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Abstract: Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in
China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its
prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in
prevention and provides urban public health officials and related decision makers more information
for the allocation of public health resources and the formulation of prioritized health-related policies.
This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by
utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial
statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level
to determine its spatio-temporal distribution and to identify characteristics of change. Spatial
autocorrelation analysis was used to detect global and local spatial autocorrelations across the
study area. Purely spatial, purely temporal and space-time scan statistics were used to identify
purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other
objective of this study was to compare the trajectory similarities between the incidence rates of TB
and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive
TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in
the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population
(RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in
Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although
global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual
districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low
districts over the six-year period. The purely spatial scan statistics analysis showed significant spatial
clusters of high and low incidence rates; the purely temporal scan statistics showed the temporal
cluster with a three-year period from 2009 to 2011 characterized by a high incidence rate; and the
space-time scan statistics analysis showed significant spatio-temporal clusters. The distribution of
the mean centres (MCs) showed that the general distributions of the NSPRP MCs and NSPTBP MCs
were to the east of the incidence rate MCs. Conversely, the general distributions of the RSPRP MCs
and the RSPTBP MCs were to the south of the incidence rate MCs. Based on the combined analysis of
MC distribution characteristics and trajectory similarities, the NSP trajectory was most similar to the
incidence rate trajectory. Thus, more attention should be focused on the discovery of NSP patients
in the western part of Beijing, whereas the northern part of Beijing needs intensive treatment for
RSP patients.
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1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis [1]. TB is
primarily transmitted through the respiratory tract, and TB patients serve as the main source of
infection. TB is also an important public health issue in China [2]; the fifth national sample survey
of epidemic diseases conducted in 2010 showed that reported TB patients always formed the front
rank of reported cases of national Class A and B epidemic diseases [3]. Considerable pressure has built
for the prevention and control of TB, especially in cities because of rapid urbanization and economic
transition [4].

Most epidemic data have spatial attributes, which has aroused the interest of researchers with
both medical and geographic backgrounds. With the development of Geographic Information System
(GIS) technology and its application in epidemiology, a new branch of epidemiology called spatial
epidemiology has formed. Spatial epidemiology uses spatial information to extend the analysis of
epidemic diseases [5]. With the aid of spatial statistics and mapping visualization, spatial epidemiology
attempts to describe and analyse the spatial distribution of human diseases, health conditions and
latent factors [6–11]. Spatial epidemiology also explores the spatial distribution model to predict the
spatio-temporal trends of disease and the correlation between a disease and its latent factors [12–14].
All of this information can be used to monitor and prevent disease, process outbreaks and allocate
medical resources in an evidence-based manner [15].

Disease mapping can present distributions intuitively. This method was first used in the
investigation of a cholera outbreak caused by street water pump pollution in London in 1854.
However, it explores disease only qualitatively. Quantitative methods, such as spatial autocorrelation,
can objectively describe the distribution characteristics of disease, and scan statistics can describe
the clustering characteristics in terms of both space and time [16–18]. Analysing the clustering
characteristics of a disease can help detect hot spots and high-risk groups in space and time, which in
turn helps decision makers formulate specific prevention and treatment policies [19].

Trajectory data contain the sequence of location and time information for moving objects.
Trajectory similarity analysis has been used in fields such as transport logistics, human behaviour, and
marketing management [20]. From the perspective of spatial epidemiology, the changing time sequence
of spatial statistics, such as the mean centre, nearest-neighbour distance and spatial correlation
coefficient, can be regarded as trajectory data [21,22]. New smear-positive (NSP) TB indicates new
disease occurrence, whereas retreated smear-positive (RSP) TB is more resistant to drugs. Because both
types of TB are infectious, it is necessary to analyse the distribution difference between the overall
incidence rates of TB and the incidence rates for these two categories [23]. The analyses can also reflect
variations in the control effect among districts and loopholes in prevention strategies. The current
study applied the Euclidean distance algorithm to measure the similarities between trajectories over
the full time interval. However, because we were interested in the occurrence of disease close to the
current year, weights were assigned to different times to modify the algorithm.

