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Neuroimaging biomarkers that predict the edema after acute stroke may help clinicians
provide targeted therapies and minimize the risk of secondary injury. In this study,
we applied pretherapy MRI radiomics features from infarction and cerebrospinal fluid
(CSF) to predict edema after acute ischemic stroke. MRI data were obtained from a
prospective, endovascular thrombectomy (EVT) cohort that included 389 patients with
acute stroke from two centers (dataset 1, n = 292; dataset 2, n = 97), respectively.
Patients were divided into edema group (brain swelling and midline shift) and non-
edema group according to CT within 36 h after therapy. We extracted the imaging
features of infarct area on diffusion weighted imaging (DWI) (abbreviated as DWI), CSF
on fluid-attenuated inversion recovery (FLAIR) (CSFFLAIR) and CSF on DWI (CSFDWI),
and selected the optimum features associated with edema for developing models in
two forms of feature sets (DWI + CSFFLAIR and DWI + CSFDWI) respectively. We
developed seven ML models based on dataset 1 and identified the most stable
model. External validations (dataset 2) of the developed stable model were performed.
Prediction model performance was assessed using the area under the receiver operating
characteristic curve (AUC). The Bayes model based on DWI + CSFFLAIR and the
RF model based on DWI + CSFDWI had the best performances (DWI + CSFFLAIR:
AUC, 0.86; accuracy, 0.85; recall, 0.88; DWI + CSFDWI: AUC, 0.86; accuracy, 0.84;
recall, 0.84) and the most stability (RSD% in DWI + CSFFLAIR AUC: 0.07, RSD% in
DWI + CSFDWI AUC: 0.09), respectively. External validation showed that the AUC of
the Bayes model based on DWI + CSFFLAIR was 0.84 with accuracy of 0.77 and area
under precision-recall curve (auPRC) of 0.75, and the AUC of the RF model based
on DWI + CSFDWI was 0.83 with accuracy of 0.81 and the auPRC of 0.76. The MRI
radiomics features from infarction and CSF may offer an effective imaging biomarker
for predicting edema.
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INTRODUCTION

Stroke is the second leading cause of death and third leading
cause of disability in adults worldwide (Campbell and Khatri,
2020; Powers, 2020). Cerebral edema, a detrimental complication
of stroke, is associated with death and neurologic deterioration
after hemispheric infarction (Silver et al., 1984; Bar and Biller,
2018). Cerebral edema does not appear in the lacunar ischemic
stroke subtype, even if they have multiple clinically associated
silent lacunes, but, on the contrary, it tends to appear in acute
non-lacunar cerebral infarcts (Blanco-Rojas et al., 2013). The
development of edema usually presents as abrupt mental status
worsening 2 days or more after admission. Earlier prediction
of brain swelling and of those at risk of deterioration could
guide the clinical selection of targeted therapies to minimize
the risk of edema, cerebral herniation and secondary injury in
stroke patients, and the selection of candidates for aggressive
surgical procedures.

Currently, the radiographic assessment of edema is mostly
based on standard CT findings (Fabritius et al., 2017; Muscari
et al., 2019; Dhar et al., 2020; Foroushani et al., 2020; Lietke
et al., 2020). This approach is insensitive to lesion or edema
volume measurements, especially stroke within 12–24 h. In
addition, edema was primarily seen in brain regions that flow
pathways for cerebrospinal fluid (CSF)-interstitial fluid (ISF),
and CSF is thought to be the primary source of early edema
fluid after ischemic stroke (Lempriere, 2020; Mestre et al., 2020).
Therefore, previous studies have shown that a reduction in CSF
volume (1CSF) from baseline to 24 h CT is a promising early
biomarker for worse neurologic outcome (Dhar, 2020; Dhar
et al., 2020). Assessing edema utilizing only a reduction in CSF
volume does not account for the influence of infarct volume
on edema. Furthermore, lesion volume (even on MRI scans)
only partially predicts the risk of herniation due to the edema
that contributes to swelling and the risk of herniation (Strbian
et al., 2013; Yoo et al., 2013). Machine learning (ML) algorithms
are able to process high dimensional input data efficiently (Heo
et al., 2020; Sirsat et al., 2020; Van Timmeren et al., 2020;
Hamann et al., 2021). Many studies have shown that ML play
an important role in stroke diagnosis, treatment and outcome
(Heo et al., 2019; Fang et al., 2020; Kamel et al., 2020; Sirsat
et al., 2020; Hamann et al., 2021). However, ML derived diffusion
weighted imaging (DWI) imaging features for predicting edema
has not been reported.

