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Abstract: Most existing correlation filter-based tracking algorithms, which use fixed patches and
cyclic shifts as training and detection measures, assume that the training samples are reliable and
ignore the inconsistencies between training samples and detection samples. We propose to construct
and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to
solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent
sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts,
eliminate the inconsistencies between training samples and detection samples, and introduce space
anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion.
Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining
robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that
our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs).
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1. Introduction

Visual tracking plays an important role in computer vision and has been widely used in many
smart and automatic systems in recent years. During tracking, the appearance of the target has random
variation and is unpredictable. This is a very challenging issue because prior information on target
appearance is inadequate. Therefore, a robust tracker must have a good generalization ability as to
adapt to the significant variability in the appearance of targets. It is difficult to construct a robust
tracking model that can adapt to changes in the appearance of targets.

Recent research into visual tracking has focused mainly on the appearance model, which can be
broadly divided into two categories: generative models and discriminative models. Generative models
search for the closest description in the model space to the observed target in order to estimate target
state. Because these models adopt an appearance model to describe the target appearance state without
considering background information on the target, they have low discriminative ability if the scene is
complex. Compared with generative models, discriminative models, which discriminate the target
from the background by learning through an online appearance classifier, have better discrimination
and generalization ability to respond to changes in the appearance of targets.

Recently, discriminative correlation filter (DCF) tracking models have shown significant
advantages both in accuracy and speed compared with traditional discriminative trackers. DCF-based
trackers are different from traditional discriminative trackers in both learning and detection. During
the process of learning, training samples use continuous labels instead of positive and negative
labels. These continuous labels include positional information on the target, and it is assumed that
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the labels obey a two-dimensional single-centered Gaussian distribution. Therefore, DCF filters
have a higher positioning capability. Similarly, for detection, candidate target regions are cropped
from a loop which shifts from the last estimated target position. It is different from traditional
discriminative tracking models where candidate target regions are selected randomly. The positioning
ability of traditional discriminative trackers is limited by the randomness of candidate target regions,
while DCF-based trackers avoid this limitation and so have a more accurate positioning ability.
In addition, DCF-based trackers use dense sampling while traditional discriminative trackers use
random sampling. In dense sampling, all samples can be aligned into a circulant matrix. The circulant
matrix can then be transformed into a diagonal matrix in the Discrete Fourier Transform (DFT),
which can significantly improve the computation speed of the tracking model.

The performance of DCF-based trackers benefits from dense sampling and continuous sample
labels. However, the establishment of these two strategies (the dense sampling and the continuous
sample labels) is based on some assumptions. Firstly, the samples obtained by dense sampling are
only approximations of reality. Approximations are valid only when the background is relatively
smooth, which means that the sampling method is unreliable if there are cluttered features or similar
targets in the background. Secondly, sample labels obey single-centered Gaussian distribution, which
means that the center of the distribution corresponds to the real target. However, in actual tracking,
this assumption is untenable because of the existence of motion-blurred targets or occluded targets.

In order to overcome the above problems and make a more generalizable tracker, we propose a
new DCF-based tracker. Our main contributions are as follows:

(1) We propose a new DCF-based tracking model which integrates two strategies (anisotropic
spatially-regularized constraints and consistent sampling) into a unified DCF-based tracking model.

(2) We propose to study an anisotropic spatially-regularized filter, which is used to penalize the
response of occluded areas of the target.

(3) We propose to use a spatially-weighted function for every training and detection sample.
This strategy can alleviate redundancies in training samples caused by cyclical shifts and eliminate
inconsistencies between training samples and detection samples.

(4) We propose to further develop an optimization strategy including a closed-form solution and an
iterative method. The iterative method is based on the Gauss-Seidel method which can make
online learning robust and efficient.

The rest of the paper is organized as follows: In Section 2, we introduce related works on visual
tracking. The optimization of the unified objective function and the tracking algorithm are presented in
Section 3. Quantitative and qualitative experiments comparing our method with other state-of-the-art
methods are discussed in Section 4. In Section 5, we report the conclusions of our paper.

2. Related Works

Various trackers, which include appearance models, motion models, and search strategies, have
been proposed in visual field tracking. Our contributions are focused on the appearance model.
The appearance model can be divided into three categories: generative models, discriminative models,
and DCF models. In this section, we will briefly list the most representative trackers in the three
categories and discuss the works that are most relevant to the proposed tracker.

2.1. Generative Trackers

A generative tracker learns target appearance model to dynamically represent a set of target
observations. Therefore, the key to generative tracking models is to find the most similar candidate
when target appearance features have undergone some changes in an image sequence. Up to now,
there have been many representative generative models, e.g., mean shift based tracking [1], incremental
visual tracking (IVT) [2], fragment-based tracking (Frag) [3], multi-task based tracking (MTT) [4,5],
low-rank sparse based tracking [6], tracking based on exclusive context modelling [7], and sparse



Sensors 2017, 17, 2889 3 of 16

structural learning-based tracking [8,9]. The main drawbacks of these methods are reflected in two
aspects. First, the performance of a model is limited by the dimensions of the model representation
space. Second, these models don’t utilize the background information of the target effectively and so
show less discrimination when the scene is more complex.

