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Abstract 

Background: The microbiome could trigger inflammation leading to epigenetic changes and is involved in the 
pathophysiology of eye diseases; however, its effect on uveitic glaucoma (UG) has not been fully investigated. 
This study analysed the differences in eyelid and buccal microbiomes in patients with UG using next‑generation 
sequencing.

Methods: The eyelid and buccal specimens of 34 UG and 25 control patients were collected. The taxonomic compo‑
sition of the microbiome was obtained via 16S ribosomal DNA sequencing. Diversity and differential gene expression 
analyses (DEG) determined taxon differences between the microbiomes of UG and control groups.

Results: In both the eyelid and buccal microbiomes, alpha‑diversity was lower in UG patients than controls, while 
beta‑diversity in patients with UG was higher than in controls. DEG analysis of the eyelid microbiome revealed various 
taxa differences, including enrichment of Paenibacillus and Dermacoccus (p‑value, 1.31e−6 and 1.55e−7, respectively) 
and depletion of Morganella and Lactococcus (p‑value, 6.26e−12 and 2.55e−6, respectively) in patients with UG. In the 
buccal microbiome, taxa such as Lactococcus was significantly depleted (p‑value, 1.31e−17), whereas Faecalibacterium 
was enriched in patients with UG (p‑value, 6.12e−8).

Conclusions: The eyelid and buccal microbiomes in patients with UG differ from controls, which raises concerns 
surrounding environmental influences on the pathogenesis of UG. The reduced Lactococcus in the eyelid and buccal 
area suggest that microbiota dysbiosis is associated with UG.
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Background
The microbiome interacts with the human body and 
affects human health. Recent advances in next-genera-
tion sequencing (NGS) technology and bioinformatics 
tools have facilitated the study of the human microbiome 
[1], revealing that the epigenetic changes caused by the 
commensal microbiome contribute to the development 
of metabolic and systemic inflammatory diseases [2]. In 
addition, the emerging role of commensal microbiota 

may trigger immune responses and offer clues to the 
environmental origin of ocular inflammation such as 
uveitis [3–7]. Numerous studies in humans and animals 
have shown that uveitis is associated with gut microbi-
ome changes [5, 8–16]. In a microbiome study for glau-
coma on neurodegeneration, a higher rate of Helicobacter 
pylori infection was observed in patients with glaucoma 
than in non-glaucoma controls [17–19]. Previous studies 
on the oral microbiome of patients with glaucoma had 
identified specific microbiome biomarkers for OAG using 
machine learning [20] and showed an overall higher bac-
terial load, suggesting that the commensal microflora-
associated immune response is mediated in glaucoma 
[21–23].
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Uveitic glaucoma (UG) refers to a complex range of dis-
orders defined by the coexistence of anterior uveitis with 
glaucomatous optic neuropathy, which encompasses sev-
eral diverse clinical entities with different prognoses. In 
addition, our research group has previously observed dif-
ferences in open-angle glaucoma (OAG) and UG micro-
biomes [24]. The microbiome may affect the pathogenesis 
of disease course-related factors of UG since uveitis and 
glaucoma are associated with the microbiome. To assess 
the microbiota factor in the UG pathogenesis, it is essen-
tial to compare the differences in microbiome diversity 
in UG compared with healthy people. Here, such knowl-
edge should provide a basis for recognising microbiome 
biomarkers for the pathogenesis of UG. In this study, 
the eyelid margin microbiome was selected, includ-
ing the lower conjunctival sac and meibomian gland, as 
the representative ocular microbiome because the ocu-
lar surface microbiota can be altered by environmental 
insults, and eyelid bacteria could enter the conjunctival 
area. The buccal microbiome, which is characterised as a 
gut microbiome, was selected as a representative of the 
non-ocular microbiome for uveitis in several studies [5, 6, 
25, 26]. To date, few studies have focused on the microbi-
ome of UG that characterises the components of uveitis 
and glaucoma. We hypothesise that there is a difference 
in diversity of the microbiome and specific taxa-related 
immune mechanisms in patients with UG compared to 
the control participants. Hence, this study aimed to ana-
lyse the microbiomes of the eyelid and buccal area and 
identify specific microbiomes associated with UG using 
NGS technology.

Methods
Participants
This multicentre study was conducted by the Veterans 
Health Service (VHS) Medical Center, Daegu Veterans 
Hospital, Pusan National University Hospital, and Pusan 
National University Yangsan Hospital. The study pro-
tocol was approved by the institutional review board of 
each centre. The study was performed according to the 
tenets outlined in the Declaration of Helsinki, and writ-
ten informed consent was obtained from all participants 
prior to their inclusion in the study.

