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Ambient fine particulate air pollution (PM2.5) is associated with 
a range of adverse cardiovascular and respiratory outcomes and 
is an important contributor to global disease burden.1 However, 
surprisingly little is known about the specific components/
sources of PM2.5 that are most relevant to health and exposures 
are traditionally assigned as particle mass concentrations.

Of the potential candidates, metal components in PM2.5 are 
thought to play an important role in determining overall PM2.5 
health effects owing to their ability to cause oxidative stress 
in biological systems.2,3 However, few models are available to 
estimate spatial variations in PM2.5 metal concentrations for 

use in population-based studies.4 Moreover, separating the 
individual health effects of specific metal components remains 
a challenge owing to strong correlations between elements.4 
An alternative approach is to examine the combined impact 
of multiple elements based on a shared mechanisms of action: 
oxidative stress.

Lakey et al5 recently developed a kinetic multilayer model 
of surface and bulk chemistry in the lung epithelial lining fluid 
(KM-SUB-ELF). This model can be used to estimate reactive 
oxygen species (ROS) concentrations (nM; i.e., OH, HO2, O2

−, 
H2O2) generated in the human respiratory tract in response to 
inhaled pollutants including Cu and Fe in PM2.5. Briefly, the 
KM-SUB-ELF model estimates ROS generation in the lung epi-
thelial lining fluid by resolving mass transport and chemical 
reactions between pollutants and antioxidants/surfactants in 
the lung.5 This model provides chemical baseline estimates of 
exogenous ROS concentrations generated in response to Fe and 
Cu in PM2.5 but does not resolve endogenous ROS generated 
via biological interactions and/or responses of the immune sys-
tem. Nevertheless, this model may provide a useful means of 
estimating the combined health impacts of Fe and Cu in PM2.5.

aDepartment of Epidemiology, Biostatistics and Occupational Health, McGill 
University, Montreal, Quebec, Canada; bAir Health Science Division, Health 
Canada, Ottawa, Ontario, Canada; cDepartment of Civil Engineering, University of 
Toronto, Toronto, Ontario, Canada; and dDepartment of Chemistry, University of 
California Irvine, Irvine, California

Sponsorships or competing interests that may be relevant to content are 
disclosed at the end of the article.

  Supplemental digital content is available through direct URL citations in 
the HTML and PDF versions of this article (www.environepidem.com).

*Corresponding author. Address: Faculty of Medicine, Department of 
Epidemiology, Biostatistics, and Occupational Health, McGill University 1020 
Pins Avenue, West Montreal, QC H3A 1A2, Canada. Tel.: (514) 398-1584. E-mail 
address: scott.weichenthal@mcgill.ca (S. Weichenthal).

Spatial variations in the estimated production 
of reactive oxygen species in the epithelial lung 
lining fluid by iron and copper in fine particulate 
air pollution
Scott Weichenthala,b*, Maryam Shekarrizfardc, Ryan Kulkab, Pascale S. J. Lakeyd, Kenan Al-Rijlehc,  
Sabreena Anowarc, Manabu Shiraiwad, Marianne Hatzopoulouc

Written work prepared by employees of the Federal Government as part of their 
official duties is, under the U.S. Copyright Act, a “work of the United States 
Government” for which copyright protection under Title 17 of the United States 
Code is not available. As such, copyright does not extend to the contributions of 
employees of the Federal Government.