2.2. Discriminative Trackers

Compared with generative models, discriminative models, which take full advantage of the
differences between the target and the background, have better discrimination and generalization
ability as to cover a wide range of appearance changes. Traditional discriminative trackers formulate
visual object tracking as a binary classification problem that searches for the target location most
distinctive from the background. Common discriminative trackers, which have a large influence
on visual tracking, include the multiple instance learning tracking model (MIL) [10], the online
adaptive boosting tracking model (OAB) [11], the support vector tracking model (SVM) [12],
the tracking-learning-detection model (TLD) [13], online random forests tracking (ORF) [14], a tracker
based on transfer learning with Gaussian processes regression (TGPR) [15], and multi-expert entropy
minimization (MEEM) [16]. The key challenge for discriminative trackers is the sampling of training
samples online and adapting to updates in the target appearance model. Most discriminative models,
which are binary classifiers and do not include positional information on the target in training samples
and candidate tests, can’t directly estimate the specific location of the target. Additionally, the accuracy
of target localization is limited by the number of candidate tests and sampling randomness.

2.3. DCF-Based Trackers

DCF-based trackers overcome the shortcomings of generative and discriminative models and
they exhibit promising results for visual tracking. Initially, the minimum output sum of squared
error (MOSSE) [17] successfully used correlation filters in visual tracking and showed promising
speed, however, the feature used in the model is restricted to a single channel, so its performance
is not as promising as its speed. Subsequently, the DCF-based tracking framework is developed to
incorporate multi-channel feature maps [18,19], which allows high-dimensional features to be used
for improved tracking. Since then, the importance of multi-channel feature maps has attracted much
attention to DCF-based tracking. For example, Liu et al. [20] used multiple kernelized correlation
filter trackers to represent different parts of the object and track them jointly, alleviating serious
occlusion. Discriminative scale space tracking (DSST) [21], which utilizes one-dimensional correlation
filters for online estimation of target scale, is proposed to overcome a wide range of changes to target
scale. Long-term correlation tracking (LCT) [22] is proposed to add random fern detection into the
DCF-based tracking framework for alleviating serious occlusion. In [23], complementary learners
tracking, which integrates the advantages of DSST [21] and DAT [24] effectively, is proposed by
Bertinetto et al. to alleviate large deformations in target appearance. In [25], Gundogdu et al. proposed
to develop a Convolutional Neural Network (CNN) model for circularly correcting the correlation
filter and the observation, and the improve the resulting correlation output. In [26], Danelljan et al.
proposed to study continuous convolution operators for visual tracking (C-COT), which enables for
efficient integration of multi-resolution deep features. In [27], Danelljan et al. proposed efficient
convolution operators for visual tracking (ECO), which is an improvement on C-COT, and successfully
tackles the causes of over-fitting and gets better generalization of the target appearance.

Recently, some tracking algorithms have focused on addressing the boundary effects that are most
relevant to our work. Galoogahi et al. [28] proposed a Background-Aware CF (BACF) that can efficiently
model how both the foreground and background of the object varies over time. BACF exploits all
background patches as negative examples for learning a filter and so is more discriminative against
background clutter. However, BACF does not take into account the reliability of positive samples:
if the target is occluded, positive samples contain some background information and so may lead
to drifts in subsequent tracking. In [29], Lukežič et al. introduced the channel and spatial reliability
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concepts to DCF tracking (CSR-DCF). An automatically estimated spatial reliability map restricts the
correlation filter to parts suitable for improving search range and performance for irregularly-shaped
objects. In CSR-DCF, the default positive sample is clean and there is no specific sample purification
strategy for dealing with sample contamination. Therefore, this method might result in drift when
the target undergoes serious occlusion. Danelljan et al. [30] proposed to use spatially-regularized
discriminative correlation filters (SRDCF) to mitigate unwanted boundary effects. Similarly, this model
has still not introduced sample reliability analysis, and the default training samples are reliable and
uncorrupted. Bibi et al. [31] proposed to jointly lean the filter and target responses for alleviation of
fast motion and boundary effects. They first raise doubt about the reliability of the assumption whose
sample set obeys single-centered Gaussian Distribution and point out that this assumption is invalid
when target moves fast. However, they do not consider contamination of the sample, so there is still
drift when the target is seriously occluded. Different from the above methods, this paper’s proposed
method considers both sample reliability and boundary effects. In addition, the proposed approach
uses a unified framework to solve both of these problems simultaneously.

3. Proposed Method

3.1. Standard Discriminative Correlation Filter

The standard discriminative correlation filter (DCF) for tracking is trained by using a number
of grayscale image patches x1, x2, . . . , xt of size M× N and their desired correlation outputs g. New
variation of the optimal filter attained from the latest patch is obtained by minimizing the objective
function over h:

min
ht

∑
m,n
‖Pm(ws·xt)Pn·ht − g(m, n)‖2

2 + λ‖ht‖
2
2. (1)

Here, denotes point-wise multiplication. Matrix P is the permutation matrix that cyclically shifts
a matrix, and PmxPn means shifting the rows of matrix x by m and shifting the columns of matrix
x by n. Variables (m, n) ∈ {0, . . . , M− 1} × {0, . . . , N − 1} are the shift quantities and λ controls the
amount of regularization. The spatially weighted map ws is often chosen to be a cosine window [18,21]
or a Gaussian window [32] to alleviate noises in Fourier representation and reduce the influence of
background pixels. Using Parseval’s formula, (1) can be transformed into the Fourier domain and the
solution to Equation (1) in the Fourier domain is

