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Abstract: Schinus molle (L.) is a dioecious plant of the Anacardiaceae family, originating in South
America and currently widespread in many regions throughout the world. In this work leaf extracts
and derived low-pressure column chromatography (LPCC) fractions of S. molle L. male and female
plants were investigated for the antimicrobial activity. Leaf extracts were tested on microbes Escherichia
coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, Candida albicans and Bacillus
subtilis. Furthermore, the extracts showing antimicrobial activity were fractionated by LPCC and the
obtained fractions tested on the same microorganism strains. Positive fractions were investigated
by gas-chromatography/mass spectrometry (GC-MS) and were seen to be rich in sesquiterpenes,
sesquiterpenoids and other terpens. The obtained effects highlighted the antimicrobial properties
of S. molle (L.) leaf compounds and revealed their importance as a source of bioactive molecules of
potential pharmaceutical interest. To our knowledge, this is the first paper reporting investigations on
the chemical composition of the extracts and derived positive fractions from Schinus molle (L.) plants
grown in central Italy

Keywords: Anacardiaceae; pepper tree; antimicrobial; low-pressure column chromatography;
plant compounds; minimum inhibitory concentration; gas chromatography-mass spectrometry

1. Introduction

Over the decades, the extensive use of antibiotics, especially prophylaxis, has led to the
development of resistant pathogens [1]. Disease control to combat emerging and re-emerging pathogen
resistance can be counteracted by modifying existing antibiotics [2] and searching for new antibiotics
from natural products, which can provide a range of molecules to be tested for this purpose.

From this perspective, the literature of the last 20 years has grown in quantity and quality and
many studies have been carried out to test the antimicrobial activity of extracts from plant matrices.
Gomes and colleagues evaluated antibacterial activity against multidrug-resistant strains of hospital
origin and standard strains using extracts exploiting a plant matrix of waste from the Brazilian pepper
tree (Schinus terebinthifolia Raddi) processing industry chain [3]. Sharma et al. evaluated the potential
antibacterial and antibiofilm capacity of bioactive compounds extracted from onions at different stages
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of age on gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus
aureus and Bacillus cereus [4]. Several studies have shown the antibacterial activity of extracts from plants
such as essential oils [5–9]. Industrial hemp was used to obtain essential oil rich in terpenic compounds
and this oil was tested against pathogenic and spoilage microorganisms to evaluate the antimicrobial
activity [10]. Lavandin essential oil (liquid and vapour phase) showed an antimicrobial activity against
gram-negative (E. coli, Acinetobacter bohemicus, and Pseudomonas fluorescens) and gram-positive (B. cereus
and Kocuria marina) bacteria [11].

S. molle (L.), known as “false pepper” or “pink pepper” due to the edible red/pink fruits whose
flavour and fragrance are reminiscent of Piper nigrum (L.), is an evergreen plant belonging to the
Anacardiaceae family. It is native to South America where it is known as the Peruvian pepper
tree [12], whereas it is distributed worldwide as an ornamental plant. Many papers attribute some
pharmacological proprieties to the pepper tree, such as antiproliferative [6,13–16], antioxidant [9,14],
antifungal [17,18], hypotensive [19], anti-inflammatory [20], and analgesic [21] effects, as well as
antimalarial [22], acaricidal [23,24], repellent and insecticidal properties [25–28].

Antibacterial activity has been investigated in extracts and essential oils from leaves, flowers,
berries, and bark derived from this plant [5–9,18,28–32].

In our search for new compounds of possible pharmaceutical interest, we previously carried out
chemical investigations of male and female S. molle (L.) fresh leaf extracts and they were shown to be
mainly composed of sesquiterpene hydrocarbons and monoterpene hydrocarbons [33]. We found the
presence of molecules—such as elemol, β-elemene, β–caryophyllene, germacrene D, bicyclogermacrene,
spathulenol, α-eudesmol, β-eudesmol, γ-eudesmol, isocalamendiol, sabinene and n-hexadecanoic
acid—that could be related to possible antibacterial, antiviral and antifungal activities, as already
reported in literature [34–45].

For the first time, in this work the antibacterial activity of extracts and their fractions of leaves
from S. molle (L.) grown in central Italy was evaluated on clinically relevant bacterial strains and the
chemical composition of biological active fractions investigated.

