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A systematic review of the applications of artificial intelligence
and machine learning in autoimmune diseases
I. S. Stafford 1,2, M. Kellermann 1, E. Mossotto1,2, R. M. Beattie3, B. D. MacArthur 2 and S. Ennis 1✉

Autoimmune diseases are chronic, multifactorial conditions. Through machine learning (ML), a branch of the wider field of artificial
intelligence, it is possible to extract patterns within patient data, and exploit these patterns to predict patient outcomes for
improved clinical management. Here, we surveyed the use of ML methods to address clinical problems in autoimmune disease.
A systematic review was conducted using MEDLINE, embase and computers and applied sciences complete databases. Relevant
papers included “machine learning” or “artificial intelligence” and the autoimmune diseases search term(s) in their title, abstract or
key words. Exclusion criteria: studies not written in English, no real human patient data included, publication prior to 2001, studies
that were not peer reviewed, non-autoimmune disease comorbidity research and review papers. 169 (of 702) studies met the
criteria for inclusion. Support vector machines and random forests were the most popular ML methods used. ML models using data
on multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease were most common. A small proportion of studies (7.7%
or 13/169) combined different data types in the modelling process. Cross-validation, combined with a separate testing set for more
robust model evaluation occurred in 8.3% of papers (14/169). The field may benefit from adopting a best practice of validation,
cross-validation and independent testing of ML models. Many models achieved good predictive results in simple scenarios (e.g.
classification of cases and controls). Progression to more complex predictive models may be achievable in future through
integration of multiple data types.
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INTRODUCTION
Autoimmune disease
Three elements contribute to autoimmune disease development:
genetic predisposition, environmental factors and immune system
dysregulation (Fig. 1). Due to the heterogeneity of onset and
progression, diagnosis and prognosis for autoimmune disease is
unpredictable.
A predisposition to autoimmunity is strongly linked to genetics,

and caused by defects in mechanisms that result in loss of self-
tolerance.1 Autoimmune disease develops after further immune
system dysregulation, in both the innate and adaptive immune
system.2 Microbial antigens, foreign antigens and cytokine
dysregulation, can cause induction of self-reactive lymphocytes.3

Moreover, hyper-activation of T and B cells may occur, along with
a change in the duration and quality of their response, which
further disrupts the homeostasis of the immune system.2

The prevalence of autoimmune disease is difficult to estimate;
diseases are variably represented across different studies and no
definitive list exists.4–6 There is a reported prevalence rate of
between 4.5%5 and 9.4%,4 across all autoimmune diseases.

The importance of personalised medicine
Personalised care is valuable for autoimmune disease, with
variability within the disorders,7 and presence of autoimmune
comorbidities for 15–29% of patients.8–11 Arguably, patients with
multiple autoimmune comorbidities would particularly benefit
from personalised healthcare for the causal molecular mechanism
as opposed to specialist treatment of symptoms.

The data revolution
Standard patient care generates diverse clinical data types.
Examples of such data include laboratory test results from blood
or urinary samples, symptoms at diagnosis and images obtained
using colonoscopies and magnetic resonance imaging (MRI). The
majority of these data are reproduced longitudinally over a
chronic disease course.
In addition to this wealth of clinical data, ‘omic data—such as

patients’ genomic, transcriptomic and proteomic profiles—are
now increasingly available. ‘Omic data are large, as molecular
measurements are made on a genome-wide scale,12 and high
throughput omics technologies have allowed fast analysis of these
data. The inclusion of multiple types of ‘omic data into machine
learning models may give a more complete picture of auto-
immune disease, leading to novel insights.

The need for artificial intelligence and machine learning
Combined clinical and ‘omic data have limited utility without
methods for interpretation. Artificial intelligence and machine
learning techniques have the capacity to identify clinically relevant
patterns amongst an abundance of information,13 fulfilling an
unmet need. The ability to stratify patient’s using these data has
implications for their care, from estimation of autoimmune disease
risk, diagnosis, initial and ongoing management, monitoring,
treatment response and outcome.