We aimed to develop and validate a stable ML model for
predicting cerebral edema using a combination of imaging
features of DWI infarct area and CSF on DWI or fluid-attenuated
inversion recovery (FLAIR). Our hypothesis was that MRI
radiomics features from infarction and CSF would improve the
detection of patients developing edema.

MATERIALS AND METHODS

Patients Selection and Clinical Data
This was a retrospectively study using a prospective cohort that
enrolled acute ischemic stroke (AIS) patients from Nanjing First

Hospital (dataset 1) and Affiliated Jiangning Hospital of Nanjing
Medical University (dataset 2) between January 2017 and January
2020. All patients provided informed consent for acute stroke
imaging. Patients with AIS included in this study if (1) the
onset of their first-ever stroke had occurred within the past
24 h, (2) MRI examinations were performed before endovascular
thrombectomy (EVT) therapy, (3) patients underwent EVT
therapy or bridging therapy (both intravenous thrombolysis
(IVT) and EVT) according to the guidelines for managing AIS,
and (4) patients underwent non-contrast CT within 36 h after
EVT therapy. Patients for whom the stroke onset time was
unknown, the final diagnosis was not stroke, or with stroke
located in the brainstem or cerebellum were excluded. To analyze
those at highest risk for edema, we excluded those with National
Institutes of Health Stroke Scale (NIHSS) < 7 scores at baseline
(Thoren et al., 2017). A total of 212 patients from dataset 1 and
60 patients from dataset 2 were included. Dataset 1 was used to
train the models and to compare the performance of the different
models so that the model which had the most stable and best
performance could be selected. Dataset 2 was preserved as an
independent external validation set. The flowchart of this study
is shown in Figure 1.

Age, sex, NIHSS score on admission, time from symptom
onset to MRI, time from symptom onset to intravenous
thrombolysis (IVT), time from symptom onset to EVT, history
of hypertension, diabetes mellitus, hyperlipidemia, and atrial
fibrillation were recorded. Cerebral edema was defined as
imaging evidence of brain swelling, and midline shift at the
septum pellucidum or pineal gland on non-contrast CT within
36 h after EVT therapy (Wu et al., 2018). The study was approved
by the local Ethics Committee of Nanjing Medical University.

Volume of Interest Segmentation
All DWI and FLAIR images of the AIS patients were evaluated
by 2 board-certified neuroradiologists (radiologist 1, 8 years
of experience in neuroradiology, radiologist 2, 10 years of
experience in neuroradiology), and patients with DWI or FLAIR
sequence with severe artifacts were excluded. Image registration
between the DWI and FLAIR images was performed using the
optimized automatic 3D registration tool in MIPAV.1 The infarct
volumes (high-intensity signal on DWI images and apparent
diffusion coefficient (ADC) < 620 × 103 mm2/s) were drawn
as DWI volumes of interest (VOI) using ITK-SNAP2 by the
aforementioned neuroradiologists (radiologist 1) and checked
by the radiologist 2 (Figure 2). The CSF region was segmented
using the segmentation module in SPM12 software based on the
FLAIR images. Statistical probability mapping was performed
on the CSF images. Then, voxels with a probability > 0.6 were
included as the final CSF region (CSFFLAIR VOI). The VOI was
then transformed into DWI space from FLAIR space using the
transform matrix calculated by registering the FLAIR image to
the DWI image (CSFDWI VOI) (Figure 2). To confirm that the
anatomical location of CSF was correct, the radiologist 2 checked

1http://mipav.cit.nih.gov
2www.itksnap.org
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FIGURE 1 | The flowchart of this study.

the location visually using ITK-SNAP software by imposing the
transformed CSF VOI on the DWI image.