2. Results

The investigation of antibacterial activity was carried out on female and male leaf extracts of S.
molle (L.) using four solvents with increasing polarity with this crescent order: petroleum ether, diethyl
ether, acetone and distilled water.

2.1. Testing of Antimicrobial Activity

The antibacterial assay of the S. molle (L.) leaf extracts was carried out using the disk diffusion
test. Treatments with petroleum ether (SM♀1) and diethyl ether (SM♀2) on extracts from the S. molle
(L.) female plant (Table 1) and with petroleum ether (SM♂L1) and diethyl ether (SM♂L2) on the
S. molle (L.) male plant (Table 2) showed inhibition zones between 8 and 17 mm on Staphylococcus
aureus, Enterococcus faecalis, Candida albicans and Bacillus subtilis. A minimal inhibitory concentration
(MIC) assay of the tested extracts with a positive response in the disk diffusion test (DDT) recorded
values between 25 µg/mL and 400 µg/mL. The DTT of the leaf extracts from the female S. molle
(L.)—SM♀1, SM♀2, SM♀3 (acetone extract), SM♀4 (water extract)—and the male—SM♂L1, SM♂L2,
SM♂L3, SM♂L4—produced no effects on E. coli and P. aeruginosa. The extracts SM♀3, SM♀4, SM♂L3
and SM♂L4 had no effects on any of the strains used (Tables 1 and 2).

The extracts with antimicrobial activity (SM♀1, L2 and SM♂L1, L2) were fractioned by the
low-pressure column chromatography (LPCC) technique using solvents with increasing polarity in
this order: petroleum ether 100%, petroleum ether/ethyl acetate 95%/5%, 90%/10%, 80%/20%, 70%/30%
and 0%/100% and methanol 100%. The obtained fractions have been investigated by disk diffusion
and microdilution tests. Concerning the size of the inhibition halo and the MIC values, as shown in
Tables 1 and 2, an increase in the antibacterial activity occurred for many of the tested fractions.
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Table 1. Disk Diffusion Test (DDT) and Minimal Inhibitory Concentration (MIC) of S. molle (L.) leaf (from female plants), extracts and fractions (p values ≤ 0.05).

E. coli
ATCC 25922

S. aureus
ATCC 6538

P. aeruginosa
ATCC 9027

E. faecalis
ATCC 29212

C. albicans
ATCC 10231

B. subtilis
ATCC 6633

Extract Fraction DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

SM♀1 / / 10.3 ± 1.5 400 / / / / 16.7 ± 2.1 25 14.3 ± 1.2 400
F1 / / / / / / / / / / / /
F2 / / / / / / / / / / / /
F3 / / / / / / / / / / / /
F4 / / 12.3 ± 1.2 16 / / / / / / 13.0 ± 1.7 16
F5 / / / / / / / / / / 24.7 ± 0.6 8
F6 / / / / / / / / / / 21.7 ± 1.2 8
F7 / / 20.0 ± 1.0 128 / / / / / / / /

SM♀2 / / 10.3 ± 1.2 200 / / 8.3 ± 0.6 200 14.3 ± 2.1 50 17.3 ± 1.2 400
F1 / / / / / / / / / / / /
F2 / / / / / / / / / / 25.7 ± 0.6 1
F3 / / / / / / / / / / 24.7 ± 1.2 2
F4 / / 17.7 ± 2.1 64 / / 14.7 ± 1.2 128 9.7 ± 0.6 32 / /

SM♀3 / / / / / / / / / / / /
SM♀4 / / / / / / / / / / / /

SM♀1: petroleum ether extract; SM♀2: diethyl ether extract; SM♀3: acetone extract; SM♀4: water extract.
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Table 2. Disk Diffusion Test (DDT) and Minimal Inhibitory Concentration (MIC) of S.molle (L.) leaf (from male plants), extracts and fractions (p values ≤ 0.05).