Defining artificial intelligence and machine learning
The terms “machine learning” (ML) and “artificial intelligence” (AI)
are often conflated. Artificial intelligence is the study of methods
to imitate intelligent human behaviour (for example to make
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decisions under conditions of uncertainty). Machine learning is a
subset of AI that focuses on the study of algorithms that enable a
computer to perform specific tasks (typically classification or
regression) without specific instructions, but instead inferring
patterns from data.14 Both AI and ML differ from traditional
statistical methods as they focus on prediction and classification
from high-dimensional data, rather than inference. Successful ML
requires robust data from which it can learn. These data must be
sufficiently abundant to enable the model to be robust and
generalisable to unseen data.

Supervised and unsupervised machine learning
Two types of ML are discussed here: supervised and unsupervised
learning. During supervised learning, an algorithm is trained on a
“training dataset” to recognise the patterns that are associated
with specific “labels” (for example, healthy or diseased). Once
predictive patterns have been learned from training data, the ML
algorithm is then able to assign labels to unseen “test data”. In a
well-trained model, the patterns identified in the training data will
generalise to the test data. Brief descriptions of some of the most
common supervised ML techniques referred to in this review are
summarised in Box 1.
For unsupervised learning, training data are unlabelled, and the

algorithm instead attempts to find and represent patterns within
the data, for example by identifying clusters based upon the
similarity of the examples. Other types of ML exist, but are
reviewed elsewhere.15 Some of the more common unsupervised
methods discussed in this review include hierarchical clustering
and self-organising maps.

The pros and cons of alternative machine learning models
Recommendations cannot be made on the best model to use in
general, as this is always situation specific and dependent on data
type, size and dimensionality. Decision trees are simple and highly
interpretable, but they rarely achieve performance accuracies
higher than other algorithms. Using the random forest method
can improve performance, at the cost of losing some interpret-
ability. K nearest neighbours is a non-parametric method, and
copes well when complex boundaries separate classes, but this
flexibility can lead to poor classification results due to over-
fitting.16 Neural networks and support vector machines have
similar strengths and weakness: they achieve high accuracies, and
can extract linear combinations of features, but interpretability is
poor, scaling to very large data can be difficult, and they are not
robust to outliers.17

Technical aspects regarding the operation and fitting of
machine learning algorithms are outside the scope of this
systematic review, but comprehensively discussed elsewhere.16,17

Avoiding overfitting
Machine learning models are often complicated, and can involve
optimizing many free parameters. For this reason, they are prone
to overfitting. Overfitting is the process by which the algorithm
learns patterns that are specific to the training data but do not
generalise to test data. For example, there may be some random
technical error in the training data that is not of clinical relevance,
yet is learned by the algorithm. Training any model accurately
while avoiding overfitting is a central part of an ML pipeline. If
data are abundant and/or the ML model is computationally
expensive to train then the standard strategy is to remove a
portion of the data for training, optimize the model on the
remaining portion, and finally determine the model performance
by comparison with the unseen test portion. If data are not
abundant, a process known as cross-validation is typically
employed (Fig. 2). There are many variations of cross-validation
but they are all essentially generalisations of the training/test
splitting process described above. For example, in k-fold cross
validation, the data are randomly split into k subsets, with all but
one subset used to train an ML model, and the remaining subset
used to test the model. This process leads to the generation of
k ML models. Each subset of the data is used only once as a test
set, and overall model performance is determined by averaging
the performance of the k models (Box 2 describes model
evaluation metrics).18
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Fig. 1 The three factors contributing to autoimmune disease development. I genetic susceptibility is conferred by a combination of genes
that may include genes encoding human leukocyte antigen (HLA) innate and adaptive immune proteins, and directly or indirectly affect the
regulation of the immune system. II examples of potential environmental triggers for dysregulation. III autoantibody production alone will not
always result in disease development; self-antigen production and subsequent elevated immune response is necessary.3