Environmental Epidemiology (2018) 2:e020

Received: 8 January 2018; Accepted 10 May 2018

Published online 21 June 2018

DOI: 10.1097/EE9.0000000000000020

Background: Certain metals may play an important role in the adverse health effects of fine particulate air pollution (PM2.5), but 
few models are available to predict spatial variations in these pollutants.
Methods: We conducted large-scale air monitoring campaigns during summer 2016 and winter 2017 in Toronto, Canada, to 
characterize spatial variations in iron (Fe) and copper (Cu) concentrations in PM2.5. Information on Fe and Cu concentrations at each 
site was paired with a kinetic multilayer model of surface and bulk chemistry in the lung epithelial lining fluid to estimate the possible 
impact of these metals on the production of reactive oxygen species (ROS) in exposed populations. Land use data around each 
monitoring site were used to develop predictive models for Fe, Cu, and their estimated combined impact on ROS generation.
Results: Spatial variations in Fe, Cu, and ROS greatly exceeded that of PM2.5 mass concentrations. In addition, Fe, Cu, and esti-
mated ROS concentrations were 15, 18, and 9 times higher during summer compared with winter with little difference observed for 
PM2.5. In leave-one-out cross-validation procedures, final multivariable models explained the majority of spatial variations in annual 
mean Fe (R2 = 0.68), Cu (R2 =0.79), and ROS (R2 = 0.65).
Conclusions: The combined use of PM2.5 metals data with a kinetic multilayer model of surface and bulk chemistry in the human 
lung epithelial lining fluid may offer a novel means of estimating PM2.5 health impacts beyond simple mass concentrations.
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What this study adds
Certain metal components in PM2.5 are thought to contribute 
to air pollution health effects. However, few models are avail-
able to estimate exposures for individual metals or their impact 
on important biological mechanisms such as oxidative stress. In 
this study, we combined data for PM2.5 iron and copper with a 
kinetic multilayer model of surface and bulk chemistry in the 
lung epithelial lining fluid. In doing so, we estimated the impact 
that these metals may have on the production of reactive oxy-
gen species in exposed populations. The models presented offer 
a novel means of estimating PM2.5 health impacts in popula-
tion-based studies.
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In this study, our goal was to characterize possible spatial 
variations in the combined impact of Fe and Cu in PM2.5 on ROS 
production in exposed populations by combining spatial moni-
toring data with the KM-SUM-ELF model. Land use regression 
models were developed to predict spatial variations in ROS, Fe, 
and Cu in Toronto, Canada, for use in future cohort studies.

Methods

Spatial monitoring study

Two large-scale PM2.5 monitoring campaigns were conducted 
across Toronto, Canada, during August/September 2016 (sum-
mer) and February/March 2017 (winter). During summer sam-
pling, daily mean temperatures ranged from 18.3°C to 27.2°C, 
whereas winter temperatures ranged from −8.8°C to 7.5°C. 
Total precipitation was similar during summer (38.2 mm) and 
winter (39.7 mm) sampling periods.

Monitoring sites were identified to capture the variability 
of microenvironments in Toronto while maximizing spatial 
coverage. A neighborhood map of the city was used whereby 
each neighborhood was characterized in terms of road den-
sity, population density, employment density, and percentage of 
commercial land use. Neighborhoods were then grouped into a 
predetermined number of clusters (30 clusters) using a k-means 
clustering technique such that internal similarities were max-
imized, whereas similarities between groups were minimized. 
Finally, sites were identified manually, maximizing spatial cov-
erage, while ensuring that two to three sites were in each cluster. 
In total, 67 sites were successfully monitored in summer and  
42 sites were monitored in winter with 28 sites monitored during 
both seasons (a map of the monitoring locations is shown in 
Supplemental Figure S1; http://links.lww.com/EE/A16).

Integrated 2-week samples were collected at each site using 
Teflon filters with cascade impactors at a flow rate of 5 L/min. 
During each campaign, all PM2.5 samples were collected simul-
taneously using preset pump timers and separate sampling kits 
at each location. This eliminated the need to adjust for temporal 
differences in air pollution concentrations between sites as all 
sites were monitored over exactly the same time period. PM2.5 
mass concentrations were determined gravimetrically before 
metals analysis by x-ray fluorescence (XRF).

PM2.5 metals analyses

Copper and iron concentrations in PM2.5 samples were deter-
mined using x-ray fluorescence (XRF) according to United 
States Environmental Protection Agency (EPA) Method 
IO-3.3 in Compendium of Methods for the Determination of 
Metals in Ambient Particulate Matter (EPA 625/R-96/010a). 
Concentrations of 31 other elements were also obtained and 
were used primarily for correlations analyses and to identify 
common groupings of elements. Throughout this paper, Fe and 
Cu refer to concentrations in PM2.5.