The present study aimed to clarify the spatial and temporal distribution characteristics of TB at the
district level in Beijing, China from 2009 to 2014. We utilized spatial statistics, spatial autocorrelation
and scan statistics analyses to describe the distribution characteristics and clustering characteristics of
TB. We evaluated the trajectory similarities between TB and NSP TB/RSP TB over a five-year period
with the intent of detecting the differential distribution of these three categories and the similarity
variations over time. The study investigated (1) the spatial and temporal trends in TB from 2009 to
2014; (2) the global spatial autocorrelation of overall TB across the districts of Beijing and the local
spatial autocorrelation of TB in individual districts of Beijing; (3) the purely spatial, purely temporal
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and spatio-temporal clusters and variations of TB; and (4) trends in the mean centres of TB, NSP TB
and RSP TB and the trajectory similarities of TB and NSP TB/RSP TB over a five-year period.

2. Materials and Methods

2.1. Study Area

Beijing (the capital of China) is the nation’s political, cultural centre and economic centre. Located
in the northwestern portion of the North China Plain, Beijing is adjacent to Tianjin on the southeast and
Hebei province in the other directions. Beijing was divided into 16 administrative districts in July 2010,
and these districts are still in place today. According to their different urban functions, these districts
can be classified into four regions: the Core Districts of Capital Function (Dongcheng and Xicheng), the
Urban Function Extended Districts (Chaoyang, Fengtai, Shijingshan, and Haidian), the New Districts
of Urban Development (Fangshan, Tongzhou, Shunyi, Changping, and Daxing), and the Ecological
Preservation Development Districts (Mentougou, Huairou, Pinggu, Miyun, and Yanqing) (Figure 1).
The study area included the 16 districts under the administration of Beijing according to the latest
administrative divisions.
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Figure 1. Map of the administrative districts of Beijing according to their different urban functions and
their locations in China.

2.2. Data Description

2.2.1. TB Data

The TB data for each administration district from 2009 to 2014 were obtained from the Beijing
Health and Population Health Status Reports [24–28]. These data were published by the Beijing Centre
for Disease Prevention and Control to provide open medical and health information. These data
include the number of NSP TB patients, the number of RSP TB patients, the number of smear-negative
TB patients, the number of TB patients who did not receive a sputum smear examination, the number
of TB pleurisy patients and the total number of TB patients for each administrative district. Because
China has only recently begun to share medical data with the public, we only had access to six years of
data. However, the data from 2009 only provide the total number of TB patients and does not include
detailed information about the number of NSP, RSP and other categories of TB patients. Therefore,
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except in the trajectory similarity analysis, we used the data from 2009 to 2014. In the trajectory
similarity analysis, we used the data from 2010 to 2014 because the 2009 data are not detailed enough
to be suitable for this analysis. The TB data were available at the temporal resolution of year and at the
spatial resolution of administrative district.

2.2.2. Population Data

The annual population data for each administrative district from 2009 to 2014 were obtained from
the Beijing Statistical Information Net [29]. We used the resident population that had lived in Beijing
for more than six months of the last year as the population for this study.

2.2.3. Spatial District Data

Fundamental geographic data with a scale of 1:4,000,000 were obtained from the National
Geomatics Centre of China [30]. To display the spatial distribution of TB and to perform the spatial
analysis, the TB data and population data of each administrative district were imported into the
attribute table of spatial district data. The data were double-checked to prevent errors. We used the
administrative centre of each district to represent each district in the scan statistics analysis, and the
longitude and latitude of the centres were used in trajectory similarity analysis. Because we assumed
that more people lived and worked near the city than in the suburbs, especially in a cosmopolitan city
such as Beijing, we used the administrative centres to better reflect the centre of human activities for
each district. The longitude and latitude of the centres are available from the network [31].