Box 1 Popular supervised machine learning methods

Neural networks: outputs are learned from inputs via a series of nested nonlinear
functions, encoded in a network of “neurons”, which may vary in its topology.59

Decision trees: outputs are learned from inputs via a series of yes/no questions
that successively divide the predictor space into discrete piece.175

Random forest: a simple ensemble method that grows a large number of
decision trees, each of which see only a subset of the data, and learns output
from input by combining the predictions.79

k nearest neighbours: learns output from input by comparing the identity of each
data point to its (k) nearest neighbours.117

Support vector machine: a binary classification method that can be adapted to
multiclass classification or regression. They seek to partition the predictor space
into two, such that data points from each class are concentrated on one side of
the decision boundary.118

Natural language processing: a set of advanced ML methods that seek to extract
sentiment from text.19
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Artificial intelligence, machine learning and autoimmune disease
This systematic review aims to inform on the current status of the
application of artificial intelligence and machine learning methods
to autoimmune disease to improve patient care. To the best
knowledge of the researchers, this is the first study on this topic.
The review identifies the most common methods, data and
applications, the issues surrounding this exciting interdisciplinary
approach, and promising future possibilities.

RESULTS
Summary of results
Of 702 papers identified in database searches, 169 were selected
for inclusion in the analysis, 227 duplicates were removed, 273
records were excluded based on the abstract and 33 were
excluded after reading the full article (Fig. 3) using the criteria
described above. A summary and detailed information for
qualifying studies are described in Table 1 and Supplementary
Table 1, respectively. Six diseases included in the database search
returned no studies that met the inclusion and exclusion criteria
(Addison disease, myasthenia gravis, polymyalgia rheumatica,
Sjӧgren syndrome, systemic vasculitis and uveitis).
Machine learning and artificial intelligence are most com-

monly applied to multiple sclerosis (MS), rheumatoid arthritis

(RA) and inflammatory bowel disease (IBD). MS, IBD and RA
models used the most types of data, including 13 studies
generating models using two data types (always including
clinical data). Random forests and support vector machines were
the most commonly used methods throughout diseases and
applications. Clinical data were used in models for every type of
autoimmune disease, and models using genetic data were
created for the majority of disorders. The variety in methodo-
logical approaches, applications and data, as well as use of
validation methods (Supplementary Table 1) renders meta-
analysis of these methods inappropriate.
The applications for ML can be categorised into six broad topics:

patient identification, risk prediction, diagnosis, disease subtype
classification, disease progression and outcome and monitoring
and management.

Identification of patients
Studies utilised ML methods to identify patients with autoimmune
diseases from electronic medical records,19–25 and employed
natural language processing. Gronsbell et al. worked to improve
the efficiency of algorithms for this purpose.26,27 These algorithms
are intended to replace International Classification of Diseases
billing codes, which have error rates of between 17.1–76.9% due
to inconsistent terminology.19 Electronic medical records also
identified comorbidities associated with alopecia and vitiligo using
natural language processing. This identified similar autoimmune
comorbidities for both diseases.28,29

Identifying and assessing autoimmune disease risk
Prediction of disease risk30–39 and identification of novel risk
factors through feature selection40–44 was documented for IBD,
type 1 diabetes (T1D), RA, systemic lupus erythematosus (SLE) and
MS. Fifteen studies employed genetic data, using either sequen-
cing arrays (GWAS) or exome data (nine studies), individual SNPs38

within in the HLA regions37,45 or pre-selected genes,41 or gene
expression data.30,43 Only one study employed clinical data,31 and
two others combined clinical and genomic data.30,45 Popular
models included random forest, support vector machine and
logistic regression.