Estimating reactive oxygen species concentrations using 
a kinetic multilayer model of surface and bulk chemistry in 
the lung epithelial lining fluid model

The KM-SUB-ELF model was recently developed and described 
in detail by Lakey et al.5 Briefly, the model consists of a surface 
surfactant layer containing lipids and proteins and the epithelial 
lining fluid bulk with a thickness of 0.5 μm, which is the average 
thickness of ELF in bronchi.6 The bulk layer contains four anti-
oxidants: ascorbate, uric acid, glutathione, and α-tocopherol at 
concentrations of 40, 207, 109, and 0.7 μM, respectively, which 
are typical concentrations in the bronchoalveolar region of the 
respiratory tract.6,7 Mass transport and over 50 chemical reac-
tions are explicitly treated in the model. The reactions are listed 

alongside their rate coefficients in the supplementary informa-
tion of Lakey et al5 and include the reactions of ROS with anti-
oxidants and surfactants, the formation of ROS from the redox 
cycling of Fe and Cu ions with ascorbate and oxygen, the inter-
conversion of ROS due to Fenton and Fenton-like chemistry, 
and the destruction of O2

− radicals due to the presence of the 
superoxide dismutase enzyme.8,9 The concentration of Fe and 
Cu ions in the epithelial lining fluid was estimated using known 
airborne concentrations of Fe and Cu in PM2.5 according to the 
following equation:

ELF concentration

Ambient concentrationof Fe Cu Breath/

=

× iing rate

PM deposition rate Fractional solubility Accum× × × uulationtime

MW Total ELF volume×

where MW is the molecular weight of the species, breathing rate 
was assumed to be 1.5 m3/h,10,11 PM deposition rate was set 
to 45%,12 and total ELF volume was 20 ml.13,14 The fractional 
solubilities of Fe and Cu were assumed to be 0.1 and 0.4, respec-
tively.15–17 Error bars for the different ROS concentrations were 
calculated by varying the range of Fe and Cu fractional solu-
bilities between 0.05 and 0.25 and 0.2 and 0.6, respectively.5 
These ranges of solubilities for Fe and Cu were considered to 
recognize the fact that XRF analyses do not reveal the precise 
structure of metal speciation complexes which can impact solu-
bility in the lung lining fluid. The accumulation time was set to 
2 hours as inhaled particles can accumulate in the respiratory 
tract over several hours before they are removed by the immune 
system and metabolic activity.18 It is important to note that ROS 
concentrations obtained from KM-SUB-ELF model simulations 
estimate exogenous ROS concentrations generated in the lung 
in response to Fe and Cu; endogenous ROS generated through 
biological interactions (e.g., ROS generation from macrophage 
activation) are not considered in the calculations.

Extraction of land use and traffic parameters for land use 
regression models

Various land use and built environment attributes were derived 
for each monitoring site using ArcMap 10.4.1 (ESRI, Redlands, 
CA). Land use composition was computed within circular buffers 
of 100, 200, 300, 500, 700, and 1000 meters and included specific 
categories for residential, commercial, governmental/institutional, 
resource/industrial, parks, open area, water, and building foot-
prints (DMTI Spatial (Database 2014), Richmond Hill, Ontario, 
Canada). Moreover, the length of bus routes, highways, major 
roads, and rail lines were derived in each buffer (City of Toronto 
Open Data portal 2016). Other variables computed within the 
buffers included population density (Toronto Neighbourhood and 
Demographics data of 2013), mean and maximum building height, 
number of bus stops, number of road intersections, and number of 
trees (City of Toronto Open Data portal 2016). Finally, the aver-
age hourly traffic volume between 6 am and 7 pm was derived 
using a traffic assignment model and an Origin-Destination (OD) 
matrix of trips extracted from the Transportation Tomorrow 
Survey (TTS) (year 2011) for the Greater Toronto and Hamilton 
Area (GTHA). Distances between each sampling location and the 
closest rail line, major road, highway, Pearson airport, shore, City 
Center, and industrial NOx and PM emitting facility (National 
Pollutant Release Inventory website of the Government of 
Canada) were also estimated and squared terms were also exam-
ined for these parameters during model development.

Statistical analyses

Multivariable linear regression models were used to estimate 
spatial variations in Fe, Cu, and their impact on ROS generation 
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in the human respiratory tract. Separate models were developed 
for summer (based on 67 sites) and for annual mean concentra-
tions as too few sites were available to justify separate models 
for winter. The database for annual mean concentrations was 
generated by averaging values across the summer and winter 
seasons. For sites missing winter PM2.5 data, multivariable lin-
ear regression models were used to predict missing values (i.e., 
for winter PM2.5, Fe, and Cu) based on PM2.5 mass and com-
position data from the 28 sites with complete data for both 
seasons. These predictive models are shown in Supplemental 
Table S1; http://links.lww.com/EE/A16 and had R2 values rang-
ing from 0.70 to 0.82. R2 values decreased in leave-one-out 
cross-validation procedures (ranging from 0.55 for Fe to 0.37 
for PM2.5), but root mean square errors remained low (e.g., 
0.79 μg/m3 for PM2.5) (Supplemental Table S1; http://links.lww.
com/EE/A16). In total, models for annual averages are based on 
data for 67 sites.