Ht =
G · Ft

Ft · Ft + λ
, (2)

where capital letters denote the discrete Fourier transformations (DFTs) of the corresponding functions
and Ft represents the DFT of ws·xt. The bar represents complex conjugation. Note that (2) only
considers one training sample. An optimal filter can be achieved by minimizing the error of all training
samples [33]. However, this solution is very time consuming, thus, many trackers [17,18,32] use the
following updated strategy to get a robust approximation of the optimal filter:

At = (1− η)At−1 + ηG · Ft (3)

Bt = (1− η)Bt−1 + η(Ft · Ft + λ) (4)

H = At/Bt, (5)

where η is the learning rate and/denotes element-wise division. At = G · Ft and Bt = Ft · Ft + λ.
Given an image patch of size M× N in the next frame, the confidence scores are computed as

ŷ = F−1{H · Ft+1
}

, (6)
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where F−1 denotes the inverse DFT operator and Ft+1 represents the DFT of ws·xt+1. The new target
location is estimated to be at the maximum confidence score of ŷ.

3.2. Consistently Sampled Correlation Filters

Traditional correlation filter-based methods have a common shortcoming, as illustrated by the
green cloud in middle row of Figure 1. They all use cyclic shifts of the image patches as samples,
which first weight the image patch with a fixed weight map (i.e., hamming window) and then use all
cyclic shifts of the image patch as samples. This may result in a set of redundant training samples and
inconsistencies between training and detection samples. In addition, these methods cannot handle
large search regions because large search regions contain too much background information, resulting
in imbalances between foreground information and background information in a sample.
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Figure 1. Sampling strategies of traditional correlation filter-based methods and the proposed method.
The boy in the figure is blurry due to fast motion. Two input images where the red box area is the target
(Top row). Weights and image content execute synchronously cyclic shifts (Middle row). Weights are
independent and do not execute cyclic shifts with image content (Bottom row).

We constructed a consistent sample constraint strategy consisting of spatially-consistent and
temporally-consistent samples to alleviate the redundancies in training samples caused by cyclical
shifts and to eliminate the inconsistencies between training samples and detection samples. Compared
with traditional sampling strategies, our method does not bind the weight and image patches together.
Instead, we make every training sample have its own weight map. This strategy alleviates redundancies
in training samples which are caused by cyclical shifts and eliminates the inconsistencies between
training samples and detection samples.

3.2.1. Spatially-Consistent Sampling in Training Steps

In order to collect a consistently weighted training set, we gave each shift of the training image patch
a weighted function rather than just the image patch. Hence, we change the objective function to be:

min
ht

∑
m,n
‖(ws·(PmxtPn))·ht − g(m, n)‖2

2 + λ‖ht‖2
2. (7)

It is easy to find that putting a weight function on every sample has the same effect as putting the
weight function on the filter h in the first term:

min
ht

∑
m,n
‖(PmxtPn)(ws·ht)− g(m, n)‖2

2 + λ‖ht‖2
2. (8)
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By applying Parseval’s theorem to (8), the filter h can also be obtained by minimizing the following
objective function over Ht in the Fourier domain:

min
Ht
‖Xt ·

(
Ws

MN
∗Ht −G

)
‖

2

2
+ λ‖Ht‖2

2, (9)

where ∗ denotes circular convolution.
To solve this optimization problem, we vectorize all scalar valued functions in Equation (9).

After transforming point-wise multiplication and circular convolution into a matrix product, we then get:

min
Ht
‖D(Xt)(C(Ws)Ht)−G‖2

2 + λ‖Ht‖2
2, (10)

where D(Xt) represents the diagonal matrix where the diagonal elements are formed by Xt.
The MN ×MN matrix C(Ws) is obtained by concatenating the vectorizations of all possible cyclic
shifts of Ws/MN.

3.2.2. Temporally-Consistent Sampling in the Detection Step

To prevent the collection of corrupted detection samples caused by movement of the target object,
we separately put the weight function on every shift sample in the detection step. Thus the confidence
scores ŷ are obtained by:

ŷ(m, n) = (ws · (PmzPn)) · h = (PmzPn) · (ws · h), (11)

where z is the M× N feature map extracted from the next frame for detection. Using the convolution
theorem, all MN computations in (11) can be achieved by computing only once in the Fourier domain,
then transforming them back into the spatial domain using the inverse Discrete Fourier Transform
method. Thus we obtained the responses at all positions by

ŷ = F−1(D(Z)C(Ws)Ĥ), (12)

where Z is the vectorization of the DFT of z. The new target location is estimated to be at the maximum
confidence score of ŷ.

3.3. Anisotropic Spatially-Regularized Correlation Filters

Traditional DCF-based tracking models assume that the target region used for training is not
occluded. Under this assumption, the estimated filter’s higher responses correspond to spatial
structure features of the target while its lower responses match with the spatial structure of the
background region. However, when the target is occluded, the corresponding parts of the estimated
filter should not have high responses anymore, but traditional methods did not notice this. In this case,
the filter’s discrimination may be reduced and even lead to tracking drift. In order to purify the filter,
we proposed to study an anisotropic spatially-regularized correlation filter based on prior information
on occlusion detection. Combined with the consistently-sampled correlation filters proposed in
Section 3.2, we constructed a unified DCF model:

min
ht

∑
m,n
‖(ws·(PmxtPn))·ht − g(m, n)‖2

2 + λ‖wh·ht‖2
2 (13)