Diagnosis
Patient diagnosis was the most frequent ML application, and this
approach was used for all autoimmune diseases. Distinguishing
cases from healthy controls was an aim for 27 studies. Diagnostic
classification models used patients with other autoimmune
diseases as controls,46–49 differentiated between diseases with
overlapping or similar symptoms or phenotype, for example
stratifying coeliac disease and irritable bowel syndrome,50–56 or
examined classification of multiple autoimmune diseases.57,58 ML
specifically for early diagnosis was specified by seven studies for
the later onset degenerative conditions MS and RA.48,59–64 Other
diagnostic applications included distinguishing coeliac disease
from an at-risk group65,66 and differentiating those who have
complications in T1D.67,68 Random forests and support vector
machine most frequently utilised.

Classifying disease subtypes
Disease subtypes in one RA, two IBD, and six MS studies were
classified by ML. Three types of unsupervised clustering were
used by these studies: hierarchical clustering for identifying
novel IBD subtypes;69 consensus clustering to identify high, low
and mixed levels of inflammation in RA;70 and agglomerative
hierarchical clustering to cluster MS by genetic signature.71 Two
of these studies employed support vector machine,69,70 which is
a popular supervised method in general, as well as random
forest. There was wide variation in data types used. These
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Valida�on

Cross 
Valida�on

Feature 
Selec�on

Test DataTraining Data

Final 
Classifier/Predictor

Fig. 2 Simplified workflow for developing a machine learning
model. This includes the cycle of feature selection, training and
validation that is required to avoid overfitting (cross validation).

Box 2 Metrics for ML method evaluation

Accuracy: percentage of correct predictions.198

Area under the receiver-operator curve (AUC): appropriate for binary classifica-
tion problems, this method uses a plot of sensitivity versus specificity to
determine model performance.16

Balanced accuracy: measure of the total number of correct predictions in either
class, therefore taking into account an unbalanced dataset.198

F-score: an accuracy measure calculated using precision and recall.199

Out-of-bag error: this metric applies to tree-based ensemble methods, and
measures the test error by comparing predictions with true labels for samples
that were not used in the construction of a particular decision tree.16

Precision: equivalent to positive predictive value.16

Recall: another term for sensitivity.16

R2: measures the amount of variation explained by the model regression.16

Sensitivity: correctly identified true positives.16
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included clinical (in particular MRI), genetic, RNA sequencing and
gene expression data.

Disease progression and outcome
Disease progression and outcome was a focus for 27 studies.
Other considered issues were disease severity72–78 in psoriasis, RA,
IBD and coeliac disease; treatment response79–87 in IBD, RA and
primary biliary cirrhosis (PBC); and survival prediction88–90 in PBC,
RA and SLE. Other models focused on improved image
segmentation to aid prognoses91–96 for IBD and MS. Disease
progression and outcome was the second-most prevalent area for
model development. Throughout, the most common models were
support vector machines, random forest and neural networks. The
majority of data used was clinical, with very few papers utilising
‘omic data.86,97–99

Monitoring and management
Ten different studies of type 1 diabetes (T1D) used ML for
monitoring and management: four predicted blood glucose level,
four identified or predicted hypoglycaemic events, and two
supported decision making using case-based reasoning or
decision support systems. The majority of models used clinical
data. Three models were developed using activity measurements
for monitoring movement in MS, and one in RA. Support vector
regression was used most frequently.100–104