E. coli
ATCC 25922

S. aureus
ATCC 6538

P. aeruginosa
ATCC 9027

E. faecalis
ATCC 29212

C. albicans
ATCC 10231

B. subtilis
ATCC 6633

Extract Fraction DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

DDT
(mm)

MIC
(µg/mL)

SM♂L1 / / 8.7 ± 0.6 400 / / / / 15.3 ± 1.5 400 13.7 ± 0.6 25
F1 / / 13.3 ± 1.2 128 / / / / / / 26.3 ± 0.6 128
F2 / / / / / / / / / / 12.7 ± 2.1 256
F3 / / / / / / / / / / 16.3 ± 2.9 >512
F4 / / / / / / / / / / / /
F5 / / / / / / / / / / 12.7 ± 0.6 512
F6 / / 16.7 ± 0.6 8 / / / / / / / /
F7 / / 15.3 ± 0.6 16 / / / / / / / /
F8 / / / / / / / / / / / /
F9 / / / / / / / / / / / /

F10 / / 15.3 ± 1.2 128 / / / / / / / /
SM♂L2 / / / / / / / / 12.7 ± 0.6 400 11.3 ± 1.5 100

F1 / / / / / / / / 8.0 ± 1.0 256 / /
F2 / / / / / / / / 6.0 ± 1.7 128 / /
F3 / / / / / / / / 5.0 ± 1.0 128 / /
F4 / / / / / / / / 10.3 ± 0.6 128 / /
F5 / / / / / / / / / / / /
F6 / / / / / / / / 11.7 ± 1.5 64 28.3 ± 1.2 16
F7 / / / / / / / / / / 29.7 ± 0.6 256

SM♂L3 / / / / / / / / / / / /
SM♂L4 / / / / / / / / / / / /

SM♂L1: petroleum ether extract; SM♂L2: diethyl ether extract. SM♂L3: acetone extract; SM♂L4: water extract.
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2.2. Chemical Investigation of Positive Fractions

The fractions derived from female and male S. molle (L.) leaf extracts that produced an inhibition
halo equal to or greater than 10 mm were further investigated with the gas-chromatography/mass
spectrometry. The identification of the components separated by GC/MS was carried out by comparing
the mass spectra for each compound with that reported in mass spectrometry (MS) libraries and by
calculating their linear retention indices (LRIs). Table 3 shows the chemical composition of petroleum
ether and diethyl ether fractions from female S. molle (L.) leaves; 40 identified molecules are reported.
Table 4 describes the chemical composition of petroleum ether and diethyl ether fractions from male
S. molle (L.) leaves; 12 identified molecules are listed. The composition of the biologically active
fractions obtained by LPCC from the male and female extracts in petroleum ether showed a particular
abundance of sesquiterpenes and monoterpene hydrocarbons. The fractions obtained from the male
and female diethyl ether extracts were rich in sesquiterpenes and alcohol terpenes; fatty acids, phenols,
esters and hydrocarbons were also present.
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Table 3. Chemical composition (%) of petroleum ether and diethyl ether fractions from female S. molle (L.) leaves.

Components 1 LRI 2 LRI lit 3 SM♀1F4 SM♀1F5 SM♀1F6 SM♀1F7 SM♀2F2 SM♀2F3 SM♀2F4

1 β-terpinene 1200 1206 33.8 - - - 5.8 - -
2 cyclotetradecene 1680 * - - - 15.7 - - 77.6
3 Elemol 2093 2090 38.1 74.6 71.6 2.7 - - -
4 viridiflorol 2092 2091 - 3.6 - - - - -
5 3,7,11,15-tetramethyl-2-hexadecen-1-ol 2125 * - - - - 86.9 - -
6 dehydroxyisocalamendiol 2141 * 8.5 - 2.9 3.4 - - -
7 γ-eudesmol 2191 2185 5.2 4.3 4.2 6.4 1.0 - -
8 α-eudesmol 2240 2232 4.1 9.4 3.9 3.9 1.0 - -
9 β-eudesmol 2258 2249 10.2 8.0 17.4 67.9 1.3 - -

10 2,4-di-tert-butyl-phenol 2320 2321 - - - - - - 22.4
11 Phytol 2625 2633 - - - - - 100.0 -
12 hexadecanoic acid 2880 2887 - - - - 4.0 - -

SUM 99.9 99.9 100.0 100.0 100.0 100.0 100.0

Monoterpene hydrocarbons 33.8 5.8
Sesquiterpene hydrocarbons 57.6 99.9 97.1 80.9 3.3
Oxygenated sesquiterpenes 8.5 2.9 3.4

Diterpenoid alcohol 86.9 100.0

Others 15.7 4.0 100.0
1 elution order on polar column; 2 linear retention indices (LRI) measured on polar column; 3 linear retention indices from literature; * LRI lit not available; (SM♀1F4–L1F7): fractions from
petroleum ether female extracts; (SM♀2F2–L2F4): fractions from diethyl ether female extracts.