where wh is an anisotropic spatially-weighted matrix obtained by occlusion detection. The anisotropy
is determined by the location of the occluded region. In [34], Meshgi et al. proposed to detect occlusion
through studying foreground probability distributions, where the target is divided into grid cells and
the likelihood of occlusion is determined for each cell in a data-driven fashion. Motivated by [34],
we adopted a strategy based on grid cells to evaluate occlusion. The difference with [34] is that we
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used a simpler and faster target–background color statistical distribution [24] to measure occlusion
confidence for every cell. Figure 2a briefly illustrates the construction of the wh. Figure 2b shows a
statistical graph of target scores where the target region is divided into nine equal-sized cells, and cells
with a score of less than 0.5 are considered to be occluded.
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Specifically, scores are estimated by differences in the statistical distribution of colors between
target and background, which indicate the possibility that the current patch belongs to the target.
Referring to [24], we employed a color histogram-based Bayes classifier to calculate the object color
statistical distribution of every pixel, which is described as:

p(x ∈ O|O, S, bx) =


H I

O(bx)

H I
O(bx)+H I

S(bx)
i f I(x) ∈ I(O ∪ S)

0.5 otherwise
(14)

where O denotes a rectangular object region and S is the surrounding region of O. H I
O(bx) denotes the

b-th bin of the non-normalized histogram H computed over the region O ∈ I and x represents pixel
position in image I. Additionally, bx denotes the bin assigned to the color components of I(x). In order
to obtain a more reliable target description, we chose to correct the model with the first frame when
updating the model:

p(x ∈ O|O, S, bx) = λp p(x ∈ O|O1, S1, bx) +
(
1− λp

)
p(x ∈ O|O, S, bx), (15)

Then, the score of every cell is calculated as:

Score(celli) =
∑x∈celli p(x ∈ O|O, S, bx)

|celli|
, (16)

where |celli| denotes the sum of all the pixel values in i-th cell. Next, we merged all adjacent occlusion
cells and chose the biggest connected region as the current occlusion region to construct the wh.
Figure 2c is the visualization of the spatial distribution of wh, where hotter colors correspond to greater
weight and the colored area is the search area. The wh obeys two-dimensional Gaussian distribution
centered at the center of the occlusion area and its variances are constrained by the length and width of
the occlusion area. The computed Gaussian distribution weight map is only applied to the occlusion
area in wh and the weights in the remaining area in wh are all set to 0. The Equation (13) can be
converted into Equation (17) by the Fourier transform based on Parseval’s theorem. Therefore, the filter
ht can also be obtained by minimizing the Equation (17) over Ht in the Fourier domain:

min
Ht
‖Xt ·

(
Ws

MN
∗ Ht − G

)
‖

2

2
+ λ‖ Wh

MN
∗ Ht‖

2

2
, (17)
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Similar to the transformation from Equation (9) to (10), we can change Equation (17) to the
following objective function:

min
Ht
‖D(Xt)(C(Ws)Ht)−G‖2

2 + λ‖C(Wh)Ht‖2
2, (18)

3.4. Solutions to the Proposed CSSAR Problem

To ensure faster convergence, we reformulated (18) to an equivalent real-valued optimization
problem using the method proposed in [30]. We then got:

min
Ht
‖Dt(CsH̃t)− G̃‖2

2 + λ‖Ch(H̃t)‖
2
2, (19)

where Dt = BD(Xt)BH, CS = BC(Ws)BH, G̃ = BG, Ch = 1
MN BC(Wh)BH, and H̃t = BHt. The unitary

matrix B is a transformation matrix, which transforms the complex-valued matrix into a real-valued
matrix and preserves the Hermitian symmetry for ensuring faster convergence.

We proposed two solutions to solve the optimization problem with (19). First, since the
objective function in (19) is convex, the closed-form solution was achieved by setting the derivative of
Equation (19) to be zero:

∂ f (H̃t)

∂H̃t
= −(DtCs)

TG̃ + ((DtCs)
T(DtCs) + λCh)H̃t = 0. (20)

Let Pt = (DtCs)
T(DtCs) + λCh and Qt = (DtCs)

TG̃, (18) can be simplified as:

PtH̃t = Qt. (21)

Then the filter was obtained by H̃t = P−1
t Qt.

However, large matrix operations are often time consuming, so we explored the sparsity of Ws

and Wh by setting those elements which are smaller than a threshold to be zero. Then we obtained
a sparse matrix, Pt. Thus, we reduced the computations of large matrix operations in (20) and (21).
Note that (21) only considers one training sample. To get an efficient online tracker, we used a strategy
similar to Equations (3)–(5) to get a robust approximation of the optimal filter:

Pt = (1− η)Pt−1 + η((DtCs)
T(DtCs) + λCh) (22)

Qt = (1− η)Qt−1 + η(DtCs)
TG̃ (23)

H̃t = P−1
t Qt (24)

where η is the learning rate.
However, although we explored the sparsity of Ws and Wh, (24) was still computationally very

demanding. We only used (24) to initialize the filter for the iteration method described below. To design
an efficient method, we solved the normal Equation (21) by the Gauss-Seidel iteration. The Gauss-Seidel
method decomposes the matrix Pt into a lower triangular component Lt and a strictly upper triangular
component Ut such that Pt = Lt + Ut. The filter was iteratively calculated by the equation:

LtH̃
(i)
t = Qt −UtH̃

(i−1)
t (25)

where i = 1, 2, . . . , and denotes the iterations. Equation (25) can be efficiently solved in MATLAB
by the triangular solver for sparse matrices. We found that just a few iterations of (25) were enough
for achieving an effective updated filter in our tracker. We used the filter computed in the previous
frame as the initial iteration of the next frame. For the first frame, we obtained the initial estimation by
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solving (24). After we get the estimated H̃t, we applied Ĥt = BHH̃t to obtain the DFT coefficients of
the filter. Then we could use (12) to estimate the target position in the next frame.