Image Feature Extraction and Selection
The radiomic features from DWI VOIs, CSFFLAIR VOIs, and
CSFDWI VOIs were computed using PyRadiomics software
(version: 3.0.1).3 PyRadiomics software complied with ISBI
guidelines. The feature classes contained first-order features,
shape features, and texture features. Finally, 1,316 features were
extracted from each VOI. Before the analyses, variables with zero
variance were excluded. Then, the missing values and outlier
values were replaced by the median. Finally, the feature value
was normalized to a standard normal distribution with µ = 0
and σ = 1.

Features of DWI VOIs and CSFDWI VOIs, DWI VOIs,
and CSFFLAIR VOIs were screened separately. Considering the
redundancy of the features and to reduce model overfitting,
feature selection was performed using the enumeration method.
In our study cohort, 70 positive cases were included; thus,
the upper limit of the number of selected features should
be less than 10% of the total number of positive cases. The
minimum redundancy maximum relevance (MRMR) feature
selection method was used to obtain 4 feature subsets with
5, 10, 15, and 20 features. Each subset was used to construct
the predictive models using 7 machine learning methods (the
7 ML models were described in the “Machine Learning Model”

3https://pyradiomics.readthedocs.io/en/latest/

section), the mean AUCs of the 7 models were measured, and the
subset with the highest area under the curve (AUC) was chosen
as the final feature subset.

Machine Learning Model
The machine learning model was built from the established
optimal feature subset of the training dataset. The
hyperparameters were automatically selected by the search
method. Seven machine learning methods for edema prediction
(non-edema or edema): random forest (RF), support vector
machine with kernel (svmLinear) or radial basis function
kernel (svmRadial), Bayesian (Bayes), and k-nearest neighbor
(KNN), adaptive boosting (Adaboost), and a neural network
were constructed and compared. All training processes were
performed in R software with the caret package, and the
computation time of each ML model was approximately 5–
10 min. Nested cross-validation was carried out to train the
models with different ML methods. The outer cross-validation
used the leave group out cross-validation (LGOCV) method,
which repeatedly split the dataset 1 into 2 subsets, an analysis
subset and an assessment subset at a ratio of 7:3. The analysis
subset was used to train the model and the assessment subset was
used to validate the model, and 100 times was adopted. The inner
cross-validation used 10-fold cross-validation and was used in
the analysis subset to tune the optimized hyperparameters and
to construct the predictive model. Finally, each ML method was
used to construct 100 models, and evaluate 100 AUC values and

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2022 | Volume 14 | Article 782036

https://pyradiomics.readthedocs.io/en/latest/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-782036 February 25, 2022 Time: 16:8 # 4

Jiang et al. MRI Radiomics for Predicting Edema

FIGURE 2 | Overview of image processing with diffusion weighted imaging (DWI) and fluid attenuated inversion recovery (FLAIR) images for each patient. Infarct
regions were segmented on the DWI images, and the cerebrospinal fluid regions were segmented on the FLAIR images (CSFFLAIR). The FLAIR images were overlaid
onto the DWI images, and the cerebrospinal fluid regions on DWI images (CSFDWI) were segmented on the registered DWI images. One thousand three hundred and
sixteen features were extracted from DWI volumes of interest (VOIs), CSFFLAIR VOIs and CSFDWI VOIs, respectively.

other metrics. The relative standard deviations (RSDs) were
calculated using the following formula:

RSD% = σAUC/µAUC × 100%,

where σAUC is the standard deviation of 100 AUC values and
µAUC is the mean of the 100 AUC values. The smaller the RSD%
is, the more stable the model is.