Fe and Cu concentrations were modeled as percentages of 
total PM2.5 mass concentrations (e.g., Fe/PM2.5 × 100%) to 
improve model fit (relative to absolute metal concentrations) 
and to reduce correlations between the two elements. Models 
for ln(Fe) and ln(Cu) are presented in the supplemental mate-
rial (Tables S4 and S5; http://links.lww.com/EE/A16) but are not 
discussed further as they did not perform as well as models for 
proportions of Fe and Cu in PM2.5. Our model building proce-
dure followed several steps: (1) Single variable linear regression 
models were examined for each of the candidate predictor vari-
ables outline above; (2) Variables that were associated with the 
outcome (i.e., 95% confidence interval excluded the null) were 
retained for potential inclusion in the final model; (3) Spearman’s 
correlations were determined for the candidate predictors iden-
tified in step 2 and highly correlated variables (r > 0.7) were 
removed (retaining the best predictor of each correlated pair); 
for parameters with multiple buffer sizes, the buffer size that 
was most strongly associated with the outcome was retained; 
and (4) All parameters retained after step 3 were included in the 
model; “nonsignificant” parameters were only removed if doing 
so improved model fit (i.e., increased the adjusted R2 value 
and decreased the root mean square error). We did not impose 
preconceived rules on the direction of effects for parameters 
included in the model. A leave-one-out cross-validation proce-
dure was used to evaluate final model performance using the 
loocv procedure in Stata version 15 (Statacorp, College Station, 
Texas).

Correlations between individual PM2.5 metal components 
were examined to evaluate potential sources of these contam-
inants. Specifically, we visualized these relationships using the 
qgraph and corrplot packages in R (version 3.3.0). The “spring” 
layout in the qgraph package displays correlations between 

metals as a network: more highly correlated nodes are grouped 
together and are linked by thinker, more darkly colored lines.

Mapping the land use regression models

Maps of exposure surfaces were generated by first dividing the 
city of Toronto into grid cells of 100 × 100 meters using ArcMap. 
Next, the final set of predictors for land use regression models 
for Fe, Cu, and ROS were computed for the mid-point of each 
grid cell. Finally, the predicted values for each mid-point were 
calculated and associated with the corresponding grid cell for 
mapping.

Results

Descriptive statistics for ambient PM2.5 mass concentrations and 
Fe, Cu, and their estimated impact on ROS generation in the 
lung lining fluid are shown in Table. In general, spatial variations 
in Fe, Cu, and ROS greatly exceeded that of PM2.5 mass concen-
trations. In addition, Fe, Cu, and ROS concentrations were 15, 
18, and 9 times higher during summer compared with winter, 
respectively, with little difference observed for PM2.5 mass con-
centrations (Supplemental Figure S2; http://links.lww.com/EE/
A16). As expected, correlations between metals in PM2.5 were 
high (Figure  1 and Supplemental Figure S3; http://links.lww.
com/EE/A16) and suggested three primary groupings: (1) One 
containing elements such as Fe, Cu, and Ba that are associated 
with roadway emissions including brake ware19,20; (2) One con-
taining crustal elements (i.e., Al, Si, Ca) related to resuspended 
soil; and (3) A grouping of Mn and Zn. As ROS concentrations 
were derived from Fe and Cu, Spearman correlations between 
summer Fe and Cu and ROS were high at 0.93 and 0.95, respec-
tively. Correlations between annual ROS concentrations and Fe 
and Cu were 0.94 and 0.96, respectively.