DISCUSSION
Validation and independent testing
Eighteen studies only used hold-out validation, not including
studies with random forest models, where cross validation is
unnecessary, or neural networks, where this process can be too
computationally intensive. Eleven studies did not use any
validation method, and so model integrity and applicability is
unconfirmed. Methods that use hold-out validation have the
potential to provide useful information, but it is accepted that
unless the dataset is very large, these models are not as robustly
validated as those that have used k-fold or leave-one-out cross
validation, or a combination of cross-validation and testing on an
independent dataset.
Only 14 of 169 studies combined cross-validation with

independent test data for evaluating their models. These studies
did not have any model types or applications in common. Clinical
and genomic data were most common inputs for these studies.
Models that used cross-validation and independent test data were
applied to a number of the autoimmune diseases.
The research reviewed here demonstrates that, much like the

disease studied, the ML models and methods used are hetero-
geneous. It can be difficult then, to determine which methods
should be taken forward to clinical application. Alternatively,
models from existing studies could be combined. Models have
utilised different types of ‘omic data, including proteomic,
metagenomic and exome data. More popular has been sequen-
cing array (SNP/GWAS) data, particularly when predicting
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autoimmune disease risk. By far the most prevalent type of data is
the use of clinical and laboratory data.
To optimise the use of these data types, accessibility is key, and

EMRs allow easy extraction of these data. Some researchers have
moved beyond only storing medical data in these systems. The
eMERGE (electronic medical records and genomics) network
combines the genomic and EMR repositories to further genomic
medicine research.105 Other studies such as SPOKE (Scalable
Precision Medicine Oriented Knowledge Engine), wish to integrate
these data within the storage platform, by building a knowledge
network using unsupervised machine learning that informs on
how data types such as GWAS, gene ontology, pathways and drug
data are connected to EMRs.106 Improving knowledge of how
these data are related is a key step towards implementing
precision medicine.
Many models were created for autoimmune disease diagnosis,

more specifically classifying those with disease and controls. The
majority achieved high classifier performance (where any combi-
nation of the following metrics are over these thresholds:
accuracy > 81%, AUC > 0.95, Sensitivity > 82, Specificity > 84), and
provided evidence of machine learning’s utility in diagnostics.
Identifying the molecular diagnosis to inform tailored treatment

strategies has revolutionised cancer prognoses, improving patient
outcomes and quality of life, along with economic benefits to the
treatment provider. Targeted therapies such as monoclonal
antibodies and small molecule inhibitors transformed treatment
of some cancers, or improved patient survival times.107 Key to
precision treatment has been the identification of the driver
mutations specific to the cancer type.108 Machine learning has
been utilised for cancer classification109,110 and discovery of
relevant pathways.109 Across the spectrum of autoimmune
diseases, there has traditionally been a one-size-fits-all approach
to patient therapeutics. The expectation is that machine learning
represents a necessary key tool that will use ‘big’ data to stratify
patients and move towards personalised treatment approaches
that have proven so effective in cancer. Proof of this concept has
already been demonstrated through machine learning to stratify
patient’s inflammation status in RA,70 and further investigate IBD
subtypes.69

Six models from the evaluated studies returned more than one
of the following measures as either 1 or 100%: AUC, accuracy,
precision and recall, sensitivity and specificity.59,67,68,111–113 This
perfect performance indicates that a model may not be required,
as there exists data that classifies the groups without error. An
alternative explanation of apparently optimal performance may
reside in poor implementation of cross-validation strategies.
Common metrics reported are accuracy, AUC, and sensitivity

and specificity. However, accuracy is inferior to AUC, particularly
when imbalanced datasets are used.114 The AUC measure is
unaffected by imbalanced data, but precision-recall curves may
reflect model performance more accurately.115 Dataset rebalan-
cing methods should potentially be utilised more for a thorough
review of model performance.
When creating and evaluating a model, increasing focus could

be placed on which measure is more important, sensitivity or
specificity. Scully et al. demonstrated this, where a lesion
segmentation model could achieve high specificity (99.9%)
through labelling all tissue as non-lesion.96