To integrate multiple features, we simply separately calculated each feature channel’s response
map and added them together as the final confidence map. We used a coarse grid strategy to
construct xt and z for computational efficiency. To refine the confidence scores in sub-grids, we used
the polynomial interpolation method near the estimated target location in the coarse grid map ŷ.
In addition, we built a pyramid around the estimated location for scale estimation similar to [21] after
we got the estimated location.

4. Experiments

We compared the proposed tracker with the 11 state-of-the-art trackers, including MIL [10],
OAB [11], TLD [13], CSK [18], DSST [21], BACF [28], SRDCF [30], Struck [35], CXT [36], VTD [37],
and DFT [38]. In experiments, test datum of BACF (Available at: http://www.hamedkiani.com/
bacf.html) and SRDCF (Available at: http://www.cvl.isy.liu.se/research/objrec/visualtracking/
regvistrack/index.html) came from the author’s home page and all other trackers used the source
code provided by the author. The parameter settings from authors were kept for all the test sequences.
All testing sequences were from the object tracking benchmark (OTB) [39].

4.1. Features and Parameters

Our tracker was initialized as follows: We explored the sparsity of the Gaussian function in its
Fourier domain by eliminating all discrete Fourier transform (DFT) coefficients which were smaller
than a threshold for computational efficiency. In our tracker, we used the Histogram of Oriented
Gradient (HOG) feature, which has 27 channels and is extracted by using a cell size of 4× 4 pixels.
During the tracking process, all samples are resized to size M× N, where we let M = N and restricted
M to ensure a maximum size of 55. The size of the search region was set to be 42 times the size of
the target area. The iterations of the Gauss-Seidel method were set to be 7 and the learning rate was
adopted as η = 0.025. All parameters remained fixed in all experiments. The proposed tracker was
implemented on MATLAB 2016a. The experiments were performed on a PC with 8 GB RAM and a
Intel i7-4790 CPU (3.6 GHz), and the tracker ran at 3 fps.

4.2. Qualitative Evaluation

Figure 3 reports the tracking results of the qualitative evaluation. In the evaluation, we compared
the proposed tracker with 11 state-of-the-art trackers for some of the most challenging scenes (i.e.,
occlusion, motion blur, background clutter) in the OTB.

In Figure 3a, we show two typical scenes where the targets undergo occlusion. The Lemming
sequence represents some scenes where the targets undergo full occlusion. In the Tiger2 sequence,
the target is occluded partially. Our tracker can effectively track these objects because the uncorrupted
parts of the targets and the background context can still form some uncorrupted samples for training
and detection. Most of the training and detection samples of the traditional correlation filter based
trackers, e.g., DSST and CSK, were corrupted (not consistently sampled). In addition, the sizes of their
search areas were limited. Thus the trackers may drift after occlusion or fail to track the targets. Struck
and OAB can handle some slight occlusions, but when undergoing severe occlusion they all drift away.
Compared with Struck and VTD, SRDCF, which has a larger search area and can deal with more severe
occlusions, cannot handle full occlusion (i.e., the Lemming sequence). However, our tracker, which is
constrained by the spatial anisotropic regularization term during training, can effectively deal with
full and transient occlusion.

In Figure 3b, we selected two representative sequences where the target region is blurred. In the
Couple sequence, the target region is blurred because of the motion of camera. In the Jumping
sequence, the target region is blurred because of the fast motion of target. The CSK and DSST worked
well in the beginning frames of Couple sequence but failed later. Compared with the CSK and DSST,

http://www.hamedkiani.com/bacf.html
http://www.hamedkiani.com/bacf.html
http://www.cvl.isy.liu.se/research/objrec/visualtracking/regvistrack/index.html
http://www.cvl.isy.liu.se/research/objrec/visualtracking/regvistrack/index.html
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the proposed CSSAR tracker, which allows for a larger search region than CSK and DSST due to
its consistent sampling strategy, performed well in these two scene-types. The TLD tracker can
redetect the target after tracking failure, but it poorly handles situations when targets undergo both
deformation and abrupt motion. Struck is susceptible to abrupt motion because of the sampling
strategy. Additionally, BACF demonstrated better results than our CSSAR in the Couple sequence
where the target is not only blurred, but the background is also cluttered. BACF exploits all background
patches as negative examples for learning a filter, which can improve its ability to distinguish the target
from background clutter.
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Figure 3c shows that the proposed tracker handles background clutter well. In this figure,
we also exhibited two other representative sequences: the Soccer and Liquor sequences. In the
Soccer sequence, the background near the target has the similar colors to the target. In the Liquor
sequence, the background near the target has similar texture features to the target. The proposed
CSSAR tracker gained state-of-the-art results. It uses a consistent sampling strategy where every
training sample has its own weight map. The weight map effectively penalizes the background region
by assigning it higher weights and increases the discriminative power of the tracker. BACF also
gained good results in the two sequences. It exploits real background patches, together with the
target patch, to learn the tracked target instead of shifted patches, which can effectively improve the
differences between positive and negative samples. CSK and DSST use cyclical shifts to obtain the
training samples, which fails to capture the true image content because periodic assumption leads to a
limited set of negative training samples. Additionally, this sampling strategy results in imbalances
between foreground information and background information when the background features are
similar to the target features and close to the target area. Other trackers, i.e., TLD, MIL, and OAB,
are susceptible to background clutter because of their random sample strategy. Additionally, SRDCF
also demonstrated excellent performance in these two types of scene. It penalizes the correlation
filter coefficients corresponding to background area by a spatial regularization component, which
significantly mitigates the emphasis on background information in the learned filter and makes the
model more discriminative in distinguishing the target from background clutter.

