawn from 14C reviews [5,6]. Dashed lines
represent uncertain timing of human introduction and aridification, blue represents extinct endemic megafauna and red represents introduced herbivores. The
‘synergy’ hypothesis involves impacts of drought and overhunting (a), and the ‘subsistence shift’ hypothesis involves apparent competition and possibly direct
competition between introduced livestock and endemic megafauna (b). These versions of the ‘synergy’ and ‘subsistence shift’ hypotheses are not mutually exclusive:
negative synergistic effects involving drought and introduced livestock could have contributed to megafaunal extinction. (Online version in colour.)
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stressors, including overhunting, drought, fire, disease and
biological invasion, could have contributed to extinctions
in Madagascar [1]. We integrate radiocarbon dating with
stable isotope analysis of introduced ungulate and extinct
endemic megaherbivore bone collagen to test extinction
hypotheses that involve competition between endemic and
introduced herbivores.

A debate regarding when humans first arrived in
Madagascar is ongoing. Some researchers favour early
human arrival 10 000–4000 years ago based on rare stone
tools and cutmarks on ancient elephant bird bone [2,3],
while others favour recent arrival 1600–1000 years ago
based on broader cultural considerations [4]. Here, we
assume that people were on the island 2000–1600 years ago
based on a recent review of radiocarbon (14C) data associated
with traces of human activity [5]. However, it was not until
approximately 1000 years ago that most populations of ende-
mic megafauna crashed [6]. These extinctions coincided with
drought in parts of southern Madagascar [7,8]. Still, the idea
that island-wide aridification drove extinctions is inconsistent
with (i) the persistence of diverse Malagasy megafauna
during relatively severe Pleistocene climate fluctuations,
(ii) megafaunal bone stable isotope records that suggest few
directional changes in habitat aridity [9,10] and (iii) palaeocli-
mate records that reveal asynchronous changes in regional
climate during the late Holocene [8,11]. While Madagascar’s
late Holocene fossil record is rich, the early Holocene and
particularly Pleistocene records are unfortunately sparse
and limited to less than 20 14C-dated individuals from central
and northern Madagascar [6].

An alternative hypothesis is that the spread of pastoralism
and farming approximately 1000 years ago triggeredmegafau-
nal extinction [12,13]. Palaeoenvironmental records document
vegetation change in multiple regions of Madagascar during
the past millennium [14,15], but there is a dearth of data
from directly 14C-dated introduced animals [5]. In southern
and western Madagascar (hereafter referred to as southwest
Madagascar), the foddering needs of livestock currently influ-
ence the movement of pastoralists, and people modify both
grasslands and forests through selective clearance and the
propagation of introduced succulents to sustain livestock [16].

We consider potential for interactions among humans, live-
stock and endemic megafauna that may be direct (e.g. resource
competition or hunting) or indirect (e.g. mediated by hunting/
predation, as in apparent competition). Direct competition
between introduced and endemic animals resulting from over-
lap in diet or habitat use can be partially inferred through
stable isotope analysis of consumer tissue. Evidence for hunting
comes from butchery marks on Malagasy megafaunal bone
[2,4]. Hunting could have acted in concert with regional aridifi-
cation to drive megafaunal extinction (an early formulation of
the ‘synergy hypothesis’ [17]; figure 1), or it could have occurred
with pastoralism to create apparent competition between intro-
duced and endemic herbivores (‘subsistence shift hypothesis’
[12]; figure 1). Apparent competition occurs between two
species that are prey for the same predator/hunter [18], and it
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disadvantages prey that are relatively sensitive to predation
(e.g. slowly reproducing megafauna that are not part of
animal husbandry). By definition, apparent competition does
not depend on overlapping resource use of potential competi-
tors (as inferred from stable isotope and other data). Instead,
support for apparent competition comes from evidence of (i)
contemporaneous shared predation/hunting pressure
(as inferred through cutmarked and 14C-dated bone) and (ii)
different impacts on prey populations (assumed in our case
due to differences in animal husbandry versus bushmeat hunt-
ing). Regardless of direct competition among herbivores,
livestock could have devastated endemic megafauna by
facilitating human population growth and overhunting.