The researchers enrolled patients with UG who satis-
fied the inclusion criteria. UG is a complex range of dis-
orders defined by the coexistence of anterior uveitis with 
glaucomatous optic neuropathy. Patients with UG had 
more than three previously observed instances of nonin-
fectious anterior uveitis, regardless of the serological test 
and systemic disease. Glaucomatous optic neuropathy 
involves rim thinning, notching, retinal nerve fibre layer 
(RNFL) defects, and glaucomatous visual field defects. 
The control was defined as participants with a visual 

acuity of 20/40 or better and those without glaucoma-
tous optic neuropathy, other retinal diseases, or a history 
of uveitis. Additionally, the control group did not have 
systemic inflammatory diseases, such as Behcet’s disease 
and ankylosing spondylitis. Furthermore, there was no 
history of steroid medication for eye treatment.

Participants with a history of ocular surgery other than 
uncomplicated cataract surgery, history of ocular trauma, 
or other diseases affecting the visual field (e.g., retinal 
vein occlusion, ischaemic optic neuropathy, etc.) were 
excluded. Moreover, participants who had food within 
2 h before the swab, participants with a dental problem, 
contact lens wearers, tobacco smokers, participants with 
upper respiratory infection symptoms within the last 
2  weeks, participants who were receiving oral antibiot-
ics, oral probiotics, or topical antibiotic eye drops within 
1 month were excluded from this study.

Sample collection and DNA extraction
The protocol for collecting eyelid and buccal microbi-
omes samples was identical for all the centres. Eyelid 
margin swabs, including the lower conjunctival sac, were 
performed using 3  M™ Quick Swab (3  M Corporate, 
MN) with Alcaine (proparacaine HCl, Alcon, Geneva, 
Switzerland). The buccal swab was performed on the 
right and left buccal areas and under the tongue 4–6 
times using the Gene kit (Daeilpharm Company, Seong-
nam, Korea). The samples were stored at − 20  °C before 
DNA extraction. Metagenomic DNA was extracted from 
swabs using GeneAll® Exgene™ Blood/Clinic/Cell SV 
mini kit (GeneAll, Seoul, Korea) according to the manu-
facturer’s instructions. The DNA quality control (DNA 
QC) criteria required 1) absorbance at 260  nm/280  nm 
ratio of 1.5–2.2 for DNA purity and 2) DNA concentra-
tion > 10 ng/µL using Trinean Dropsense 96 (Unchained 
Labs, Pleasanton, CA) and PicoGreen (Thermo Fisher 
Scientific, Waltham, MA), 3) presence of intact DNA 
band in  1st PCR. If samples fail for DNA QC, an unreli-
able noise signal is generated, DNA sequencing was per-
formed in samples with passed DNA QC.

DNA Sequencing for targeting 16S ribosomal RNA
The DNA sequencing library targeting the V3 and V4 
hypervariable regions of 16S ribosomal RNA was con-
structed according to the sequencing library prepara-
tion protocol (Illumina, San Diego, CA) in accordance 
with a previous study [27]. KAPA HiFi HotStart 
ReadyMix (Kapa Biosystems, Wilmington, MA) was 
utilised for PCR. The initial PCR was performed with 
20  ng template DNA (DNA amount) using primers 
compatible with Illumina index and sequencing adapt-
ers (Table 1). Purification of the PCR product was per-
formed with Agencourt AMPure XP system magnetic 
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bead-based purification (Beckman Coulter Genom-
ics, Brea, CA). After magnetic bead-based purification 
of PCR products, a second PCR was performed using 
primers from a Nextera XT Index Kit (Illumina) with 
a limited cycle. Subsequently, purified PCR products 
were visualised using gel electrophoresis and quantified 
with Qubit dsDNA HS Assay Kit (Thermo Fisher Sci-
entific) on the Qubit 3.0 fluorometer [24]. The pooled 
samples were run on an Agilent 2100 bioanalyser (Agi-
lent) for quality analysis before sequencing. Libraries 
were quantified with qPCR using a CFX96 Real-Time 
System (Bio-Rad, Hercules, CA). After normalisation, 
the prepared library was sequenced using the MiSeq 
system (Illumina) with 300 bp paired-end reads.

Pre‑processing of sequencing results
The adapter sequence was removed from the original 
paired-end reads using CutAdapt v1.11. Next, the merged 
reads were produced from the first processed paired-end 
reads using FLASH v1.2.11. Then, low-quality merged 
reads were filtered out according to the following crite-
ria: the read contained two or more ambiguous nucleo-
tides, the average quality score of the read would be < 20, 
or it’s length would be shorter than 300  bp after trim-
ming low-quality bases. Finally, potential chimeric reads 
were removed using the previously published UCHIME 
v4.2.40 method [28].