External Validation
After the aforementioned process, a final model with comparable
performance and stability was chosen and validated in the
external validation set (Dataset 2).

Statistical Analyses
Receiver operating characteristic (ROC) curve and precision-
recall curve (PRC) were generated to evaluate the performances
of the machine learning models, and the area under the ROC
curve (AUC), the area under the PRC curve (auPRC), accuracy,
sensitivity, specificity, negative predictive value (NPV), positive
predictive value (PPV), precision and recall were calculated. All
statistical analyses for the present study were performed with R
4.0.3. All statistical tests were two-sided, with a significance level
of 0.05. The differences in performances of DWI + CSFFLAIR

model and DWI+ CSFDWI model revealed by ROC analysis and
PRC analysis were evaluated according to Delong et al. (1988).

RESULTS

Subject Classification
Of the 212 enrolled patients from dataset 1, 68 patients developed
edema on follow-up CT. Dataset 2 consisted of 60 patients in the
independent external validation set, and 22 patients developed
edema follow-up CT. There were no significant differences
in sex, age, NIHSS scores at admission, time from symptom
onset to MRI, time from symptom onset to IVT, time from
symptom onset to EVT and other clinical variables between
edema group and non-edema group both in dataset 1 and dataset
2 (P > 0.05) (Table 1).

Feature Selection
The feature subset with 15 features based on DWI + CSFFLAIR
and the feature subset with 10 features based on DWI+ CSFDWI
gained the highest mean AUC value and were assigned as the
final feature subset to establish the different predictive models
with different ML methods. The heatmaps in the cohort are
shown in Figure 3; the heatmaps include 12 DWI features and
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TABLE 1 | Baseline characteristics of the study population.

Variables Dataset 1 (Training set; n = 212) P-value Dataset 2 (Validation set; n = 60) P-value

Edema group Non-edema group Edema group Non-edema group

(n = 68) (n = 144) (n = 22) (n = 38)

Sex (male), n (%) 44 (64.71%) 83 (57.64%) 0.327 12 (54.55%) 19 (50.00%) 0.734

Age, mean (SD), year 68.24 ± 15.38 67.41 ± 11.29 0.812 70.15 ± 12.34 68.65 ± 12.37 0.654

Time from symptom to MRI, mean (SD), min 213.81 ± 66.25 204.15 ± 79.59 0.411 229.43 ± 114.95 221.38 ± 109.20 0.793

Time from symptom to IVT, mean (SD), min 189.65 ± 99.47 178.32 ± 106.27 0.436 206.63 ± 103.44 197.55 ± 107.25 0.496

Time from symptom to EVT, mean (SD), min 256.73 ± 103.59 246.11 ± 112.48 0.314 267.34 ± 112.34 250.27 ± 102.08 0.355

NIHSS at admission, mean (SD) 13.80 ± 6.14 12.11 ± 7.02 0.380 14.211 ± 6.25 13.21 ± 6.88 0.315

Diabetes mellitus, n (%) 19 (27.94%) 25 (17.36%) 0.076 5 (22.73%) 6 (15.79%) 0.503

Hypertension, n (%) 59(86.76%) 109 (75.69%) 0.064 18 (81.82%) 29 (76.32%) 0.618

Atrial fibrillation, n (%) 26 (38.24%) 39 (27.08%) 0.100 6 (27.27%) 9 (23.68%) 0.757

Hyperlipidemia, n (%) 6 (8.82%) 8 (5.56%) 0.371 2 (9.09%) 2 (5.26%) 0.971

Therapy, n (%) 0.815 0.592

EVT 38 (55.88%) 78 (54.17%) 12 (54.55%) 18 (47.37%)

IVT + EVT 30 (44.12%) 66 (45.83%) 10 (50.00%) 20 (52.63%)

NIHSS, National Institutes of Health Stroke Scale; EVT, endovascular thrombectomy; IVT, intravenous thrombolysis.

FIGURE 3 | Heatmaps of the selected 15 features (A) and 10 features (B).