2.3. Methodology

2.3.1. Registration Rate and Incidence Rate Calculations

The registration rate (rr) is expressed as the observed and registered number of TB patients per
100,000 residents using the total population of the corresponding district as the standard. This rate can
be described as follows:

rri “
Oi
Ni
ˆ 100, 000 (1)

where Oi and Ni are the total number of TB patients (including the number of NSP TB patients, the
number of RSP TB patients, the number of smear-negative TB patients, the number of TB patients
who did not undergo a sputum smear examination, and the number of TB pleurisy patients) and
the total population in the ith district per year, respectively. The incidence rate (IR) is used to
represent the disease risk across Beijing in this study, to identify districts with higher or lower disease
risks and to capture the temporal and spatial clusters. In 2010, Beijing provided TB patients with
free examinations for the first time and fully covered directly observed treatment + short-course
chemotherapy (DOTS) [32]. Therefore, in this study, we postulated that the IR approximately equalled
the rr.

2.3.2. Spatial Autocorrelation Analysis

All attribute values on a geographic surface are related to one another, but closer values are
more strongly related than more distant values [33]. The spatial autocorrelation analysis by GeoDa
(Arizona State University, Phoenix, AZ, USA) is used to test whether there is interdependence and
to determine the level of interdependence between the same attribute values of one spatial unit and
its neighbouring units [34]. Global spatial autocorrelation analysis reflects the autocorrelation across
the whole area but cannot reflect the local distribution characteristics of the attribute value and its
contribution to the global autocorrelation. Therefore, local spatial autocorrelation analysis is used to
detect the autocorrelation of each spatial district and its variation across the area.

Constructing a spatial weight matrix that reflects the spatial adjacent correlation among spatial
districts is the first step in the spatial autocorrelation analysis [35]. In this study, we used the binary
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spatial weight matrix, which is the most commonly used matrix in practice. It can be described
as follows:

Wij “

#

1 Ai is adjacent to Aj

0 others
(2)

where Wij is the element of the spatial weight matrix reflecting the spatial adjacent correlation between
different spatial districts Ai and Aj. When Ai shares common boundaries with Aj, Wij equals 1.
Otherwise, Wij equals 0, including the condition in which Ai shares no common boundaries with Aj
and when i equals j.

The most commonly used statistic to measure autocorrelation is Moran’s I. The global Moran’s
I statistic ranges from ´1 to 1. I ą 0 indicates positive autocorrelation. I ă 0 indicates negative
autocorrelation. I “ 0 indicates no autocorrelation. When |I| is larger, the autocorrelation is higher.
The global Moran’s I can be calculated as follows [5]:

I “

n ¨
n
ř

i“1

n
ř

j“1
Wij pyi ´ yq

`

yj ´ y
˘

n
ř

i“1
pyi ´ yq2 ¨

n
ř

i“1

n
ř

j“1
Wij

(3)

where n is the number of districts, yi and yj are the IR values of spatial districts i and j, y is the average
IR of all districts, and Wij is the element of the spatial weight matrix corresponding to the district pair i
and j.

The local Moran’s I satisfies two conditions: the local indication of spatial autocorrelation (LISA)
reflects the clustering level between one spatial district and its neighbouring districts, and the sum of
all LISA values is proportional to the global Moran’s I. There are four spatial correlation modes: the
spatial district with a high IR surrounded by districts with high IR values (High-High); the spatial
district with a low IR surrounded by districts with high IR values (Low-High); the spatial district with
a low IR surrounded by districts with low IR values (Low-Low); and the spatial district with a high IR
surrounded by districts with low IR values (High-Low). For spatial district i, LISA can be calculated
as follows:

Ii “
pyi ´ yq

1
n

n
ř

i“1
pyi ´ yq2

ˆ

n
ÿ

j“1

Wij pyi ´ yq (4)

A larger |Ii| indicates higher clustering level in the ith district. If Ii is positive, the ith district is
the area where the lever of incidence is similar to the surrounding areas (High-High or Low-Low).
In contrast, if Ii is negative, the ith district is the area that is dissimilar to the surrounding areas
(High-Low or Low-High). If |Ii| is close to 0, the occurrence of TB is randomly distributed, and there is
no clustering phenomenon.