Calculation of operational taxonomic units
Pre-processed reads from each sample were used for 
calculating the number of operational taxonomic units 
(OTUs). The number of OTUs was determined by clus-
tering the sequences from each sample with a 97% 
sequence identity cutoff using UPARSE and QIIME 
software (v.1.8.0) [29, 30]. Taxonomic abundance was 
counted with Ribosomal Database Project (RDP) Classi-
fier v1.1, with a confidence threshold of 0.8 and derived 
from each sample’s pre-processed reads [31]. The micro-
bial composition was normalised among the samples by 
reading count using the value calculated by dividing the 
taxonomic abundance count by the number of pre-pro-
cessed reads for each sample. Consensus sequences were 
clustered using cd-hit v4.6, with the following parameters 
applied: identify > 99% and coverage > 80%. Then, the con-
sensus sequences were aligned to the databases from the 
National Centre for Biotechnology Information (NCBI) 

using the Mega BLAST algorithm. Finally, taxonomy 
profiling was performed for the assembled genome using 
NCBI taxonomy information.

Diversity analysis and principal component analysis 
for microbial communities
Diversity analysis was performed in two ways: alpha-
diversity, which is defined as the mean diversity of spe-
cies within a sample, and beta-diversity, which is a 
measure of similarity or dissimilarity of two samples. 
The comparison of alpha-diversity was used in observ-
ing OTUs and the Shannon index. Additionally, the 
beta-diversity was compared using the weighted Uni-
Frac distance among organism composition. Since 
there is a clinical significance of beta-diversity for group 
analysis, principal component analysis (PCA) was then 
performed using the result from beta-diversity with a 
multi-response permutation procedure (MRPP) [32]. 
Subgroup analysis was conducted according to age 
(cutoff age: 62 years old, the median age of the cohort). 
We calculated significant taxons using the Tag Count 
Comparison (TCC) project (http:// bioco nduct or. org/), 
which provides functions for differential gene expres-
sion analysis (DEG) with normalisation and multi-group 
comparison [33]. In DEG, the volcano plot presents that 
the x-axis is the log2 of the fold change between UG and 
control, the y-axis represents the negative decade log of 
the significance (q-value).

Statistical analyses
Data analyses were performed using R Statistical 
Package, Version 3.6.2 (R Foundation for Statistical 
Computing, Vienna, Austria) for statistical tests. A 
P-value of < 0.05 was considered statistically signifi-
cant. The Wilcoxon test was performed to compare 
the beta diversity in each group. For multiple compari-
son tests, a false discovery rate (FDR) was controlled 
using the Benjamini–Hochberg step-up procedure [34, 
35] for DEG analysis, and FDR < 0.01 was considered 
significant.

Results
The characteristics of participants and sequencing data
A total of 34 UG participants and 25 control par-
ticipants were recruited from March 2019 to October 
2020. The demographic information of the groups are 
presented in Table 2. There were significant differences 

Table 1 Primers and adapters sequences for initial PCR

forward primer: 5’‑TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACGGGNGGC WGC AG‑3’;

reverse primer: 5’‑GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA CTACHVGGG TAT CTA ATC C‑3’

http://bioconductor.org/
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between the two groups, including glaucoma-related 
variables and age. Subgroup analysis was performed 
to match age. In addition, the UG group had 6 partici-
pants with ankylosing spondylitis, 6 Posner-Schloss-
man syndrome, and 22 uveitis of unknown systemic 
disease. All buccal samples passed the DNA QC crite-
ria; however, 14 eyelid samples from the UG group did 
not satisfy the DNA QC criteria. In this case, noisy sig-
nals may appear after NGS; therefore, sequencing was 
not performed. Merged sequences were generated from 
all the sequenced samples, resulting in an average yield 
of 168,307 ± 56,162 sequences/sample from the UG 
group and 192,814 ± 30,559 sequences/sample from the 
control group.