Final land use regression models for Fe, Cu, and their esti-
mated impact on ROS generation in the human lung are shown 
in Figure 2 (summer) and Figure 3 (annual). Standardized model 
coefficients (and 95% confidence intervals) and cross-valida-
tion results are also presented in Supplemental Tables S2 and 
S3; http://links.lww.com/EE/A16. In general, models for Cu per-
formed best with cross-validation R2 values of 0.77 and 0.79 for 
the summer and annual models, respectively. Spatial variations 
in Cu were predominantly explained by variables related to traf-
fic proximity, although population density was also included in 
the annual model. Traffic parameters were also important deter-
minants of Fe, but other factors including rail line proximity  
(or length of rail lines within a 1000 meters buffer) and proximity 
to Pearson airport were also identified as important determinants 

Table.Descriptive Statistics for PM2.5 (μg/m3), Fe (ng/m3), Cu (ng/m3), and the Estimated Impact of Fe and Cu on ROS (nM) in Toronto, 
Canada

Pollutant and Season Mean (SD) Minimum 5th 25th 50th 75th 95th Maximum

Summer (n=67)         
    PM

2.5
 6.41 (0.78) 4.85 5.16 5.90 6.32 6.84 7.82 8.53

    Fe 103 (51) 40.0 51.8 79.8 92.8 114 184 375
    Cu 4.22 (2.20) 1.14 1.88 3.32 3.81 4.63 7.77 18.1
    ROS 75.9 (17) 36.5 46.7 67.6 74.7 83.8 107.1 144.0
Winter (n=42)         
    PM

2.5
 5.33 (0.88) 4.01 4.34 4.80 5.13 5.86 6.38 8.80

    Fe 8.45 (6.8) 2.47 2.75 4.23 5.73 10.9 25.8 28.1
    Cu 0.265 (0.19) 0.0654 0.0841 0.133 0.190 0.315 0.627 0.794
    ROS 10.0 (6.58) 2.97 3.48 5.38 7.50 12.5 23.8 27.7
Annuala (n=67)         
    PM

2.5
5.93 (0.97) 4.29 4.74 5.33 5.67 6.30 7.76 9.36

    Fe 57.2 (28) 22.2 27.4 43.1 51.4 64.7 112 196
    Cu 2.29 (1.2) 0.666 1.01 1.68 2.10 2.52 4.35 9.43
    ROS 52.4 (14.1) 23.8 32.6 44.3 50.8 57.6 76.9 115.3

aBased on 67 sites monitored during summer, 28 sites monitored during both summer and winter, and predicted values for 39 sites missing winter data.

http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
http://links.lww.com/EE/A16
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Figure 1. Correlations between PM2.5 metals during summer. A, Network plot with more highly correlated metals grouped more closely together and linked by 
darker, thicker lines (dashed lines indicate inverse correlations). Numeric correlation values are illustrated in B.
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of Fe concentrations; cross-validation R2 values for the summer 
and annual mean Fe models were 0.53 and 0.68, respectively.

Not surprisingly, final ROS models reflected components of 
both the Fe and Cu models with length of highways within 300 
meters being the strongest predictor of ROS in both summer and 
annual models. Other important predictors of annual mean ROS 
generation included rail line proximity, population density, proxim-
ity to Pearson airport, and industrial land use within 200 meters. 
Distance to city center appeared in all three annual models with 
increasing distance from city center associated with higher concen-
trations. This primarily reflects the fact that Toronto is surrounded 
by major highways/roadways, and thus, moving further from the 
city center brings you closer to these major sources of exposure. 
Mean variance inflation factors were less than 2 for all final models.

Exposure surfaces for summer and annual mean Fe, Cu, 
and their estimated combined impact on ROS are shown in 
Figure 4. These surfaces highlight the elevated concentrations 
of PM2.5 metals during the summer months and their subse-
quent increased capacity to generate ROS in the lung during 
this time period. In particular, two areas of the Fe and ROS sur-
faces stand out in the upper right and lower left-hand corners 
of each surface: these areas reflect large rail yards which appear 
to be important local sources of iron in PM2.5. Scatter plots are 
available in Supplemental Figures S4 and S5; http://links.lww.
com/EE/A16 illustrating the relationship between PM2.5, Fe, Cu, 
and total ROS concentrations as well as specific ROS species 
(which are dominated by H2O2). Interestingly, the scatter plot 
in Figure  5 illustrates that equivalent PM2.5 mass concentra-
tions can contribute to the generation of substantially different 

ROS concentrations (often differing by more than a factor of 2) 
owing to large seasonal differences in Fe and Cu.

Discussion

Surprisingly little is known about the specific components of 
PM2.5 that are most relevant to health and population-based 
exposure assessment continues to rely on bulk particle mass con-
centrations. Metal components in PM2.5 are generally thought 
to play an important role in determining overall PM2.5 health 
effects2,3; however, few models are available to predict exposures 
in epidemiological studies and separating the individual effects 
of specific metals remains a challenge.