2.3.3. Scan Statistics Analysis

Scan statistics analysis, a retrospective statistical test based on a discrete Poisson model performed
by SaTScan (Martin Kulldorff, Boston, MA, USA), is used to detect whether the IR of TB shows
clustering characteristics and to determine the location and relative risk (RR) of the clusters. A pure
spatial scan statistics analysis is defined by a circular window with a radius that varies continuously
according to the population range of the area. The radius moves throughout the study area to detect
several cluster centroids from zero to the maximum cluster size of the total population that might be
at risk. Purely temporal scan statistics analysis is similar to the purely spatial scan statistics analysis;
however, the scan range is a time period. Space-time scan statistics analysis incorporates the time
dimension and is defined by a cylindrical window with a geographic base and a height corresponding
to time [36]. In this study, the default maximum spatial cluster size of 50% was selected for the
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cluster analysis. Furthermore, the log likelihood ratio (LLR) was used to calculate the difference in the
incidence inside and outside the windows [37]:

LLR “ log
ˆ

Oin
Ein

˙Oin
ˆ

O´Oin
O´ Ein

˙pO´Oinq

(5)

where Oin and Ein denote the numbers of actual and expected cases in the window, respectively. Ein
is calculated by multiplying the general IR of Beijing by the population of the ith district and can be
expressed as follows:

Ei “ GIR ˆ Ni (6)

where Ni is the total population of the ith district. GIR is the general IR of Beijing, which can be
described as follows:

GIR “

řn
j“1 Oj

řn
j“1 Nj

(7)

where n is the number of districts administered by Beijing, and Oj and Nj are the number of observed
cases and the population in the jth (j “ 1, 2, . . . , n) district, respectively. The most likely cluster is
the scan window with the largest LLR value, and the secondary clusters are the other scan windows
with significant LLR values. The TB patients and populations of each district in each year and the
coordinates of each district were included to obtain the most likely cluster in which the districts and
time frame had the largest LLR and the maximum RR.

2.3.4. Trajectory Similarity Analysis

The mean centre (MC) tool in ArcGIS (Environmental Systems Research Institute, Redlands, CA,
USA) was used to identify the spatio-temporal change in TB in Beijing from 2009 to 2014. The MC
identifies the geographic centre of a set of points to measure the central tendency, which is calculated
as follows:

MCt “ pXt, Ytq (8)

Xt “

n
ř

j“1
IRj ¨ xj

n
ř

j“1
IRj

(9)

Yt “

n
ř

j“1
IRj ¨ yj

n
ř

j“1
IRj

(10)

where MCt denotes the coordinates of the MC in the tth (t “ 1, 2, . . . , m) year, n is the number of points
over the study area in the tth year, and xj and yj are the coordinates of the jth (j “ 1, 2, . . . , n) point in
the tth year. The IR MCs of the same geographic area in a time series could reveal the movement of the
IR central tendency. The MCs of NSP TB patients in the resident population (NSPRP), NSP TB patients
in the TB patient population (NSPTBP), RSP TB patients in the resident population (RSPRP) and RSP
TB patients in the TB patient population (RSPTBP) from 2010 to 2014 were calculated to identify and
compare the yearly movement of the central tendency.

A trajectory is a serial record of spatial locations of moving objects with time attributes. The central
tendencies of IR, NSPRP, NSPTBP, RSPRP and RSPTBP over time can be regarded as a type of trajectory.
The Euclidean distance between different tracks can be used to measure the trajectory similarities of IR
and the other four categories’ central tendencies. The Euclidean distance between tracks is based on
the Euclidean distance between points. First, the distance between points is calculated using the same
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time, and the sum of these distances is then calculated. The Euclidean distance of two tracks can be
calculated as follows:

distpMC1, MC2q “
m
ÿ

t“1

pt ¨ distpMC1t, MC2tq (11)