Comparison of alpha‑diversity and beta‑diversity
The comparisons of alpha-diversity using Shannon 
index between the UG and controls showed that alpha-
diversity of the UG group was significantly lower than 
that of control groups in the eyelid and buccal micro-
biomes (P = 0.0019 and P = 2.9e−05, respectively; 
Fig.  1). Using PCA of beta-diversity for the eyelid 
and buccal microbiomes, the UG group differed from 
control clusters with statistical significance (Fig.  2) 
with the MRPP values RDP method (P < 0.001 and 
P < 0.001, respectively) and NCBI database (P < 0.001 
and P < 0.001, respectively). The beta-diversity from 
the taxonomy using the RDP classifier was higher in 
the UG than in the control group of the eyelid and 
buccal microbiomes (P < 2.2e−16 and P = 2.2e−07, 
respectively; Fig.  3). In addition, significantly higher 

beta-diversity in the UG group was observed in the 
eyelid (P = 5.1e−14) from taxonomy using the NCBI 
database. In contrast, beta-diversity of the UG group 
in the buccal area was lower than that of the control 
group (P = 3.2e−10), respectively. Subgroup analysis 
(age > 62  years vs ≤ 62  years) showed that age did not 
affect the comparison results with the UG and control 
groups (Supplementary Figures S1 and S2).

Taxon differences in the microbiome of UG compared 
with Controls
The MA plots revealed that the relative quantities of 
some species of the eyelid (upper panel 274 vs lower 
panel 66, P < 0.05) and buccal microbiomes (upper panel 
128 vs lower panel 147, P < 0.05) were different in the 
UG group than in the control group (Fig.  4). The vol-
cano plot from DEG analysis of the eyelid microbiome 
revealed various taxa differences, including enrichment 
of Paenibacillus and Dermacoccus (p-value = 1.31e−6, 
p-value = 1.55e−7, respectively) and depletion of Morga-
nella, Psychrobacter, and Lactococcus (p-value = 6.26e−12, 
1.27e−7, and 2.55 ×  10−6, respectively) in participants 
with UG (Supplementary Table S1 and Fig. 5). In the buc-
cal microbiome, taxa such as Lactococcus and Sedimenti-
cola were significantly depleted in participants with UG 
(p-value = 1.31e−17 and 3.57e−12, respectively). In con-
trast, Faecalibacterium, Lachnospiracea incertae sedis, 
and Pseudomonas were enriched in participants with UG 
(p-value = 6.12e−8, 4.02e−11, and 2.41e−7, respectively) 
than in the control participants (Supplementary Table S2 
and Fig. 5).

Table 2 Demographic and baseline characteristics of participants

P-values: Numeric data were analysed using the Chi-square test, and continuous data were analysed using independent t-tests

UG, uveitic glaucoma; BCVA, best-corrected visual acuity; logMAR, logarithm of the minimum angle of resolution; IOP, intraocular pressure; MD, mean deviation; RNFL, 
retinal nerve fibre layer; VFI, visual field index

Variables UG
N = 34

Control participants
N = 25

P‑value

Age, years 54.41 ± 14.17 62.68 ± 1.73 0.002

Male / Female 24 / 10 18/ 7 0.903

BCVA, logMAR 0.30 ± 0.41 0.00 ± 0.20 0.0002

Hypertension, n (%) 4 (11.8) 5 (20.0) 0.384

Systemic inflammation disease
Ankylosing spondylitis

6 (17.6) ‑ ‑

Posner‑Schlossman syndrome 6 (17.6) ‑

Not classified 22 (64.7) ‑

Glaucoma medication period, years 3.05 ± 3.03 ‑ ‑

Baseline IOP, mmHg 19.53 ± 8.99 13.48 ± 0.65 0.004

RNFL thickness, µm 69.53 ± 17.58 104.36 ± 5.62  < 0.0001

Visual field (MD), dB ‑11.67 ± 10.43 0.08 ± 0.17  < 0.0001

Visual field (VFI), % 68.85 ± 33.68 99.84 ± 0.47  < 0.0001
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Discussion
The commensal microflora of the human body main-
tains a symbiotic relationship with the host and con-
tributes to the development of diseases [36]. Dysbiosis 
can induce or aggravate disease through toxic effects 
from direct invasion or epigenetic changes. Our study 
showed that the eyelid and buccal microbiomes of par-
ticipants with UG differed from those of control partic-
ipants, which was consistent in the subgroup analysis 
according to age. When compared with the controls 
group, alpha-diversity for UG was lower, whereas beta-
diversity for UG was higher. These results suggested 
that UG has more diverse taxa with altered immu-
nity than healthy populations. A taxa difference was 
observed for the eyelid and buccal microbiomes in the 
UG group compared with healthy controls. For clini-
cal impact for this study, the genus of Lactococcus was 
significantly decreased in UG in both eyelid and buccal 
areas, which was related to anti-inflammatory strains 

[37]. In addition, several microbiome-related immune 
reactions were differently expressed in UG, although it 
is difficult to determine whether this phenomenon is 
the pathogenesis of UG or disease course-related fac-
tors such as anti-glaucoma medications or anti-inflam-
mation medications.

