Poster presentation

Open Access A large-scale realistic model of VI exhibiting orientation selectivity diversity and laminar dependence Rodrigo F Oliveira*1 and Antonio C Roque2

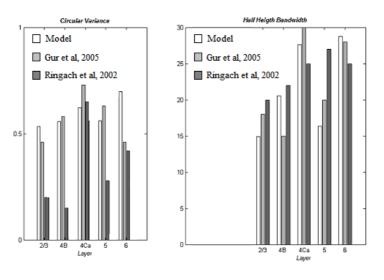
Address: 1 Computational and Experimental Neuroplasticity Laboratory, Krasnow Institute, George Mason University, Rockfish Creek Lane, Fairfax, VA, 22030-4444, USA and ²Laboratory of Neural Systems, Department of Physics and Mathematics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, SP, Brazil

Email: Rodrigo F Oliveira* - rodrigofreire.oliveira@gmail.com * Corresponding author

from Sixteenth Annual Computational Neuroscience Meeting: CNS*2007 Toronto, Canada. 7–12 July 2007

Published: 6 July 2007

BMC Neuroscience 2007, 8(Suppl 2):P36 doi:10.1186/1471-2202-8-S2-P36


© 2007 Oliveira and Roque; licensee BioMed Central Ltd.

Background

An important question regarding orientation selectivity (OS) in the primary visual cortex (V1) is to know how OS varies among different V1 neural populations and throughout V1 layers [1,2]. In this work we present a large-scale model highly constrained by physiology and anatomy and use it to address these questions.

Methods

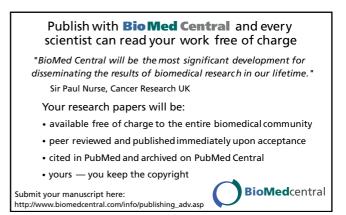
The model corresponds to 4 mm² of cortical area in a 10:1 scale. It is composed of 59,821 cells arranged into six layers (L1, L2/3, L4B, L4C_{α'} L5 and L6) representing the M pathway. Six different HH-type neuron models were constructed to simulate six different cell classes: late spiking, non-late spiking, fast spiking, regular spiking, chattering,

and bursting neurons. These neurons were distributed in the six layers in a realistic way with short- and long-range intra-laminar connections as well as inter-laminar connections. Thalamic inputs are delivered to all excitatory cells in layers $4C_{\alpha}$ and 6. Activation of a cortical cell is modeled by a convolution of a sinusoidal drifting grating with a Gabor function. Neural OS profile was determined via circular variance and half-height bandwidth of its tuning curve.

Results

Neurons in the model show a diversity of OS consistent with experimental data (see Figure 1).

Conclusion


Results suggest that the diversity in OS observed across cortical layers is at least partially due to heterogeneity in cellular electrophysiology and circuitry properties.

Acknowledgements

Supported by grants from FAPESP.

References

- Ringach D, Shapley R, Hawken MJ: Orientation selectivity in macaque VI: Diversity and laminar dependence. J Neurosci 2002, 22:5639-5651.
- Gur M, Kagan I, Snodderly DM: Orientation and direction selectivity of neurons in VI of alert monkeys: Functional relationships and laminar distributions. Cereb Cortex 2005, 15:1207-1221.