where distpMC1, MC2q is the Euclidean distance of two different tracks MC1 and MC2. When the
distance is smaller, the trajectory similarity between them is higher. The total points of each track are
the same and equal m. pt is the weight for different point pairs according to certain rules. Because
the situation is very similar for adjacent years, we assume that the IR of current year is more strongly
correlated with the IR of the previous year than with that of the year before last, three years ago and so
on. Therefore, because we focused on the IR close to the current year, we assigned a greater weight to
the most recent year. For exponential function, a should meet the condition a ą 0 and a ‰ 1. When
0 ă a ă 1, the curve of trend component is a monotonically decreasing function; when a ą 1, the
curve of trend component is a monotonically increasing function. Therefore, we used the exponential
function model (0 ă a ă 1) to give the point pairs different weights and unitized the results, which can
be expressed as follows:

pt “
paqk

m´1
ř

k“0
paqk

p0 ă a ă 1q (12)

where k “ 0, 1, 2 ¨ ¨ ¨ m ´ 1 starting from the current year. Because the curve is characterized by a
sharper slope when a is close to 0. If a were small, the weights for years far from current year would
be too small. Therefore, we assigned 0.5 ď a ă 1. We generated 1000 random numbers between 0.5
and 1, than performed point estimation in the sample, and the result showed a “ 0.75. Therefore,
we established five gradient values for a (a “ 0.55, a “ 0.65, a “ 0.75, a “ 0.85 and a “ 0.95) which
were symmetrical by 0.75. However, the number of gradient values is not fixed as long as the selected
numbers are symmetrical by 0.75. MC1t and MC2t are the point pairs of the track MC1 and the track
MC2 in the tth year, respectively. distpMC1t, MC2tq is the Euclidean distance between the point pairs
MC1t and MC2t, which can be calculated as follows:

distpMC1t, MC2tq “

b

pX1t ´ X2tq
2
` pY1t ´Y2tq

2 (13)

where X1t and X2t can be calculated using Equation (9) and Y1t and Y2t can be calculated using
Equation (10). The unit of distance is the kilometre (km).

3. Results and Discussion

3.1. Spatio-Temporal Distribution

The temporal distribution of IRs for each district in Beijing from 2009 to 2014 is shown in Figure 2.
The colour of each district represents the average IR related to TB from 2009 to 2014, and the bar
charts illustrate the annual IR from 2009 to 2014 (i.e., IR_2009 to IR_2014) for each district. We used
the natural break method to appropriately cluster similar values from a set of data and to maximize
the gap between groups to classify the IRs into five groups. The largest average IRs of TB were in
Mentougou (51.0/100,000) and Xicheng (45.5/100,000); the next largest average IRs of TB were in
Miyun (32.5/100,000), Fangshan (28.9/100,000) and Shunyi (27.7/100,000). The mid-range average
IRs of TB were in Pinggu (25.0/100,000), Huairou (24.4/100,000), Yanqing (24.1/100,000), Changping
(22.8/100,000), Haidian (21.9/100,000) and Tongzhou (21.4/100,000). The second smallest average
IRs of TB were in Daxing (18.0/100,000) and Dongcheng (17.6/100,000), and the smallest average
IRs of TB were in Shijingshan (12.4/100,000), Fengtai (12.3/100,000) and Chaoyang (12.1/100,000).
The average IRs of TB overall across the districts of Beijing from 2009 to 2014 (Figure 3) showed a
downward trend that was consistent with the IRs of TB’s overall downward trend in China since
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2008. The total average IR of TB overall across the districts of Beijing over six years was 21.7/100,000,
which was lower than the average IR of TB in China as a whole. The first time that the average IR
of TB overall across the districts of Beijing was smaller than 20/100,000 was in 2013. We performed
two GLM analyses on the six-year data using SPSS (IBM, Armonk, NY, USA). One compared if TB
IRs have difference in different years (looking for temporal trend), and the other compared if TB IRs
have difference if different districts (looking for spatial trend). In the first analysis, we considered year
(six years from 2009 to 2014) as the fix factor. The results showed that IRs for different years have no
difference (p = 0.528). In the latter analysis, we considered district (16 districts in Beijing totally) as
the fix factor. The results showed that IRs for different districts have difference (p = 0.000). Sixteen
districts in Beijing were divided into five subsets: (1) Chaoyang, Fengtai, Shijingshan, Dongcheng
and Daxing; (2) Dongcheng, Daxing, Tongzhou, Haidian, Changping, Yanqing, Huairou and Pinggu;
(3) Tongzhou, Haidian, Changping, Yanqing, Huairou, Pinggu, Shunyi and Fangshan; (4) Yanqing,
Huairou, Pinggu, Shunyi, Fangshan and Miyun; (5) Xicheng and Mentougou. IRs in the same subset
have no statistical significance and IRs in different subsets have statistical significance. All analyses
were with the significance level α < 0.05.
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The cause of the decline in the IRs from 2009 to 2014 may be that the Chinese government has made
great efforts to prevent and control TB [38]. The State Council issued documents concerning the National
Tuberculosis Control Program (2001–2010) and the National Tuberculosis Control Program (2011–2015) [39],
and implemented the DOTS policy at the county level. These policies can detect the source of infection
abundantly and directly, can often cure newly discovered patients without the need for hospitalization,
can alleviate the financial burden on patients because it costs much less, and can decrease the occurrence
of drug-resistant TB [40]. DOTS has made remarkable achievements and has effectively suppressed the
increasing tendency of TB. The Chinese government has delivered many types of education and awareness
activities (especially on World Tuberculosis Day every year) to improve public awareness of TB prevention.
Beijing, which is the nation’s political, cultural and economic centre, has good economic and medical
conditions. Since 1979, Beijing has provided free treatment to a portion of TB patients every year. In
recent years, the Beijing government expanded the range of free treatments to include TB patients who
were non-permanent residents for the first time and alleviated the inspection charge to a certain extent.
Moreover, in addition to the Beijing Research Institute of Tuberculosis Control, there are TB prevention
and control institutes in each district that provide TB patients with convenient treatment. By expanding
its prevention and control network, Beijing deepened the prevention and control responsibilities of the
community service centres to strengthen infection control efforts.