3 CSFFLAIR features in DWI + CSFFLAIR features (Figure 3A)
and 7 DWI features and 3 CSFDWI features in DWI + CSFDWI
features (Figure 3B).

Performance and Stability of the
7 Machine Learning Models Based on
DWI + CSFFLAIR and DWI + CSFDWI
In the training set, the 7 machine learning methods used the
selected features to train the predictive models using nested cross-
validation. The specified values are shown in Table 2. The Bayes
model based on DWI+CSFFLAIR had the highest AUC value and
accuracy (AUC: 0.86; accuracy: 0.85; precision: 0.80; recall: 0.88),
and the most stability (RSD% in AUC: 0.07, RSD% in accuracy:
0.05) of all the models (Figure 4A). The RF model based on
DWI + CSFDWI had the highest AUC value and accuracy (AUC:
0.86; accuracy: 0.84; precision: 0.79; recall: 0.84) and the most
stability (RSD% in AUC: 0.09, RSD% in accuracy: 0.08) of all
the models (Figure 4B). After comparing the performance and
stability, the Bayes model based on DWI + CSFFLAIR and the
RF model based on DWI + CSFDWI were chosen as the final
models, respectively.

Independent External Validation
The final models were validated in an independent external
validation set. The ROC curves and PRCs of the validation set
are shown in Figure 5. The AUC of the Bayes model based on
DWI + CSFFLAIR was 0.84, and the accuracy, sensitivity and
specificity were 0.77, 087, and 0.78, respectively. The AUC of the
RF model based on DWI + CSFDWI was 0.83, and the accuracy,
sensitivity and specificity were 0.81, 0.81, and 0.74, respectively.
The auPRC of the Bayes model based on DWI + CSFFLAIR was
0.75 with precision of 0.87 and recall of 0.75; the auPRC of the RF
model based on DWI + CSFDWI was 0.76 with precision of 0.81
and recall of 0.72. The performances of DWI + CSFFLAIR model
and DWI + CSFDWI model showed no significantly differences
(P > 0.05). The parameters are displayed in Table 3.

DISCUSSION

This study showed that an automated system developed using
ML methods can be useful in predicting edema after acute
stroke. We found that the feature subset with 15 features based
on DWI + CSFFLAIR and the feature subset with 10 features
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TABLE 2 | The performance metrics of 7 models built with 7machine learning methods.

Model ML methods AUC Accuracy Sensitivity Specificity NPV PPV Precision Recall

DWI + CSFFLAIR Adaboost 0.81 0.86 0.82 0.83 0.91 0.81 0.82 0.88

KNN 0.72 0.76 0.82 0.80 0.91 0.70 0.82 0.73

Bayes 0.86 0.85 0.80 0.85 0.91 0.83 0.80 0.88

NNET 0.80 0.85 0.84 0.84 0.92 0.80 0.84 0.86

RF 0.78 0.85 0.86 0.85 0.93 0.78 0.86 0.85

svmRadial 0.72 0.76 0.86 0.82 0.83 0.71 0.70 0.79

svmLinear 0.73 0.82 0.86 0.82 0.92 0.73 0.86 0.80

DWI + CSFDWI Adaboost 0.75 0.80 0.86 0.82 0.93 0.70 0.86 0.77

KNN 0.76 0.84 0.76 0.79 0.88 0.75 0.76 0.80

Bayes 0.84 0.83 0.87 0.81 0.87 0.75 0.76 0.80

NNET 0.78 0.83 0.74 0.81 0.87 0.78 0.74 0.88

RF 0.86 0.84 0.85 0.86 0.90 0.80 0.79 0.84

svmRadial 0.78 0.81 0.71 0.77 0.87 0.77 0.71 0.87

svmLinear 0.79 0.82 0.79 0.81 0.87 0.79 0.71 0.87

KNN, k-nearest neighbor; NNET, neural network; RF, random forest; AUC, area under curve; NPV, negative predictive value; PPV, positive predictive value.

based on DWI + CSFDWI were associated with edema. The
Bayes model based on DWI + CSFFLAIR and the RF model
based on DWI + CSFDWI had the highest performance and
the most stability, respectively. Moreover, both models showed
the same good generalization ability in external verification.
Thus, our findings suggested that the ML approaches based on
MRI radiomics features from infarction and CSF are valid and
capable of being used to predict the edema after acute stroke
patients in the clinic.