In addition, we compared the center location error frame-by-frame for the 6 sequences in Figure 4,
which showed that our tracker is able to track targets stably and accurately. In particular, on the
Soccer and Liquor sequences, our tracker drifted slightly in the 101–105th and 1034–1040th frames
respectively due to severe occlusion or fast in-plane rotation, but it returned to accurate tracking of
the targets shortly after. This is because the tracker is constrained by space anisotropic regularization,
which saves color information on the target. Table 1 reports average entry location errors for each
compared tracker for the 6 sequences. In 3 of the 6 sequences (the Lemming, Jumping, and Soccer
sequences), our approach achieved the best results. In two of the remaining three sequences (the
Liquor and Tiger2 sequences), our approach obtained the second-best results and were very close to
the best ones. Generally, our method performed well against existing trackers.
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Table 1. Comparison of results in terms of average entry location errors (in pixels). In descending
order, the best three estimates are marked in red, blue, and green fonts.

Sequences DFT TLD DSST CSK SRDCF OAB Struck MIL CXT VTD BACF Ours

Lemming 77.75 15.74 81.89 114.2 134.5 18.05 37.75 12.06 61.39 79.22 9.170 8.130
Tiger2 12.22 73.16 41.45 59.56 11.62 252.7 21.64 27.17 41.44 40.88 8.660 9.220
Couple 108.6 2.540 125.2 144.6 3.970 57.62 11.33 34.53 41.76 104.3 4.110 5.140

Jumping 67.08 5.940 125.5 85.97 4.470 46.35 6.550 9.990 9.990 41.39 4.830 3.320
Soccer 139.5 136.2 20.25 70.51 10.83 127.5 71.36 77.85 89.22 23.56 10.28 7.910
Liquor 221.1 55.95 98.53 160.6 4.730 71.07 90.99 141.9 131.8 60.17 9.010 7.210

Average 104.4 48.26 82.12 105.9 28.35 95.55 39.94 50.58 62.60 58.25 7.677 6.822

4.3. Quantitative Evaluation

We applied One-Pass Evaluation (OPE), which is a traditional evaluation method used in the
OTB. Two criteria, namely the Center Location Error (CLE) and Average Overlap Rate, which is an
overlap score from the Pascal VOC overlap ratio (VOR), were employed for quantitative evaluations.
The CLE is a widely used measure for evaluating tracking performance. CLE calculates the distance
between the center coordinates of the bounding box and the ground-truth. Precision is defined as the
percentage of the CLE results below a defined threshold. In practice, the threshold is set to 20 (pixels)
to calculate the precision rate of OPE. VOR is defined by area

(
Be ∩ Bg

)
/area

(
Be ∪ Bg

)
, where Be is

the estimated bounding box and Bg is the ground-truth bounding box. In testing we used the area
under the curve (AUC) to calculate the success rate of OPE.

In Figure 5, the quantitative evaluation results of the proposed tracker and the 11 competing
trackers are demonstrated for 51 challenging OTB scenarios. It can be seen that our tracker performed
favorably against the 11 state-of-the-art methods (our tracker gains 86.2% in CLE and 64.0% in VOR).
Specifically, compared with the second best algorithm, BACF, our tracker was 1.7% (in CLE) and
0.3% (in VOR) higher. The third best tracker, SRDCF, was 2.4% (in CLE) and 1.4% (in VOR) lower
than our tracker. Additionally, we specifically describe how our proposed approach outperforms the
other trackers in three challenging scenarios (occlusion, background clutter, and motion blur) in detail.
In Figure 6, we selected 29 OTB sequences for demonstrating the performance of our algorithm in
dealing with the occlusion problem. In these sequences, the targets undergo partial or short-term total
occlusion. In this test, the performance of our tracker was higher than the other 11 trackers (our tracker
is 87.4% in CLE and 64.4% in VOR), which demonstrates that the space anisotropic regular constraints
based on occlusion detection are effective in alleviating occlusion. BACF effectively uses background
information to improve discrimination between positive and negative samples, which also can solve
slight occlusion. However, when severe occlusion occurs, it may fail to track the target. In Figure 7,
there are a total of 12 sequences used for verifying the performance of our tracker in motion blur scenes.
Figure 7 shows that our algorithm achieved almost the same excellent performance as SRDCF (our
tracker gets CLE scores of 79.2% and VOR scores of 60.8%). Figure 8 reports the results of the 12 trackers
in background clutter scenes. There are total 21 sequences in which the targets suffer background clutter.
As shown in Figure 8, BACF gained the best results (83.3% in CLE and 61.9% in VOR), benefitting
from reliable negative samples. These negative samples are collected from real background patches,
which can effectively improve the tracker’s robustness when background clutter occurs. Our algorithm
achieved the second best performance (81.8% in CLE and 59.9% in VOR) and is better than SRDCF (our
tracker was 1.5% higher than SRDCF in CLE and 1.2% better than SRDCF in VOR).