Table 4. Chemical composition (%) of petroleum ether and diethyl ether fractions from male S. molle (L.) leaves.

Components 1 LRI 2 LRI lit 3 SM♂L1F1 SM♂L1F2 SM♂L1F3 SM♂L1F5 SM♂L1F6 SM♂L1F7 SM♂L1
F10 SM♂L2F4 SM♂L2F6 SM♂L2F7

1 α-pinene 1033 1035 - - - 0.7 - - - - - -
2 2-propanone, 1-hydroxy 1315 1317 - - - - - - - - - 1.9
3 isoledene 1340 * 0.4 - - - - - - - - -
4 isoshybunone 1480 1482 - - 85.0 - - - - - - -
5 Elixene 1510 1514 9.9 9.2 - - - - - - - -
6 α-gurjunene 1556 1549 2.3 0.2 - - - - - - - -
7 β-ylangene 1570 1574 1.0 0.4 - - - - - - - -
8 β-elemene 1608 1598 2.4 5.3 - - - - - - - -
9 β-copaene 1635 1631 0.6 - - - - - - - - -
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Table 4. Cont.

Components 1 LRI 2 LRI lit 3 SM♂L1F1 SM♂L1F2 SM♂L1F3 SM♂L1F5 SM♂L1F6 SM♂L1F7 SM♂L1
F10 SM♂L2F4 SM♂L2F6 SM♂L2F7

SUM 99.9 99.6 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0

10 β-caryophyllene 1637 1634 7.4 0.8 - - - - - - - -
11 cis-β-terpineol 1640 1644 - - - 1.9 - - - - - -
12 γ-elemene 1648 1650 0.2 0.5 - - - - - - - -
13 aromadendrene 1675 1670 2.0 0.4 - - - - - - - -
14 cyclotetradecane 1680 * - - - - - - - - - 8.9
16 oxalic acid 1691 * - - - - - - - - - 18.5
15 humulene 1700 1693 2.2 4.5 - - - - - - - -
17 Ledene 1698 1695 5.8 14.1 - - - - - - - -
18 germacrene D 1728 1726 51.8 5.6 - - - - - - - -
19 α-muurolene 1730 1729 - 20.2 - - - - - - - -
20 δ-cadinene 1758 1758 10.3 24.3 - - - - - - - -
21 γ-cadinene 1778 1782 2.3 5.9 - - - - - - - -
22 isoaromadendrene epoxide 1800 1807 - - - - - 7.0 8.3 - - -
23 nonadecene 1932 1927 - - - - - - - - - 28.8
24 1-docosene 2000 * - - - - - - - - - 11.8
25 Elemol 2091 2090 - - - 3.2 - - - 4.2 - -
26 viridiflorol 2092 2091 - - - 2.0 - - - 3.6 - -
27 3,7,11,15-tetramethyl-2-hexadecen-1-ol 2125 * - - - 16.9 - - - - - -
28 spathulenol 2142 2136 0.2 3.8 - - 2.3 14.2 - - - -
29 γ-eudesmol 2178 2180 - - - - - - - 6.2 - -
30 α-eudesmol 2240 2232 - - - 12.0 - - - 26.9 - -
31 dehydroxyisocalamendiol 2242 * - - 11.7 - - - - 18.8 - -
32 hexadecanoic acid, methyl ester 2244 2233 - - 2.4 - - - - - - -
33 hexadecanoic acid, ethyl ester 2247 2246 - - 0.8 - - - - - - -
34 β-eudesmol 2255 2249 - - - 57.6 12.9 59.6 91.7 40.1 - 8.8
35 phenol 2,4-di-tert-butyl- 2322 2321 - - - - - - - - - 7.3

36 cyclopropanetetradecanoic acid,
2-octyl-,methyl ester 2405 * - - - - - - - - - 14.0

37 isocalamendiol 2510 2500 1.1 4.4 - - 84.8 12.2 - - - -
38 benzyl benzoate 2650 2652 - - - 5.6 - - - - - -
39 squalene 2860 2865 - - - - - 7.0 - - - -
40 hexadecanoic acid 2880 2887 - - - - - - - - 100.0 -