An ML model by Ahmed et al.62 provides evidence for using an
additional independent test dataset subsequent to cross valida-
tion. In their study, the AUC dropped by 0.25, indicating decreased
model performance on new data.
Studies included in this systematic review have shown that

artificial intelligence and machine learning models provide useful
insight, despite the heterogeneity of presentation, diagnosis,
disease course and patient outcome. However, the heterogeneity
in data used, models and model evaluation cause difficulties in
obtaining consensus. Furthermore, the number of autoimmune

diseases this literature search focussed on was restricted, and may
have resulted in an incomplete picture of ML applied to
autoimmune diseases.
From this analysis, it seems appropriate to advocate for

standardised methods of model evaluation, by utilising a
combination of cross validation and independent test data for
model validation. Increased confidence in model results allows for
more complex model creation, by layering data types or
combining classifiers. These models could be applied to more
difficult tasks that reflect the complexity of autoimmune disease.
With these advances, AI and ML have the potential to bring
personalised medicine closer for patients with complex and
chronic disease.

METHODS
Autoimmune disease selection
Autoimmune diseases selected for the systematic review are
based on prevalence estimates4 and include Addison disease,
alopecia, Coeliac disease, Crohn’s disease, ulcerative colitis, type 1
diabetes, autoimmune liver diseases, hyper- and hypo-thyroidism,
multiple sclerosis, myasthenia gravis, polymyalgia rheumatica,
psoriasis, psoriatic arthritis, rheumatoid arthritis, Sjӧgren syn-
drome, systemic sclerosis, systemic lupus erythematosus, systemic
vasculitis, uveitis and vitiligo.

Table 2. Search terms used in OvidSP and EBSCO for each
autoimmune disease.

Autoimmune disease Disease Search Term(s) Used

Addison’s disease Addison*

Alopecia Alopecia

Celiac disease Celiac, Coeliac

Inflammatory bowel
disease

Inflammatory bowel disease, Crohn* disease,
ulcerative colitis

Type 1 diabetes Type 1 Diabetes, Insulin dependent
Diabetes?

Autoimmune hepatitis Autoimmune hepatitis, chronic active
hepatitis, primary biliary cirrhosis, primary
sclerosing cholangitis

Thyroid disease Autoimmune thyroiditis, Hashimoto*
thyroiditis, Hashimoto* disease, Grave*
disease, hyperthyroid*, hypothyroid*

Multiple sclerosis Multiple sclerosis

Myasthenia gravis Myasthenia gravis

Polymyalgia rheumatica Polymyalgia rheumatica

Psoriasis Psoriasis

Psoriatic arthritis Psoriatic arthritis

Rheumatoid arthritis Rheumatoid Arthritis

Sjӧgren syndrome Sjogren syndrome

Systemic sclerosis Systemic sclerosis

Systemic lupus
erythematosus

Lupus

Systemic vasculitis Polyarteritis nodosa, microscopic
polyangiitis, granulomatosis with
polyangiitis, eosinophilic granulomatosis
with polyangiitis.

Uveitis (iridocyclitis) Uvetitis, iridocyclitis

Vitiligo Vitiligo

Asterisk (*) and question mark (?) are wildcard characters used for
searching the databases OvidSP and EBSCO.
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Literature search
The literature search was performed electronically with OvidSP
using MEDLINE from 1946, and EMBASE from 1974. A search was
also performed on the Computers & Applied Sciences Complete
database available on EBSCO. The literature search was completed
in December 2018. All searches conformed to the same structure:
the words “machine learning” or “artificial intelligence” combined
with the chosen search term(s) for each autoimmune disease (see
Table 2). Boolean operators OR and AND (for combining search
terms) were used in order to streamline the procedure. In both
databases, the title, abstract and subject terms/keyword headings
assigned by authors were searched (last search 17/12/2018).

Inclusion and exclusion criteria
Studies that applied ML methods to autoimmune diseases listed
above, or to complications that arise from autoimmune diseases
were included. Studies not written in English, published prior to
2001, that did not use real human patient data, were not peer
reviewed, or were review papers were also excluded. This
systematic review conforms to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) standards.116

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data (papers) that support the findings of this study are available publicly. Full list
of records identified through database searching are available on reasonable request
from the authors.
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