Sensors 2017, 17, 2889 13 of 16
Sensors 2017, 17, 2889  13 of 16 

 

(a) (b)

Figure 5. (a) reports the average distance precision score at 20 pixels for each method and (b) reports 
the success rate score calculated by the AUC on OTB which consists of 51 videos. 

(a) (b)

Figure 6. (a,b) respectively report precision and success plots on some representative sequences 
where the targets are partially or fully occluded. 

(a) (b)

Figure 7. (a,b) respectively report precision and success plots on some representative sequences 
where the target region is blurred due to the motion of target or camera. 

Figure 5. (a) reports the average distance precision score at 20 pixels for each method and (b) reports
the success rate score calculated by the AUC on OTB which consists of 51 videos.

Sensors 2017, 17, 2889  13 of 16 

 

(a) (b)

Figure 5. (a) reports the average distance precision score at 20 pixels for each method and (b) reports 
the success rate score calculated by the AUC on OTB which consists of 51 videos. 

(a) (b)

Figure 6. (a,b) respectively report precision and success plots on some representative sequences 
where the targets are partially or fully occluded. 

(a) (b)

Figure 7. (a,b) respectively report precision and success plots on some representative sequences 
where the target region is blurred due to the motion of target or camera. 

Figure 6. (a,b) respectively report precision and success plots on some representative sequences where
the targets are partially or fully occluded.

Sensors 2017, 17, 2889  13 of 16 

 

(a) (b)

Figure 5. (a) reports the average distance precision score at 20 pixels for each method and (b) reports 
the success rate score calculated by the AUC on OTB which consists of 51 videos. 

(a) (b)

Figure 6. (a,b) respectively report precision and success plots on some representative sequences 
where the targets are partially or fully occluded. 

(a) (b)

Figure 7. (a,b) respectively report precision and success plots on some representative sequences 
where the target region is blurred due to the motion of target or camera. 

Figure 7. (a,b) respectively report precision and success plots on some representative sequences where
the target region is blurred due to the motion of target or camera.



Sensors 2017, 17, 2889 14 of 16

Sensors 2017, 17, 2889  14 of 16 

 

(a) (b)

Figure 8. (a,b) respectively report precision and success plots on some representative sequences 
where the background near the target has the similar colors or textures to the target. 

5. Conclusions 

This paper presented a novel correlation filter-based online tracking algorithm. On one hand, a 
spatially- and temporally-consistent sampling strategy was constructed to alleviate redundancies in 
training samples caused by cyclical shifts and eliminate the inconsistencies between training 
samples and detection samples. On the other hand, an anisotropic regular constraint was introduced 
to account for occlusion. Based on these two strategies, our method can simultaneously and 
effectively deal with large search regions and severe occlusion. Qualitative and quantitative 
experimental results show that our approach outperforms many state-of-the-art methods. 

Acknowledgments: This work was supported by the Major Science Instrument Program of the National 
Natural Science Foundation of China under Grant 61527802, and the General Program of the National Natural 
Science Foundation of China under Grants 61371132 and 61471043. 

Author Contributions: Guokai Shi and Tingfa Xu conceived and designed the algorithm and the experiments. 
Guokai Shi was responsible for most of the implementation of the algorithms. Jie Guo, Jiqiang Luo, Yuankun Li, 
and Guokai Shi analyzed the data. Jie Guo provided suggestions for the proposed method and its evaluation, 
and assisted in the preparation of the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 
2003, 25, 564–575. 

2. Ross, D.A.; Lim, J.; Lin, R.S.; Yang, M.H. Incremental learning for robust visual tracking. Int. J. Comput. Vis. 
2008, 77, 125–141. 

3. Adam, A.; Rivlin, E.; Shimshoni, I. Robust fragments-based tracking using the integral histogram. In 
Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 
New York, NY, USA, 17–22 June 2006; pp. 798–805. 

4. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Robust visual tracking via multi-task sparse learning. In 
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, 
USA, 16–21 June 2012; pp. 2042–2049. 

5. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Robust visual tracking via structured multi-task sparse learning. 
Int. J. Comput. Vis. 2013, 101, 367–383. 

6. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Low-Rank Sparse Learning for Robust Visual Tracking; Springer: 
Berlin/Heidelberg, Germany, 2012; pp. 470–484. 

7. Zhang, T.; Ghanem, B.; Liu, S.; Xu, C.; Ahuja, N. Robust visual tracking via exclusive context modeling. 
IEEE Trans. Cybern. 2015, 46, 51–63. 

Figure 8. (a,b) respectively report precision and success plots on some representative sequences where
the background near the target has the similar colors or textures to the target.

5. Conclusions

This paper presented a novel correlation filter-based online tracking algorithm. On one hand,
a spatially- and temporally-consistent sampling strategy was constructed to alleviate redundancies in
training samples caused by cyclical shifts and eliminate the inconsistencies between training samples
and detection samples. On the other hand, an anisotropic regular constraint was introduced to account
for occlusion. Based on these two strategies, our method can simultaneously and effectively deal with
large search regions and severe occlusion. Qualitative and quantitative experimental results show that
our approach outperforms many state-of-the-art methods.