SUM 99.9 99.6 99.9 99.9 100.0 100.0 100.0 99.8 100.0 100.0

Monoterpene hydrocarbons 51.8 5.6 0.7
Monoterpenes alcohol 1.9

Sesquiterpene hydrocarbons 40.1 89.4 85.0 74.8 97.7 71.8 91.7 81.0 8.8
Oxygenated sesquiterpenes 11.7 18.8

Tricyclic sesquiterpenes 0.2 3.8 2.3 14.2
Triterpenes 7.0

Bicyclic sesquiterpenes 7.4 0.8

Others 0.4 3.2 22.5 7.0 8.3 100.0 91.2
1 elution order on polar column; 2 linear retention indices measured on polar column; 3 linear retention indices from literature; * LRI lit not available; (SM♂L1F1–L1F10): fractions from
petroleum ether male extracts; (SM♂L2F4–L2F7): fractions from diethyl ether male extracts.
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3. Discussion

Plant secondary metabolites possess numerous biological activities and are useful in the treatment
of human and animal health problems. Antibacterial activities have been well defined in different
classes of natural compounds and, due to the high incidence of antibiotic resistance, the search for new
antibiotics is ongoing.

The antibacterial activity of the SM♀1-F7 fraction against S. aureus showed an increase in the
inhibition halo, from 10.3 ± 1.5 mm to 20 ± 1 mm, and a reduction in the MIC, from 400 µg/mL
to 128 µg/mL, compared to the extract SM♀1. The biological activity could be related to the
presence of β-eudesmol (67.9%), together with cyclotetradecene (15.7%), γ- and α-eudesmol (6.4% and
3.9%, respectively), dehydroxyisocalamendiol (3.4%) and elemol (2.7%). Salem and colleagues [31]
demonstrated the antimicrobial activity of the water extract of wood branches of S. molle (L.), which
has a high percentage of β-eudesmol; this work supports the relationship between the chemical
content found and the biological activity observed. Furthermore, the lowest MIC against S. aureus
was obtained in the fraction SM♀1-F4, containing elemol (38.1%), β-terpinene (33.8%)—known for its
antibacterial activity against S. aureus [6], β-eudesmol (10.2%), dehydroxyisocalamendiol (8.5%) and γ-
and α-eudesmol (5.2% and 4,1%, respectively). The effects observed against against S. aureus led us to
consider a synergism between the molecules present in the fraction and the antimicrobial activity of
this strain.

The fraction SM♀1-F5 showed good inhibitory activity against B. subtilis, with an increase in halo
diameter from 14.3 ± 1.2 mm to 24.7 ± 0.6 mm for the disk diffusion test and an MIC reduced from
400 µg/mL to 8 µg/mL compared to extract SM♀1. Similar values were also obtained from the fraction
SM♀1-F6 (DDT = 21.7 ± 1.2 mm, MIC = 8 µg/mL). The major constituent of these fractions was elemol
(SM♀1-F5 = 74.6% and SM♀1-F6 = 71.6%). In the fraction SM♀1-F5 α-, β- and γ-eudesmol (9.4%, 8.0%
and 4.3%, respectively) were present; these molecules are known for their antimicrobial effects [31,36].
In different quantities (α- = 3.9%, β- = 17.4% and γ-eudesmol = 4.2%), these were also found in the
fraction SM♀1-F6.

The results of the SM♀2-F4 fraction against S. aureus showed an increase in antibacterial activity
compared to the extract SM♀2. The inhibition halo increased from 10 mm to 18 mm, while the MIC
reduced from 400 µg/mL to 64 µg/mL. In this fraction, cyclotetradecene (77.6%) and 2,4-di-tert-butyl
phenol (2,4 DTBP) (22.4%) were identified. In particular, 2,4 DTBP is known to be an antifungal and
cytotoxic molecule, as has been widely documented [46–48]. Aissaoui et al. [49] also described the
antibacterial potential of this compound.

Among fractions obtained from the extract SM♀2, only SM♀2-F4 showed a modest activity against
C. albicans. A reduction in its inhibition halo was observed, from 14.3 ± 2.1 mm to 9.7 ± 0.6 mm, and a
decrease was seen in the MIC from 50 µg/mL to 32 µg/mL.