A precise chronology of pastoralism and species extinctions
on Madagascar is needed to test the ‘subsistence shift’ hypo-
thesis. Lack of temporal overlap between introduced and
endemic megaherbivores is inconsistent with the latter hypo-
thesis (figure 1). Here, we directly 14C date exotic ungulates
from southwest Madagascar to test the possibility that biologi-
cal invasion contributed to a pulse of megafaunal extinction.
We report data from ovicaprids (Capra hircus and Ovis aries),
bushpigs (Potamochoerus larvatus) and zebu (Bos taurus indicus).
We focus on the relatively abundant and well-preserved bone
deposits of southwest Madagascar. Based on reports of mixed
megafaunal and introduced herbivore bones [19], we predict
that the arrival of livestock preceded megafaunal extinction.

Direct competition can follow from niche overlap, and
stable carbon isotope (δ13C) and nitrogen isotope (δ15N)
values of bone collagen give a unique insight into the past
niches (diet and habitat) of individuals and groups. The
photosynthetic pathway of plants strongly influences their
δ13C values and those of consumer tissue [20]: plants that
use the C3 photosynthetic pathway (primarily trees, shrubs
and herbs) tend to be depleted in 13C relative to plants that
use the C4 pathway (primarily grasses) or CAM pathway
(primarily succulents). Relatively open soil nitrogen cycling
in arid environments drives relatively high ecosystem δ15N
values [21]. To a lesser extent, local environmental conditions,
including canopy cover and coastal proximity, can also influ-
ence δ13C and δ15N values [22]. Existing data suggest that
endemic megaherbivores were browsers [23], so we predict
that they had overlapping δ15N and δ13C values with brows-
ing goats, and not with introduced grazers such as zebu and
sheep. While similar isotope values may reflect overlaps in
resource use that create direct competition (figure 1), direct
competition does not necessarily follow from overlaps in
resource use. This is because (i) animals may partition
resources by foraging on different plants, at different times,
or in different areas with similar isotope values [24], and
(ii) the impacts of herbivory on plant communities are diverse
[25]. By contrast, non-overlapping δ15N and δ13C values
suggest distinct diets and habitat use and leave little potential
for direct competition (figure 1).

2. Methods
(a) Study area/regional overview
Southwest Madagascar experiences a prolonged dry season and
receives only a brief rainy season during the austral winter.
Regional vegetation is dominated by deciduous C3 trees and
CAM succulents, as well as some C4 grasses [26]. Riparian forests
dissect this otherwise dry landscape, but relatively high δ15N
values in subfossil lemur collagen suggest that these animals
did not prefer wet corridors [27]. The similar environmental con-
ditions across southwest Madagascar justify the comparison of
stable isotope data from plants and animals across the region
[22]. To make relatively fined-grained comparisons of stable iso-
tope data, we also used two approaches to group data from
multiple sites: (i) five ecogeographic site groups defined by
coasts and drainages with comparable aridity (figure 2) and (ii)
simple inland versus coastal groups (coastal defined as less
than 10 km from shore).