The cerebral edema after stroke is associated with poor
prognosis and high mortality, and decreased consciousness,
nausea or vomiting are the main clinical factors associated
(Arboix et al., 2015). It is very important to early and
accurate predict the risk of cerebral edema for improving
the outcome. Our methods are different from previous image
processing studies of edema, which have largely focused on
CSF segmentation using CT. Chen et al. (2016) developed and
validated an accurate automated approach to segment CSF on
serial CT scans via integration of RF-based ML with geodesic
active contour segmentation. Dhar et al. (2018) created an ML
algorithm capable of segmenting and measuring CSF volume
from serial CT scans of stroke patients to predict edema. This
study aimed to predict edema by taking advantage of the
radiomics features of CSF and infarct area on MRI scans. Our
approach shares some similarity to previous approaches that
automatically segment CSF (Chen et al., 2016; Dhar et al., 2018)
using the ML approach. CSF segmentation in CT scans of stroke
patients is a more complex technique than finding an optimal
threshold (Chen et al., 2016). Intraclass correlation coefficients
of 0.91 were observed for CSF segmentation accuracy in FLAIR
images (Meier et al., 2018). Likewise, we also adopted automatic
CSF segmentation in FLAIR scans in our study. Because of the
low resolution of DWI scans, we did not directly segment the CSF,
but registered the FLAIR images to DWI images and transformed
the CSFFLAIR space into DWI space using the transform matrix.

In this study, we focused on edema prediction rather than
segmentation of CSF. 1CSF has been suggested to be closely

related to the prediction of malignant edema. Some research
has shown that larger parenchymal hypoattenuation on CT is a
reliable early predictor for malignant edema (Wu et al., 2018),
and the signs of acute infarct on CT scans were independent
predictors for all edema types (Kamel et al., 2020). Foroushani
et al. (2020) found that incorporating quantitative CT-based
imaging features (1CSF, infarct-related hypodensity volume,
etc.) from baseline and 24 h CT enhanced the identification of
patients with malignant edema. It is known that CT has limited
ability to measure the size of early infarcts and MRI (DWI) has
higher sensitivity for identifying acute ischemic lesions (Dibiasio
et al., 2019). Therefore, we used a combination of CSF and infarct
area on MRI scans to predict edema. However, it was difficult to
qualify 1CSF on MRI scans because of few patients had MRI
scans both before and after therapy. Our study only predicted
edema based on CSF and infarct area before therapy, which is
also one of the limitations of this study.

In our study, we found that the feature subset with 15 features
based on DWI + CSFFLAIR and the feature subset with 10
features based on DWI + CSFDWI were associated with edema,
which including shape features, first order features and texture
features. Shape features and first order features can indirectly
reflect the infarct volume.

Texture features refer to the presentation of textures exhibited
by special defined gray level matrices and each type of gray level
matrix reflects certain aspects of the image. We found that both
DWI and CSF texture features were closely related to edema,
and DWI texture features contributed highly to our predictive
model, including 9 DWI texture features of DWI + CSFFLAIR
model [4 gray level size zone matrix (GLSZM), 3 gray level
dependence matrix (GLDM), 2 gray level run length matrix
(GLRLM)] and 7 DWI texture features of DWI + CSFDWI
model (4 GLSZM, 2 GLRLM, 1 GLDM). The texture features
indicated that infarction and CSF images in patients with non-
edema had more homogeneity and lower contrast adjacent voxel
relationships than those of edema, which cannot judgment by
the naked eye. Further, we established and validated a stable ML
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FIGURE 4 | Accuracy and AUC vs. RSD of the 7 models, (A) models based on DWI + CSFFLAIR features; (B) models based on DWI + CSFDWI features.