Regarding B. subtilis, fractionation produced better effects. The two fractions SM♀2-F2 and SM♀2-F3
were active, with inhibition halos of 25.7 ± 0.6 mm and 24.7 ± 1.2 mm and MICs of 1 µg/mL and 2
µg/mL, respectively. These values were the lowest recorded. The GC-MS analysis of SM♀2-F2 revealed
the presence of 3,7,11,15-tetramethyl-2-hexadecen-1-ol (86.9%), β-terpinene (5.8%), hexadecanoic
acid (4.0%) and α-, β- and γ-eudesmol (1.0%, 1.3% and 1.0%, respectively). SM♀2-F3 consisted of
only phytol, a stereoisomer of 3,7,11,15-tetramethyl-2-hexadecen-1-ol with a similar antimicrobial
activity [50]. Both of these molecules belong to the terpene family. Furthermore, regarding phytol,
recent investigations have demonstrated anxiolytic, metabolism-modulating, cytotoxic, antioxidant,
autophagy and apoptosis-inducing, anti-nociceptive, anti-inflammatory and immune-modulating
effects [51].

The fraction SM♀2-F4 was the only one to show activity in response to E. faecalis, with an increase
in the inhibition halo from 8.3 ± 0.6 mm to 14.7 ± 1.2 mm and a reduction in the MIC from 200 µg/mL
to 128 µg/mL.

As shown in Table 2, in the SM♂L1-F1 fraction the increase in antibacterial activity in response
to B. subtilis was related exclusively to the disk diffusion test (not to the MIC). Indeed, the inhibition
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diameter reached 26.3 ± 0.6 mm, compared to 13.7 ± 0.6 mm for the SM♂L1 extract. This phenomenon
could be due to the presence of molecules already known for their antibacterial activity, such as
germacrene-D [41,42], δ-cadinene [52], elixene [53,54] and β-caryophyllene [39,41].

As already reported for Piper nigrum (L.) fruits [40], there could be relationship between the
presence of isocalamendiol and the antibacterial activity against S. aureus. In this study, the SM♂L1-F6
fraction showed a good antibacterial activity against this strain, with a halo of 16.7 ± 0.6 mm and
an MIC of 8 µg/mL. In this fraction, isocalamendiol (84.8%), β-eudesmol (12.9%) and spathulenol
(2.3%) were present. The antibacterial activity of β-eudesmol has been evaluated through the analysis
of essential oils of Amazonian species of the genus Guatteriopsis [36] and a low activity against S.
aureus was reported, with an MIC of over 1000 µg/mL. Our results supported the hypothesis of an
antibacterial activity against S. aureus, exerted by isocalamendiol or by a synergistic action of the
three molecules. The inhibitory activity against S. aureus could be associated with the high presence
of β-eudesmol, also found in the fractions SM♂L1-F10 (91.7%) and SM♀1-F7 (67.9%), which have a
DDT = 15.3 ± 1.2 mm/MIC = 128 µg/mL and a DDT = 20 ± 1 mm/MIC = 128 µg/mL, respectively.

Interesting effects were also recorded for SM♂L1-F7 (DDT = 15.3 ± 0.6 mm, MIC = 16 µg/mL).
As revealed by GC-MS investigations, the fraction consisted of β-eudesmol (59.6%), spathulenol
(14.2%), isocalamendiol (12.2%), squalene (7.0%) and isoaromadendrene epoxide (7.0%).

Some papers have reported the experimental data antibacterial activity against S. aureus of
isoaromadendrene, epoxide [55]. The ineffectiveness of squalene was reported by Sharma et al. [56] in
a study of the ethanolic extract from leaves of Syzygium jambos L. (Alston), in which no antibacterial
activity occurred during the testing of squalene.

Most of the fractions derived from SM♂L2 exhibited inhibitory activity against the fungus C.
albicans, mainly expressed by the fraction SM♂L2-F6, with a similar DDT result (11.7 ± 1.5 mm in the
fraction compared to 12.7 ± 0.6 mm in the total extract) and enhanced MIC activity of 400 µg/mL to 64
µg/mL. As shown by GC-MS investigations, the fraction consisted of hexadecanoic acid. Biological
activities of hexadecenoic acid reported in literature, such as larvicidal [57], anti-inflammatory [58]
and antimicrobial [35,36]. In this work, we highlighted the antifungal and antibacterial activity of
the fatty acid found in the fraction. The antibacterial activity of hexadecanoic acid was confirmed
against B. subtilis, with an increase in the inhibition halo from 11.3 ± 1.5 mm in the total extract up to
28.3 ± 1.2 mm in the fraction SM♂L2-F6. This last fraction, in line with the cited literature, also showed
an increase in antibacterial activity with the broth microdilution method, with an MIC reduced from
100 µg/mL to 16 µg/mL.