In this study, we combined information on Fe and Cu in PM2.5 
with a kinetic multilayer model of surface and bulk chemistry in 
the epithelial lining fluid to estimate the impact of these metals 
on the production of ROS in the human lung lining fluid. In gen-
eral, our findings suggest that spatial variations in Fe, Cu, and 
their combined impact on ROS are considerably greater than 
spatial variations in PM2.5 mass concentrations. Moreover, our 
results suggest that large seasonal differences may exist in PM2.5 
metal concentrations that ultimately lead to more ROS produc-
tion in response to PM2.5 during the summer months. This sea-
sonal difference is likely explained by increased snow cover/rain 
during the winter months in Toronto which would tend to min-
imize particle resuspension. More importantly, this finding sug-
gests that resuspended particles containing metals from sources 
such as brake wear19,20 (or rail lines) may be an interesting tar-
get for future risk management activities (in addition to direct 
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Figure 2. Land use regression models for Fe (% mass), (A: Model R2 = 0.68; Cross-validation R2 = 0.53), Cu (% mass), (B: Model R2 = 0.81; Cross-validation  
R2 = 0.77), and their estimated impact on ROS (C: Model R2 = 0.64; Cross-validation R2 = 0.56) during summer in Toronto, Canada. Dots and shaded lines 
reflect point estimates and 95% confidence intervals.
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tailpipe emissions) if ROS is ultimately tied to adverse health 
effects. Furthermore, our results indicate that equivalent PM2.5 
mass concentrations may elicit dramatically different biological 
responses; therefore, if the generation of ROS is an important 
mechanism contributing to PM2.5 health effects, relying solely 
on PM2.5 mass concentrations likely contributes substantially to 
exposure measurement error in epidemiological studies even if 
the mass concentrations themselves are measured without error.

Our findings also shed light on an important ongoing question 
in air pollution epidemiology: Why do we continue to see import-
ant health effects at very low PM2.5 mass concentrations? Whereas 
PM2.5 mass concentrations in Toronto were low and the range was 
small (≈4–9 μg/m3), spatial variations in the estimated impact of Fe 
and Cu on ROS generation were much larger; therefore, a 1-unit 
change in exposure on the scale of PM2.5 mass concentration likely 
translates into a much larger change on the ROS scale which ulti-
mately may be more biologically relevant. Moreover, it is important 
to note that the predicted magnitude of ROS generation in response 
to Fe and Cu (i.e., more than 200 nM in some areas during sum-
mer) is biologically relevant as normal human ROS concentrations 
are approximately 100 nM and elevated H2O2 concentrations have 
been observed in respiratory disease patients including adult asth-
matics. 5,21–23 Moreover, although the ROS model contained many 
of the same predictors as the Fe and Cu models, the added value of 
the ROS models relates to the fact that it estimates the combined 
impact of these two components on ROS using a single param-
eter rather than two separate parameters. Indeed, separating the 
individual health impacts of Cu and Fe is difficult owing to colin-
earity and the use of a single parameter to estimate their combined 

impact on an important mechanism of action seems advantageous. 
However, all three models should be explored in future epidemio-
logical studies to verify this hypothesis.

To our knowledge, this is the first study to model spatial vari-
ations in the combined impact of Fe and Cu in PM2.5 on ROS 
generation in the human lung. Indeed, such models are of inter-
est as the application of oxidative stress assays (primarily related 
to the depletion of dithiothreitol or antioxidants such as glu-
tathione) has gained significant traction in the epidemiological 
literature as several studies have reported stronger associations 
with these new metrics than with traditional PM2.5 mass concen-
trations.24–26 Nevertheless, recent evidence also suggests that it 
is important to consider both ROS generation and antioxidant 
depletion as common oxidative potential assays including the 
dithiothreitol (DTT) assay may not capture the ROS activity of 
some PM components including Fe.27 Moreover, it is not clear 
how ROS generation estimated using the KM-SUB-ELF model 
may relate to other common particle oxidative potential assays 
including DTT, electron spin resonance (ESR), or ascorbate/
glutathione depletion. To date, existing evidence suggests that 
ROS generation estimated using Fe and Cu concentrations in 
the KM-SUB-ELF model is at least moderately correlated with 
these metrics.28–31 For example, a recent evaluation of five oxi-
dative potential metrics for PM10 samples reported correlations 
for Cu and the above oxidative potential assays ranging from 
0.48 to 0.87 with a similar range of correlations observed for Fe 
(0.48–0.71).31 Ultimately, the more important question is which 
of these assays is the best predictor of adverse health effects and 
which (if any) are superior to particle mass concentration in 
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Figure 3. Land use regression models for annual mean Fe (% mass) (A: Model R2 = 0.72; Cross-validation R2 = 0.68), Cu (% mass) (B: Model R2 = 0.81; Cross-
validation R2 = 0.79), and their estimated impact on ROS (C: Model R2 = 0.71; Cross-validation R2 = 0.65) in Toronto, Canada. Dots and shaded lines reflect 
point estimates and 95% confidence intervals.
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this respect. At a minimum, the KM-SUB-ELF model may serve 
as a cost-effective means of estimating the oxidative potential 
of airborne particles when Fe and Cu data are available in the 
absence of filter media (e.g., historical data) or when detailed 
chemical analyses of filter samples are not possible.