(b) Data collection
Details regarding all aspects of sample selection, laboratory analy-
sis, data review and data analysis are provided in the electronic
supplementary material, appendix. We sampled skeletal remains
from 66 introduced zebu, sheep, goats and bushpigs as well as
71 endemic tortoises, hippos and elephant birds from 21 sites in
southwest Madagascar (figure 2; electronic supplementary
material, appendix datasets S1 and S2). We extracted and purified
bone collagen at the Pennsylvania State University (PSU), gathered
stable carbon and nitrogen isotope data at Yale University’s W. M.
Keck Biotechnology Resource Laboratory, and submitted 111
ancient samples with sufficient preservation for analysis at the
PSU AMS 14C Laboratory or the UC Irvine W. M. Keck Carbon
CycleAMSLaboratory (electronic supplementarymaterial, appen-
dix ‘Sample Collection’ and ‘Laboratory Analyses’). We co-
analysed these new data with previously published regional 14C
data from 155 megafaunal bones and eggshells, as well as stable
isotope data from 261 specimens belonging to five endemic taxa
(electronic supplementary material, appendix ‘Additional Data’).
The published dataset includes data from two extinct lemur taxa:
the giant ruffed lemur (Pachylemur insignis) and monkey lemur
(Archaeolemur majori). The monkey lemur had a semi-terrestrial
locomotor strategy [28] that would have made it more likely to
interact with introduced ungulates, and a relatively large
number of giant ruffed lemur bones have been directly
14C-dated. We ultimately excluded 39 specimens from the analysis
of combined data due to data quality issues. The final co-analysed
dataset includes reliable 14C dates (n = 238), δ13C values (n = 374)
and δ15N values (n = 293) from 45 sites (figure 2).

(c) Data analysis
Weestimated introduction and extinction times based on sequences
of 14C data using both classical and Bayesian approaches to control
for differences in sample size (figure 3; electronic supplementary
material, appendix table S1). General linear models (electronic
supplementary material, appendix ‘Data Analysis’, tables S2 and
S3) compared influences of taxon, space and time on stable
isotope values. We fitted Bayesian ellipses to stable isotope data
for each taxon to visualize overlap in isotopic niche space (figure 4;
electronic supplementary material, appendix figure S6 and
table S4). Stable isotope mixing models informed by modern
plant δ13C data (electronic supplementarymaterial, appendix data-
set S3 and figures S2–S3) expanded dietary inference (electronic
supplementary material, appendix figure S4). To establish end-
members for our mixing model, we combined published data
from the region (n = 492) with new δ13C data for 242 plant samples
collected at three sites in the vicinity of Tulear/Toliara, southwest
Madagascar and analysed at the University of Cincinnati
(electronic supplementary material, appendix dataset S3).
3. Results
(a) Chronological overlap
Radiocarbon-dated bone and eggshell suggest comparable
introduction times among herbivores and a brief overlap
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Figure 2. Map of 45 study sites in southwest Madagascar included in this study. Sites marked in green include bones of only endemic animals, those in yellow
include only introduced animal bone, and those in red include both. We used sites grouped along the Morombe coast [1–10], Tulear coast [11–22], Mangoky
drainage [23–26], and Onilahy drainage [27,28] and sometimes the Far South [29–43] for comparisons of stable isotope values among taxa (electronic supplemen-
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are not considered in comparisons of stable isotope data given their relatively wide geographical spread. Plant stable isotope data come from specimens collected in
the vicinity of sites outlined in black. (Online version in colour.)
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between introduced and extinct endemic megafauna in south-
westMadagascar. Reliable 14C dates from endemicmegafaunal
bone and eggshell (n = 186) span the Holocene, yet approxi-
mately 95% of the specimens are younger than 4000
calibrated years before present (cal BP). All the 14C-dated intro-
duced animals (n = 52) are younger than 1020 cal BP. The
earliest 14C-dated introduced animals are a sheep from Andra-
nosoa (figure 2, PSUAMS-8684, 1165 ± 25 14C BP, 1060–960 cal
BP) and a contemporaneous zebu from the same site
(PSUAMS-8685, 1150 ± 15 14C BP, 1060–960 cal BP). These indi-
viduals pre-date the last known individuals of the giant ruffed
lemur P. insignis (from Tsirave, CAMS-167930, 940 ± 20 14C BP,
900–740 cal BP) and hippo (from Lamboharana/Lamboara,
PSUAMS-5629, 1100 ± 15 14C BP, 980–930 cal BP). Both the
earliest 14C-dated bushpig (PSUAMS-5619, 975 ± 15 14C BP,
910–790 cal BP) and what is possibly the earliest 14C-dated
goat (an ovicaprid tentatively identified as Capra hircus,
PSUAMS-3764, 900 ± 20 14C BP, 800–730) come from Andava-
doaka, and these animals also likely overlapped temporally
with the last known P. insignis in the region. The last
securely dated giant tortoise (from Lamboharana/Lamboara,
PSUAMS-5131, 1155 ± 15 14CBP, 1060–960 cal BP) and elephant
bird (from Ambolisatra/Andolonomby, OxA-33535, 1237 ± 24
14C BP, 1180–1000 cal BP) likely overlapped temporally with
the zebu and sheep at Andranosoa and pre-date the earliest
introduced bushpigs and goats by possibly less than 100 years.