3.2. Spatial Autocorrelation Analysis

The result shows that the global Moran’s I (´0.1198) was negative and failed to pass the
significance level test (p = 0.44), indicating that there was no global spatial autocorrelation and
that the occurrence of TB was distributed randomly from 2009 to 2014.

The results of the local autocorrelation analysis are mapped in Figure 4. The LISA cluster map
shows that the Chaoyang and Daxing districts were Low-Low districts over the six-year study period,
indicating that the IRs of Chaoyang and Daxing were low and the IRs of their neighbouring districts
were also low. Other districts (in grey) did not show any local spatial autocorrelation characteristics.
The results all passed significance level testing (p < 0.05).

From these results, we might surmise that the disease was not spreading in Chaoyang and Daxing
because there was no influx of infection from their neighbouring districts. The overall occurrence of
TB across the districts of Beijing was relatively low and steady over the six-year period, and there were
no outbreaks, indicating that the efforts of the Beijing government were successful.
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3.3. Scan Statistics Analysis

The investigation of the purely spatial scan statistics analysis of high and low IR at the district
level (Table 1) revealed that the first rank cluster contained only the Xicheng district, which had a
high IR. The second rank cluster included one low IR district: Chaoyang. The third rank cluster
contained two low IR districts: Shijingshan and Fengtai. The fourth and fifth rank clusters had high
IRs: the fourth contained Mentougou, and the fifth contained Miyun, Huairou, Shunyi and Pinggu.
All of the results passed significance level testing (p = 0.001).

Table 1. Purely spatial scan statistics analysis of high and low IRs from 2009 to 2014.