Although this study had many important advantages includ-
ing a large simultaneous monitoring network for PM2.5 metals 

and numerous geographic predictor variables, it is important to 
note several limitations. First, only 28 sites had monitoring data 
for both summer and winter; therefore, winter data had to be 
predicted for many sites used in the annual models. However, 
models used to predict missing data performed well with high 
R2 values and low root mean square errors (RMSE). One excep-
tion was the model for winter PM2.5 which had a lower R2 value 

Figure 4. Land use regression surfaces for summer and annual mean Fe (% mass), Cu (% mass), and their estimated combined impact on ROS generation (nM).
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in leave-one-out cross-validation procedures but also a low 
RMSE. Ultimately, prediction error in the outcome variables 
used in annual models likely contributed to greater uncertainty 
(i.e., wider 95% confidence intervals) in the slopes for indepen-
dent variables in land use regression models but would not bias 
the slopes for these variables.

It is also important to note that estimated values for ROS 
reflect exogenous ROS concentrations generated in the lung 
in response to Fe and Cu in PM2.5 and not total ROS gener-
ated in response to the entire pollutant mixture. Indeed, addi-
tional ROS may be produced through biological responses 
not considered by the model (e.g., macrophage activation) or 
in response to ambient O3 or quinones which can be handled 
by KM-SUB-ELF but were not considered here owing to the 
absence of monitoring data. Therefore, model estimates of ROS 
presented here likely underestimate the total oxidative burden 
caused by inhaled pollutant mixtures. Future studies should aim 
to incorporate O3 and quinone measurements to obtain a more 
complete picture of the overall impact of ambient air pollution 
mixtures on ROS generation in the human lung. Moreover, 
model estimates of ROS generation are not intended to capture 
individual-level differences in ROS production owing to vari-
ance in factors such as age, genetics, or disease status. Rather, 
the KM-SUB-ELF model provides estimates of ROS generation 
under a certain set of conditions (described in the Methods sec-
tion), thus allowing us to evaluate potential spatial differences 
in ROS generation in conjunction with PM2.5 metals. In particu-
lar, our results reflect a range of assumed metal solubilities in the 
epithelial lung lining fluid and it is possible that the ranges used 
in this study do not adequately capture seasonal variations in 
metal solubilities or differences in solubilities between sampling 
sites. Likewise, our model does not include other transition met-
als that could contribute to the generation of ROS in the lung. 
As noted above, the overall consequence of these limitations is 
likely an underestimation of the impact of PM2.5 components 
on ROS generation as well as imprecise estimation of spatial 
differences in ROS generation if metal solubilities differed sub-
stantially between monitoring sites.

In summary, we developed a model to estimate spatial varia-
tions in the impact of PM2.5 metals on the generation of ROS in 
the human lung lining fluid in Toronto, Canada. Estimated spa-
tial variations in ROS generation exceeded that of PM2.5 mass 
concentrations and seasonal differences suggested that summer 

PM2.5 contributes more to ROS than winter likely owing to 
decreased particle resuspension during the winter months. Our 
findings highlight the potential importance of nontailpipe emis-
sion sources (e.g., brake/rail ware) with respect to PM2.5 and 
the combined use of PM2.5 metals data with a kinetic multilayer 
model of surface and bulk chemistry in the human lung epi-
thelial lining fluid may offer a novel means of estimating PM2.5 
health impacts beyond simple mass concentrations.
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