Classical and Bayesian 95% confidence/credible intervals
suggest that all regional extinctions and introductions
occurred over the course of less than 500 years between
1200 and 700 cal BP (figure 3; electronic supplementary
material, appendix ‘Data Analysis – Radiocarbon’, and
table S1). During this interval, individuals of all nine endemic
and introduced taxa could have briefly co-occurred and inter-
acted. The Bayesian and classical approaches suggest that the
maximum temporal overlap between introduced and ende-
mic herbivores was approximately 500–600 years (shared
between zebu and P. insignis).
(b) Niche overlap
Herbivore δ13C and δ15N values demonstrate various degrees
of potential niche overlap among hippos, giant tortoises, both
giant lemur species (A. majori and P. insignis) and ovicaprids
(figure 4). For example, A. majori and P. insignis share
approximately 80% of their isotopic niche space with goats,
yet this overlap accounts for less than 45% of the isotopic
niche space occupied by goats. Isotopic overlap between
introduced and endemic herbivores appears to have been
greater at coastal sites (n = 144 individuals from 17 sites),
yet this could be a product of relatively limited sampling at
inland sites (n = 139 individuals from 9 sites, electronic
supplementary material, appendix figure S6).

Six general linear models based on multiple approaches
to grouping data according to collection site suggest that
taxon, age, location and interactions among all variables typi-
cally best explain variability in faunal δ13C and δ15N values
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(electronic supplementary material, appendix table S2 and
S3, and see electronic supplementary material, appendix
‘Data Analysis – Stable Isotopes’ for a full discussion of
models). These models highlight differences in δ13C values
between coastal and inland individuals, and these differences
create greater similarity in δ13C values among herbivores
at coastal sites.

Because there are no widespread and consistent effects of
site group or coastal proximity on δ13C or δ15N values across
herbivore taxa, we feel secure in considering isotopic niche
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overlap among taxa from all site groups. The relatively large
areas of isotopic niche space occupied by goats, sheep, zebu,
hippos and giant tortoises (sample size corrected standard
ellipse areas [SEAc]≥ 15‰2, figure 4) suggest that these animals
all exploited more varied resources and habitats than elephant
birds or giant lemurs (SEAc≤ 10‰2). To some extent, SEAc
values are sensitive to the amount of time and space (i.e.
numberof sites) integrated in each group (electronic supplemen-
tary material, appendix table S4). However, predictor variables
of temporal spread (defined as the period spanning 50% of the
mean calibrated dates) and number of sites sampled within
each taxonomic group cannot fully account for the variance in
SEAc values (electronic supplementary material, appendix
‘Data Analysis – Stable Isotopes’). The inability of temporal
and geographic spread to explain variation in SEAc values
suggests that differences in these values correspond to dietary
differences among taxa. Goats and sheep are noteworthy,
because they have one of the shortest temporal spreads (≤200
years) and come from one of the smallest number of sites (n=
2 for sheep, n= 4 for goats), yet each occupies a relatively large
isotopic niche space (SEAc≥ 15‰2). By contrast, elephant bird
samples also come from a similarly limited number of sites
(n = 3, including two inland sites) yet form a relatively small iso-
topic niche (SEAc = 6.8‰2) despite having the largest temporal
spread (greater than 10 000 years).