Cluster
Rank IR Number of

Districts Districts Number
of Cases

Expected
Cases LLR RR p

First High 1 Xicheng 3458 1638.88 832.68 2.28 <0.001

Second Low 1 Chaoyang 2685 4707.95 609.13 0.52 <0.001

Third Low 2 Shijingshan,
Fengtai 2078 3584.80 423.30 0.54 <0.001

Fourth High 1 Mentougou 906 380.86 265.43 2.43 <0.001

Fifth High 4

Miyun,
Huairou,
Shunyi,
Pinggu

3640 2812.79 126.16 1.34 <0.001

The distribution of high and low IR spatial clusters in Beijing from 2009 to 2014 is showed in
Figure 5. The Xicheng district ranked first, with a high IR over the six-year period. One possible
explanation is that Xicheng had a large population and a high population density, resulting in
crowded living conditions, bad air ventilation and poor sanitary conditions, which all contribute
to TB transmission. The growth of floating populations in Xicheng was not significant, but it was the
district with the densest floating population. Moreover, the majority of the floating population in this
district engaged in the commercial service industry, which was liquid and offered a greater chance
for contact with people. Once TB gained a foothold, the disease could be transmitted to the exposed
population easily, leading to extensive transmission.
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The second and third rank clusters were located in the Urban Function Extended Districts,
including Chaoyang, Shijingshan and Fengtai. One possible explanation for this formation of
distribution characteristics among the low-IR clusters is that although the Urban Function Extended
Districts were the main clusters of the floating population (i.e., the floating populations of Chaoyang,
Haidian and Fengtai comprised more than 50% of the total floating population of Beijing, with
a downward trend), the floating population of the New Districts of Urban Development showed
apparent growth and trended toward movement from the Urban Function Extended Districts to the
New Districts of Urban Development (i.e., the floating populations of Daxing, Tongzhou, Changping
and Shunyi comprised more than 20% of the total floating population of Beijing, with an upward trend).
Furthermore, the floating population of the Urban Function Extended Districts primarily comprised
fixed groups, such as students and construction workers, who live in certain areas with a limited scope
of communication activities. This phenomenon decreases both the chances for individuals to contact
others and the possibility of transmission.

The investigation of the purely temporal scan statistics analysis of high and low IR at the district
level (Table 2) revealed that there was only one significant cluster. The first rank cluster showed that
the IR was high over the three-year period from 2009 to 2011. The result was consistent with the
downward trend in the IR over the six-year study period. The result passed significance level testing
(p = 0.001).

Table 2. Purely temporal scan statistics analysis of high and low IRs from 2009 to 2014.

Year Cluster
Rank IR Number of

Districts Districts Number
of Cases

Expected
Cases LLR RR p

2009–2011 First High 16 All
districts 13,950 12,342.71 199.20 1.28 0.001

The space-time scan statistics analysis of high and low IRs (Table 3) revealed four significant
clusters. The first rank cluster contained only the Xicheng district, which had a high IR from 2009 to
2011, whereas the second rank cluster contained two districts with low IRs, Dongcheng and Chaoyang,
from 2012 to 2014. The third rank cluster included Shijingshan and Fengtai, with low IRs from 2012 to
2014. The fourth rank cluster contained four high IR districts: Huairou, Miyun, Shunyi and Changping
(from 2009 to 2010). The distribution characteristics of the spatial clusters (Figure 6) were consistent
with the results of the purely spatial scan statistics analysis. The temporal cluster results were consistent
with the downward trend in the IR over the six-year period. All of the results passed significance level
testing (p = 0.001).

Table 3. Space-time scan statistics analysis of high and low IRs from 2009 to 2014.

Year Cluster
Rank IR Number of

Districts Districts Number
of Cases

Expected
Cases LLR RR p

2009–2011 First High 1 Xicheng 1892 802.80 556.71 2.46 <0.001

2012–2014 Second Low 2 Dongcheng,
Chaoyang 1714 3062.29 392.54 0.53 <0.001

2012–2014 Third Low 2 Shijingshan,
Fengtai 960 1872.19 288.03 0.49 <0.001

2009–2010 Fourth High 4

Huairou,
Miyun,
Shunyi,

Changping

2093 1287.08 225.05 1.68 <0.001
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3.4. Trajectory Similarity Analysis

The MC analysis revealed that the majority of the MCs were in adjacent locations near the common
boundaries of Chaoyang and Changping and Chaoyang and Haidian. The general distribution of
the NSPRP MCs and NSPTBP MCs were to the east of the IR MCs (Figures 7 and 8). The general
distribution of the RSPRP MCs and RSPTBP MCs were to the south of the IR MCs (Figures 9 and 10).
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The results of the trajectory similarity analysis revealed that from 2010 to 2014, the similarity
between the IR and NSPRP (2.70) was the greatest; the similarity between the IR and NSPTBP (3.41)
followed next; the similarity between the IR and RSPRP (4.46) sorted third; the similarity between the
IR and RSPTBP (5.06) sorted lowest (Table 4).