The fraction SM♂L2-F7 showed the biggest inhibition halo (29.7 ± 0.6 mm) recorded, an activity
in contrast with the increase in the MIC value from 100 µg/mL to 256 µg/mL. The composition
of this fraction was more heterogeneous than the fraction SM♂L2-F6 (Table 4). The components,
oxalic acid [59], 1-docosene [60], β-eudesmol [31] and phenol 2,4-di-tert-butyl- [47–49], are known, in
the literature, for their correlation with antimicrobial activity, confirming the inhibitory effect found in
our work.

4. Materials and Methods

4.1. Reagents

All the solvents used for chemical analysis, extraction and fractionation purposes were analytical
grade (Sigma-Aldrich, Darmstadt, Germany). The silica gel (60 Å, 0.04–0.063 mm) was from
Macherey-Nagel (Düren, Germany). The microorganism media and reagents for antimicrobial
tests were purchased from Sigma–Aldrich (Darmstadt, Germany).

4.2. Plant Materials and Extraction

The leaves of male and female S. molle (L.) plants were collected during the flowering period from
the “Angelo Rambelli” botanical garden in Viterbo (Viterbo, Italy) and identified by Dr. Monica Fonck
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(Scientific Supervisor) with the number AS21 (male plant) and AS22 (female plant) in the Botanical
Garden Catalogue. The leaves were washed with distilled water, air-dried in dark conditions at room
temperature and stored at −80 ◦C until lyophilization. The frozen leaves were lyophilized for 3 days to
eliminate traces of water, ground to obtain a powder (4 gr for female leaves and 4 gr for male leaves)
and stored at 4 ◦C. In order to perform serial extractions, the powder was put in a cellulose thimble
and processed in a soxhlet apparatus. Three solvents with increasing polarity—petroleum ether (PE),
diethyl ether (DE) and acetone (AC)—were used. After the acetone extraction, the solid residue was
macerated in distilled water overnight and the aqueous fraction filtered through Whatman paper.
The solvent was evaporated by a rotary vapor (RV 08-VC, IKA, Staufen, Germany) and the dried
residues put into glass vials and stored at 4 ◦C until use. The obtained extracts were named as SM♀1
(PE extract of female leaves, 312 mg), SM♀2 (DE extract of female leaves, 60 mg), SM♀3 (AC extract of
female leaves, 76 mg), SM♀4 (water extract of female leaves, 52 mg), SM♂L1 (PE extract of male leaves,
328 mg), SM♂L2 (DE extract of male leaves, 72 mg), SM♂L3 (AC extract of male leaves, 84 mg) and
SM♂L4 (water extract of male leaves, 60 mg).

4.3. Low-Pressure Column Chromatography

All the obtained extracts—SM♀1, SM♀2 and SM♂L1, SM♂L2—were fractionated by silica gel in
the solid phase and solvents with increasing polarity in the mobile phase. The silica gel was packed
using petroleum ether and helped by vibrations to improve the packing of the stationary phase. A layer
of sand was put on top of the silica to avoid the dispersion of the solid phase and the creation of
air bubbles [61]. The solvents used for the run were PE 100%, PE/Ethyl acetate (EA) 95%/5%, PE/EA
90%/10%, PE/EA 80%/20%, PE/EA 70%/30%, EA 100% and methanol 100%. The fractions were manually
collected and those with a similar visible color were reunited, obtaining seven fractions from SM♀1,
four fractions from SM♀2, nine fractions from SM♂L1 and three fractions from SM♂L2.

4.4. GC-MS Analysis

The active fractions were analyzed with a Perkin Elmer GC/MS Clarus 500. The gas
chromatograph was equipped with a Stabilwax fused-silica capillary column (Restek, Bellafonte, PA,
USA) (60 m × 0.25 mm, 0.5 µm of film thickness).