Plant δ13C values document expected patterns among
photosynthetic groups, with significantly lower values in C3

plants (n = 537, �x ¼ �27:1‰) than in CAM succulents (n =
136, �x ¼ �13:3‰) or C4 grasses (n = 61, �x ¼ �12:3‰; electronic
supplementary material, dataset S3, and see appendix ‘Data
Analysis – Stable Isotopes’ for additional discussion of plant
δ13C data). Large δ13C ranges for zebu (n = 45, 10.7‰, from
−15.9‰ to −5.2‰) and ovicaprids (n = 20, 11.9‰, from
−20.5‰ to −8.6‰) are consistent with modern observations
that these animals consume a diversity of grasses, shrubs and
endemic succulents [29,30]. Elevated δ13C values for zebu
and sheep suggest that these animals generally consumed
more CAM or C4 plants (succulents and grasses) than did
other introduced livestock and endemic megafauna. Indeed,
the results of a mixing model involving all δ13C values from
modern plants in the region suggest that CAM or C4 plants
comprised approximately 90% of zebu diet and approximately
80% of sheep diet on average (electronic supplementary
material, appendix ‘Data Analysis – Stable Isotopes’, and
figure S4). All other herbivores (including goats and possibly
introduced bushpigs) likely consumed more C3 plant material
than CAM and C4 plant material. Of the extinct megaherbi-
vores, hippos consumed the most CAM or C4 plant material
(approx. 35% of hippo diet).

For those taxa with sufficient sample sizes and temporal
spreads (zebu, hippos and giant tortoises), we can observe
site group-specific changes through time in collagen stable iso-
tope values (figure 5; electronic supplementary material,
appendix figure S5). There are no significant increases inmega-
faunal δ13C values over time, despite pollen records from the
coastal site of Andolonomby/Ambolisatra (site group 2) that
document the decline of arboreal plant taxa over the last 2000
years (figure 5c) [14]. As forests declined, hippo δ13C values
apparently decreased at coastal site groups 1 and 2 (electronic
supplementary material, appendix figure S5A), and giant tor-
toise δ13C values significantly decreased at site group 1 (n =
9, rs = 0.66, p = 0.05). Meanwhile, zebu δ13C values apparently
increased at site groups 1 and 2 (electronic supplementary
material, appendix figure S5A).
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Megafauna δ15N values and a contemporary record of
the salinization of Lac Ihotry (near site group 1, figure 5b,d
[7]) suggest that at least the coastal animals may have
tracked local aridification. Hippo collagen δ15N values
significantly increased at coastal site group 2 (n = 15,
rs =−0.55, p = 0.03) and apparently increased at coastal site
group 1 and inland site group 4 (electronic supplementary
material, appendix figure S5B). Tortoise collagen δ15N
values also apparently increased at site group 1. Despite
this drying trend, zebu collagen δ15N values significantly
decreased at site groups 1 and 2 (n = 15 and 16, respectively,
and rs ≥ 0.54, p ≤ 0.03, electronic supplementary material,
appendix figure S5B).
4. Discussion
Brief temporal overlap between introduced livestock and
endemic megafauna is consistent with a key component of
the ‘subsistence shift’ hypothesis for megafaunal extinction
[12], and isotopic niche overlap among coastal goats,
hippos and giant tortoises indicates that direct forms of com-
petition could have existed in some cases between introduced
and endemic herbivores. Regardless of when humans first
arrived on the island, multiple lines of evidence suggest
that the spread of pastoralism in southwest Madagascar
contributed to megafaunal extinction.

Radiocarbon data suggest that zebu, sheep, goats and
bushpigs all became established in southwest Madagascar
between 1,200 and 700 years ago, but 14C datasets from
goats and bushpigs are still limited. This timing coincided
with significant growth and movement of Malagasy popu-
lations [31], the rise of the island’s earliest urban centre
[32], and the expansion of trade along the west coast of the
island [33]. Here we have shown that species introductions
also coincided with the regional extinction of five endemic
herbivore taxa. The co-occurrence of livestock and endemic
megafauna that we document was possibly brief and is not
visible in records of large herbivore faecal fungus spores
from lake sediments [34]. However, the chronological overlap
is consistent with mixed archaeological/palaeontological
deposits and historical accounts of endemic megafauna [19].