model based on these features to predict edema after EVT in
acute stroke patients. The 7 ML models in our study have been
proven to have good prediction or classification performance
in the medical imaging (Erickson et al., 2017; Kim et al.,
2020; Shukla et al., 2020). We demonstrated that the Bayes
model based on DWI + CSFFLAIR and the RF model based
on DWI + CSFDWI had the highest AUC value and the most
stability, respectively. RF analysis can automatically perform
the task of feature selection and can provide a reliable feature
importance estimate (Hashimoto et al., 2020; Hanko et al., 2021).
Bayesian classification is a probabilistic approach to learning and

inference based on a different view of what it means to learn
from data; this form of classification allows for both modeling
of uncertainty and updating or learning repeatedly as new data
are made available (Hughes et al., 2017; Hackenberger, 2019). Du
et al. (2020) found that the AUC-ROC value of the nomogram
was 0.805 based on age, baseline NIHSS, blood glucose level,
collateral circulation and recanalization in stroke patients treated
EVT. Compared to previous studies on prediction of edema,
ours has the following advantages: the same high prediction
performances can be obtained only based on pretherapy DWI
images, and clinicians could quickly evaluate the risk of edema
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FIGURE 5 | The ROC curves (A) and the precision-recall curves (PRCs) (B) of the Bayes model based on DWI + CSFFLAIR features and the RF model based on
DWI + CSFDWI features from external validation for predicting edema after acute stroke.

TABLE 3 | The performance metrics of external validation.

Model ML methods AUC Accuracy Sensitivity Specificity NPV PPV Precision Recall

DWI + CSFFLAIR Bayes 0.84 0.77 0.87 0.78 0.87 0.78 0.87 0.75

DWI + CSFDWI RF 0.83 0.81 0.81 0.74 0.81 0.75 0.81 0.72

P-value 0.879 0.483 0.811 0.872 0.823 0.848 0.771 0.763

DWI, diffusion weighted imaging; FLAIR, fluid attenuated inversion recovery; AUC, area under curve; NPV, negative predictive value; PPV, positive predictive value.

before EVT therapy for stroke patients. After we chosen the
final model, we validated the model in an independent external
validation set. The AUCs of the model were similar to those of
the training set. In addition, we compared the performance of
the ML model with different modalities (DWI + CSFDWI vs.
DWI + CSFFLAIR), and the results showed that the AUCs and
auPRCs did not differ significantly between the two models. The
results showed that although the resolution of DWI was low, the
prediction performance of CSFDWI segmentation was the same as
that of CSFFLAIR segmentation.

The present study has several limitations. Firstly, the sample
size was relatively small, and the non-edema and edema data was
unbalanced. However, it should be noted that the outlier of the
median was used to obtain balanced data and reliable results.
Secondly, 1CSF and clinical data were not included for edema
prediction. Thirdly, a large number of patients with accurate
CSFFLAIR segmentation and inaccurate CSFDWI segmentation
were excluded. The segmentation method of CSFDWI still needs
further research to improve the accuracy. In addition, the VOI
segmentation in our study were done manually which limits the
broad scalable implementation of this approach. In fact, we have
been studying the automatic segmentation approach for DWI
lesions of AIS, and also have made some progress (Zhu et al.,
2021). In the next study, we will attempt to predict the edema
using an automatically segmentation approach to evaluate its
wide clinical applicability. Finally, we recruited subjects from a
large stroke cohort but had to limit our analysis to those patients
who had EVT therapy. This likely biased our sample to patients

with more severe strokes symptoms with a higher incidence of
edema than a truly unselected cohort.

CONCLUSION

In conclusion, we established and validated an automated ML
system based on MRI radiomics features from infarction and
CSF to predict edema after EVT for AIS. The MRI radiomics
features from infarction and CSF may offer an affective imaging
biomarker for predicting edema.
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