The analytical conditions were set as follows: the injector was at 280 ◦C; the oven temperature was
programmed from 60 ◦C to 220 ◦C at a rate of 5 ◦C/min and held for 30 min; the carrier gas was helium
at 1.0 mL/min. One microliter of methanol was added to the extracts and 2 µL of each was injected
directly with a split ratio of 1:20. The Clarus 500 Mass Spectrometer single quadrupole operated in the
electron impact (EI) mode at 70 eV. The mass range was from 30 to 450 m/z. The relative percentages
for quantification of the components were calculated by the electronic integration of the GC-FID
(Gas Chromatograph-Ionization Flame Detector) peak areas using the normalization method. The
identification of the components separated by GC/MS was performed by comparing the mass spectra
for each compound with that reported in the MS library search (Wiley and Nist 02). Furthermore,
the linear retention indices (LRI) of each compound were calculated according to van den Dool and
Kratz [62], using a mixture of n-alkanes (C8–C30, Ultrasci) injected directly into the GC injector with
the same operating conditions reported above. All the analyses were repeated twice. The percentage
area values were obtained electronically from the GC-FID response without the use of an internal
standard or correction factors.

4.5. Antibacterial Activity

The antibacterial activity was tested using selected pathogens and commensal strains from the
American Type Culture Collection (ATCC) (Manassas, MD, USA): S. aureus ATCC 6538, Escherichia coli
ATCC 25922, P. aeruginosa ATCC 9027, E. faecalis ATCC 29212, B. subtilis ATCC 6633 and C. albicans
ATCC 10231.
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The strains were maintained at 4 ◦C on slants of Tryptic Soy Agar (bioMerieux, Florence, Italy)
and Malt Extract Agar for bacteria and molds, respectively. The bacterial and fungal strains were
previously activated in Tryptic Soy Agar (TSA) at 37 ◦C/24 h and Sabouraud Dextrose Agar (SDA) at
25 ◦C/5 days.

All the inocula were prepared with fresh cultures plated the day before the test.

4.6. Disk Diffusion Test (DDT)

Sterile disks (6 mm diameter) impregnated with S. molle (L.) fractions were placed on TSA, having
been previously seeded with the bacterial strain. The microorganisms were suspended in sterile Tryptic
Soy broth with a turbidity from 0.5 to 1 McFarland (approximately 107–108 CFU/mL). S. molle (L.)
fractions which had growth inhibitory activity were highlighted by the absence of microorganism
growth around spots and the haloes were measured using a Vernier calliper rule and expressed in
mm [63,64]. Each strain was tested in triplicate and the results were reported in Tables 1 and 2.
A sterilized physiological saline solution (5 µL) and dimethyl sulfoxide (DMSO) (5 µL) were used as a
negative control sample.

4.7. Minimum Inhibitory Concentration (MIC)

The MIC values of S. molle (L.) fractions were determined against all strains by means of a microwell
dilution method [65,66]. Dilutions of each fraction were prepared in DMSO. All 96 microplate wells
were prepared by adding 95 µL of Tryptic Soy broth (TSB) and 5 µL of inoculum. Each well was
inoculated with a different concentration of extracts (ranging from 1.56 to 3200 µg/mL) or fractions
(ranging from 0.25 to 512 µg/mL) [67]. As a negative control, wells containing 195 µL of the nutrient
broth and 5 µL of the bacterial strains without extracts were prepared. Each plate was mixed on the
plate shaker at 300 rpm for 20 s and then incubated at 37 ◦C for 48 h. The optical density (OD) of the
plates was measured at 570 nm using a microtiter plate reader. The MIC values were expressed as
µg/mL, taking into account the density value of each sample. All the experiments were repeated three
times [68].

4.8. Statistical Analysis

The results were expressed as means ± the standard deviation (SD). Data were analyzed with
a one-way analysis of variance (ANOVA) using GraphPad Prism software (GraphPad Prism 5.0,
GraphPad Software, Inc., San Diego, CA, USA), with p values of≤ 0.05 considered statistically significant.

5. Conclusions

In conclusion, our findings confirm the antimicrobial properties of S. molle (L.) leaf extracts and
derived fractions from S. molle (L.) male and female plants. In most cases, the obtained fractions
showed improved antimicrobial activity compared to the in toto extracts.

The chemical investigations of positive fractions could suggest a possible correlation between
molecules highlighted by GC-MS analysis and the antibacterial activity. Further studies are needed for
a more detailed evaluation of the antibacterial properties of single identified molecules in extracts and
their possible synergic effects.
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