During the brief co-occurrence of livestock and endemic
megafauna, pastoralists both relied on their livestock and
hunted endemic animals [4,35]. Predation impacts populations
of prey species to different extents, and this likely put intro-
duced and endemic herbivores into an apparent competition
that negatively affected endemic species (figure 1). The
impact of human predation on livestock populations wasmini-
mal. Pastoralists kill livestock, and ovicaprids are sometimes
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considered pests because of their diverse and voracious appe-
tites, yet animal husbandry typically gives a net benefit to both
humans and domesticates. This is particularly true for zebu,
which are currently repositories of wealth for pastoralists in
southwest Madagascar and are used in a variety of ceremonies
and rites. Pastoralists expand their zebu herds by protecting
them from predators, modifying vegetation to create a reliable
supply of fodder and moving to track suitable habitat [16,36].
Zebu outnumbered people on Madagascar by as much as 2 :
1 in the early twentieth century [16], and approximately 55%
of Madagascar’s surface was dedicated to pastoralism in 2000
[37]. The expansion of zebu populations likely contributed to
human population growth, which indirectly facilitated the
hunting of endemic animals. Endemic herbivores likely did
not benefit from animal husbandry and became increasingly
susceptible to predation as humans transformed forests for
livestock. Small-bodied lemurs, such as the endemic sifaka
P. verreauxi, have sustained hunting pressure from humans
for at least a millennium, and this pressure may have caused
reductions in body size [38]. Extinct endemic herbivores
with long lifespans, relatively slow reproductive rates, and
few ways to escape terrestrial predators (e.g. giant tortoises)
were also butchered [4,35] and probably suffered the greatest
from the increase in hunting pressure that livestock husbandry
facilitated [39].

Isotopic niche overlap among goats, hippos and giant tor-
toises indicates that there was some potential for direct forms
of competition between introduced and endemic herbivores.
Elephant birds probably had a relatively distinct isotopic
niche from introduced herbivores, yet our results suggest
that overlaps in collagen stable isotope values among taxa
varied both temporally and spatially, so identifying niche
overlap at a particular time and site group remains challen-
ging. Still, existing data suggest that isotopic niche overlap
may have been greater at coastal than inland sites. Future
research should compare the vegetation histories of coastal
and inland southwest Madagascar and expand faunal data-
sets to identify any lags between coastal human settlement
and inland extinctions. Particular attention should be given
to goats, which are notorious invaders of other island ecosys-
tems that can browse some endemic plants to near extinction
[40]. Perhaps the most extreme impact of goats on vegetation
and other herbivores comes from the Galápagos, where goats
are known to decimate vegetation during the dry season and
leave little browse for endemic giant tortoises [41]. In Mada-
gascar, people often encourage ovicaprids to forage on a wide
range of plant types in deference to the grazing preferred by
zebu. The dispersal ability of giant tortoises may attest to the
high tolerance of resource depression [42], but our findings
underscore that the potential for direct competition must be
considered during ongoing efforts to both reintroduce giant
tortoises and maintain local livelihoods [30,43]. Future recov-
ery and analysis of additional ovicaprid bones should be a
priority, because even our limited dataset follows from
sampling all known collections of ovicaprid bones from
the region.