Table 4. Trajectory similarities between IR and NSPRP/NSPTBP/RSPRP/RSPTBP from 2010 to 2014.

Dist a = 0.55 a = 0.65 a = 0.75 a = 0.85 a = 0.95 Average

dist_IR&NSPRP 3.07 2.87 2.68 2.50 2.35 2.70
dist_IR&NSPTBP 3.71 3.57 3.41 3.26 3.11 3.41
dist_IR&RSPRP 4.78 4.60 4.43 4.29 4.17 4.46
dist_IR&RSPTBP 5.59 5.28 5.02 4.80 4.63 5.06

Because the NSP trajectory was the most similar to the IR trajectory and the NSP TB patients
are newly discovered patients who could be latent and could transmit TB to others, more attention
should be paid to the discovery of NSP TB patients in the western part of Beijing. Because RSP TB is
still transmissible and has a greater possibility of becoming resistant to drugs, the southern part of
Beijing may have a lower cure rate than the northern part; therefore, TB patients in the southern part
require intensive treatment. Thus, health-related policies should be formulated to take measures to
adjust these factors, and public health resources should be allocated more appropriately. By improving
the identification of NSP TB patients and cure rate of RSP TB patients, the prevention of TB in Beijing
would have better results.

4. Conclusions

This study investigated the distribution characteristics of spatio-temporal clusters of TB at the
district level in Beijing from 2009 to 2014 using GeoDa and SaTScan software and ArcGIS tools;
furthermore, it evaluated the trajectory similarities between IR and NSPRP/NSPTBP/RSPRP/RSPTBP
over a five-year period to provide guidelines for the allocation of public health resources and to
strengthen health-related policies. We found that the IRs of Beijing exhibited a gradual decrease from
2009 to 2014, possibly because of the Beijing government’s considerable efforts to prevent and control
TB. Global spatial autocorrelation was not observed across all of the districts of Beijing, indicating that



Int. J. Environ. Res. Public Health 2016, 13, 291 15 of 17

the occurrence of TB was randomly distributed. However, there was a local spatial autocorrelation
at the district level, with Chaoyang and Daxing as the Low-Low districts over the six-year period.
The scan statistics analysis showed spatial, temporal and spatio-temporal clusters of high and low IR.
The distribution of MCs showed that the general distributions of NSPRP MCs and NSPTBP MCs were
to the east of the IR MCs. Conversely, the general distribution of RSPRP MCs and RSPTBP MCs were
to the south of the IR MCs. Based on the combined analysis of the MC distribution characteristics and
trajectory similarities, the trajectory of NSP TB was most similar to the trajectory of IR. Thus, more
attention should be focused on identifying NSP TB patients in the western part of Beijing, whereas the
southern part of Beijing needs to offer intensive treatment for RSP TB patients. These results can be
used by urban public health officials and related decision makers to allocate public health resources
and to formulate prioritized health-related policies.

Because China has only recently begun to share medical data with the public, we only had access
to six years of data. In addition, we only had the number of patients, but do not have access to more
detailed information about patients such as their occupation, gender, age and so on. The TB data were
available at the spatial resolution of administrative district. If we had the data at the spatial resolution of
the subdistrict community, we could detect the distribution characteristics more specifically. This study
only qualitatively analysed the causes of the TB distribution characteristics. Because of data limitations,
it is hard to detect the latent factors leading to the distribution characteristics at this stage. Therefore,
further studies are necessary to detect the risk factors. Furthermore, we used an exponential function
to give the point pairs different weights. In future study, we would explore a more complicated and
appropriate function to replace this basic function. These limitations will be investigated in the future.
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