Acknowledgments: This work was supported by the Major Science Instrument Program of the National Natural
Science Foundation of China under Grant 61527802, and the General Program of the National Natural Science
Foundation of China under Grants 61371132 and 61471043.

Author Contributions: Guokai Shi and Tingfa Xu conceived and designed the algorithm and the experiments.
Guokai Shi was responsible for most of the implementation of the algorithms. Jie Guo, Jiqiang Luo, Yuankun Li
and Guokai Shi analyzed the data. Jie Guo provided suggestions for the proposed method and its evaluation,
and assisted in the preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Comaniciu, D.; Ramesh, V.; Meer, P. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2003,
25, 564–575. [CrossRef]

2. Ross, D.A.; Lim, J.; Lin, R.S.; Yang, M.H. Incremental learning for robust visual tracking. Int. J. Comput. Vis.
2008, 77, 125–141. [CrossRef]

3. Adam, A.; Rivlin, E.; Shimshoni, I. Robust fragments-based tracking using the integral histogram.
In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
New York, NY, USA, 17–22 June 2006; pp. 798–805.

4. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Robust visual tracking via multi-task sparse learning. In Proceedings
of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
16–21 June 2012; pp. 2042–2049.

5. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Robust visual tracking via structured multi-task sparse learning.
Int. J. Comput. Vis. 2013, 101, 367–383. [CrossRef]

6. Zhang, T.; Ghanem, B.; Liu, S.; Ahuja, N. Low-Rank Sparse Learning for Robust Visual Tracking; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 470–484.

7. Zhang, T.; Ghanem, B.; Liu, S.; Xu, C.; Ahuja, N. Robust visual tracking via exclusive context modeling.
IEEE Trans. Cybern. 2015, 46, 51–63. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org/10.1007/s11263-007-0075-7
http://dx.doi.org/10.1007/s11263-012-0582-z
http://dx.doi.org/10.1109/TCYB.2015.2393307
http://www.ncbi.nlm.nih.gov/pubmed/25680224


Sensors 2017, 17, 2889 15 of 16

8. Zhang, T.; Ghanem, B.; Xu, C.; Ahuja, N. Object tracking by occlusion detection via structured sparse learning.
In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Portland, OR, USA, 23–28 June 2013; pp. 1033–1040.

9. Zhang, T.; Liu, S.; Xu, C.; Yan, S.; Ghanem, B.; Ahuja, N.; Yang, M.H. Structural sparse tracking.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 150–158.

10. Babenko, B.; Yang, M.H.; Belongie, S. Visual tracking with online multiple instance learning. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009;
Volume 33, pp. 983–990.

11. Grabner, H.; Grabner, M.; Bischof, H. Real-time tracking via on-line boosting. In Proceedings of the British
Machine Vision Conference 2006, Edinburgh, UK, 4–7 September 2006; pp. 47–56.

12. Avidan, S. Support vector tracking. In Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume181,
pp. I-184–I-191.

13. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012,
34, 1409–1422. [CrossRef] [PubMed]

14. Saffari, A.; Leistner, C.; Santner, J.; Godec, M. On-line random forests. In Proceedings of the 2009
IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan,
27 September–4 October 2009; pp. 1393–1400.

15. Gao, J.; Ling, H.; Hu, W.; Xing, J. Transfer learning based visual tracking with gaussian processes
regression. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland,
6–12 September 2014; Volume 8691, pp. 188–203.

16. Zhang, J.; Ma, S.; Sclaroff, S. Meem: Robust tracking via multiple experts using entropy
minimization. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland,
6–12 September 2014; Volume 8694, pp. 188–203.

17. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters.
In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 2544–2550.

18. Henriques, J.F.; Rui, C.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection
with kernels. In Proceedings of the 12th European Conference on Computer Vision, Florence, Italy,
7–13 October 2012; Volume 7575, pp. 702–715.

19. Henriques, J.F.; Rui, C.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef] [PubMed]

20. Liu, T.; Wang, G.; Yang, Q. Real-time part-based visual tracking via adaptive correlation filters. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 4902–4912.

21. Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Accurate scale estimation for robust visual tracking.
In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September 2014.

22. Ma, C.; Yang, X.; Zhang, C.; Yang, M.H. Long-term correlation tracking. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 5388–5396.

23. Bertinetto, L.; Valmadre, J.; Golodetz, S.; Miksik, O.; Torr, P.H.S. Staple: Complementary learners for real-time
tracking. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; Volume 38, pp. 1401–1409.

24. Possegger, H.; Mauthner, T.; Bischof, H. In defense of color-based model-free tracking. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; pp. 2113–2120.

25. Gundogdu, E.; Alatan, A.A. Good features to correlate for visual tracking. arXiv, 2017.
26. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous

convolution operators for visual tracking. In Proceedings of the 14th European Conference on Computer
Vision, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9909, pp. 472–488.

http://dx.doi.org/10.1109/TPAMI.2011.239
http://www.ncbi.nlm.nih.gov/pubmed/22156098
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263


Sensors 2017, 17, 2889 16 of 16

27. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient convolution operators for tracking.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 6638–6646.

28. Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning background-aware correlation filters for visual tracking.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 1135–1143.
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