Vegetation change and aridification likely affected inter-
actions among humans and herbivores. For the following
reasons, our isotopic data suggest that vegetation change
was likely the primary stress for endemic populations while
aridification could have been a greater stress for introduced
livestock. Forest cover declined in coastal southwest Mada-
gascar during the last 2000 years [8,14], yet C4 grasses and
CAM succulents remained a minor component of hippo
and tortoise diet before their extinction, and carbon isotope
data suggest that elephant birds and giant lemurs (A. majori
and P. insignis) may have relied exclusively on C3 vegetation.
Dwindling patches of forest left less browse for endemic
megafauna but cleared land for the vegetation that intro-
duced herbivores generally prefer. Forest clearance during
this time was widespread and may have been anthropogenic;
similar transitions to a grassy biome occurred in the absence
of drought in northern and central Madagascar [15,44].
At the same time, increases in collagen δ15N values of
hippos and possibly other taxa indicate that these animals
survived aridification in southwest Madagascar by persisting
in increasingly arid habitat. Meanwhile, relatively low δ15N
values in zebu collagen suggest that they may have tracked
relatively moist habitat. Modern Malagasy herders move
their animals in pursuit of freshwater and succulent fodder
during the dry season [36]. In this light, consistent past
reliance on relatively moist habitat by ancient zebu may
reflect their sensitivity to drought, which is an ongoing
concern in southern Madagascar.

Understanding past changes in herbivory in Madagascar
is important for conservation efforts. In our existing sample,
we observe that introduced ungulates are unique in their iso-
topic niche breadth and reliance on C4 or CAM vegetation.
Despite the mixed woodlands and C4-dominated grasslands
that currently exist in many regions on the island, our
expanded δ13C data are consistent with previous work that
suggests Madagascar lacked an endemic grazer guild [23].
Extinctions of large herbivores can have cascading negative
effects on remaining plant and animal species due to the var-
ious ways in which large herbivores consume vegetation,
redistribute resources and modify the physical environment
[45]. For example, experimental data suggest that the Mala-
gasy giant tortoises aided the dispersal and germination of
baobab seeds [46], and extant hippos from Africa play impor-
tant roles in both cycling nutrients [47] and maintaining the
structural heterogeneity of riparian vegetation [48]. Likewise,
introduced bushpigs on Madagascar may help disperse large
seeds, but the full extent to which introduced species and
extant endemic species have continued the ecosystem ser-
vices of now-extinct megafauna is unknown. Introduced
ruminants are poor candidates for facilitating large seed dis-
persal, particularly given that zebu had limited dietary
overlap with endemic megafauna.

Combined stable isotope and radiocarbon data give us
unique insight into late Holocene pulses of biodiversity loss
in southwest Madagascar and contribute to a growing body
of evidence that neither climate change nor hunting pressure
alone consistently drive extinction (e.g. [49,50]). In southwest
Madagascar, direct and human-mediated indirect interactions
between introduced and endemic herbivores, which involved
an increase in human population, likely contributed to mega-
faunal extinction to a greater extent than novel hunting
pressure or regional aridification. This pattern is not unique
to Madagascar. Indeed, shifts in human subsistence also
may help explain lags between human presence and extinc-
tion elsewhere. For example, relatively late changes in stone
tool technologies and patterns of human subsistence may
help explain a prolonged period of coexistence (30 ka)
between humans and megafauna in the Indian subcontinent
[51]. Also, in North America, the introduction of a novel
hunting pressure alone cannot explain the late Holocene
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extinction of California’s flightless sea duck that occurred
only after a protracted (8 ka) period of coexistence and hunt-
ing [52]. However, increasing human reliance on marine
resources during the late Holocene associated with the pro-
liferation of sedentary coastal communities might explain
the sea duck’s late extinction [53]. In Eurasia, Koch &
Barnosky [54] suggest that hominins who specialized in pur-
suing large-bodied prey tracked booms and busts in prey
populations on timescales of 100 ka and that it was the arrival
and proliferation of anatomically modern humans with broad
diets that ultimately contributed to megafaunal extinctions.
The similarity in these cases follows from the general obser-
vation that a predator population that specializes in one
type of prey will track changes in the prey population,
while one that relies on a diversity of prey can easily overex-
ploit the prey species that cannot sustain heavy predation
[55]. These interactions among hunters and potential compe-
titors must be considered when drawing parallels between
recent overkill on islands and earlier extinctions in continen-
tal settings [56]. We identify Madagascar as an ideal place to
further study this mechanism of extinction due to the poten-
tially early arrival of people, the island’s short extinction
chronology and the relatively recent arrival of pastoralism.
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