Recent improvements in metagenomics analysis 
could lead to an in-depth characterisation of the micro-
biome across different diseases, as the microbiome 
is considered crucial in maintaining the homeostasis 
of the ocular surface [38]. Several conditions, such as 
dry eye syndrome and contact lens, are related to the 
ocular surface microbiome [38]. In this study, the eye-
lid microbiome for the UG group was identified as fol-
lows. The genus Paenibacillus was reported as one of 
the aetiologies of endophthalmitis following cataract 
surgery [39], while the genus Paenibacillus derived 
antimicrobials such as polymyxins have applications in 
medicine [40]. The genus Dermacoccus was abundant 

Fig. 1 Relative composition of the bacterial community in eyelid and buccal microbiomes between patients with UG and control A It indicates 
alpha‑diversity using OTU of enrolled subjects. B Alpha‑diversity using the Shannon index was significantly different in eyelid and buccal 
microbiomes using the Wilcoxon test (P = 0.0019 and P = 2.9e−5, respectively).UG, uveitic glaucoma; OTU, operational taxonomic unit.
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in the UG group in our study in contrast to the study 
of the microbiome for atopic dermatitis [41]. These 
results suggest that the inflammatory disease may dif-
fer depending on the activity and immune response. In 

addition, Morganella is gram-negative bacilli belong-
ing to Enterobacteriaceae, known to be commensal 
in humans. However, Morganella could cause rare 
opportunistic infections of the eye, such as keratitis, 

Fig. 2 Differences in the microbiome of uveitic glaucoma using principal component analysis Using PCA of beta‑diversity for the eyelid 
microbiome, UG and control clusters were explained differently. In addition, for the buccal microbiome, the UG cluster was different from the 
control cluster. The multi‑response permutation procedure value of beta‑diversity between UG and control was significantly different for the eyelid 
and buccal microbiomes using the RDP classifier (P < 0.001 and P < 0.001, respectively) and NCBI methods (P < 0.001 and P < 0.001, respectively). UG, 
uveitic glaucoma, RDP, Ribosomal Database Project; PCA, principal component analysis; NCBI, National Centre for Biotechnology Information using 
the Mega BLAST algorithm.

Fig. 3 Beta‑diversity in the microbiome of uveitic glaucoma Beta diversity (distance) was compared for each group using the Wilcoxon test. 
The distance was calculated from the taxonomy using the RDP classifier; the difference was observed in the UG group of the eyelid and buccal 
microbiomes (P < 2.2e−16 and P = 2.2e−07, respectively). In addition, a significant difference was observed for the eyelid microbiome (P = 5.1e−14) 
and buccal microbiome (P = 3.2e−10) based on the distance calculated from taxonomy using the NCBI database.UG, uveitic glaucoma, RDP, 
Ribosomal Database Project; NCBI, National Centre for Biotechnology Information
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endophthalmitis, and ophthalmia neonatorum [42, 43]. 
Psychrobacter was abundant in patients with fungal 
keratitis [44]; Lactococcus was reported to be associ-
ated with canaliculitis [45]. However, Morganella, Psy-
chrobacter, and Lactococcus were depleted in the UG 

group in our study. These microbiome-related oppor-
tunistic infections in the eyelids of patients with UG 
were less common, which is thought to be related to 
anti-glaucoma medications with preservatives, nonin-
fectious inflammation, anti-inflammatory, dysbiosis, 

Fig. 4 MA plots of the eyelid and buccal microbiome in UG patients In the eyelid microbiome, A MA plot of UG patients vs control participants 
(DEG number of the upper panel 274 vs lower panel 66, P < 0.05). In the buccal microbiome, B MA plot of UG patients vs control participants (DEG 
number of the upper panel 128 vs lower panel 147, P < 0.05).UG, uveitic glaucoma DEG, differential expression of genes
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and lifestyle. Considering our previous study on the 
preservative effect for eyelid microbiome [46], the pre-
servative in anti-glaucoma medication is considered to 
affect decreased alpha-diversity in the UG group.

In the buccal area of the UG group, several micro-
biomes were significantly depleted and enriched as 
follows. The genus Lactococcus was significantly 
depleted in patients with UG, which is a probiotic bac-
terium that produces various bacteriocins and inhibits 
the bioactivity of oral pathogens [47]. Interestingly, a 
study on a synbiotic supplement for relieving anterior 
uveitis in Behcet’s disease using Lactobacillus and Bifi-
dobacterium showed that lactic acid bacteria had an 
anti-inflammatory effect [48]. In terms of dysbiosis 
and symbiosis, it may be possible that UG occurs due 
to a decrease in strain-associated anti-inflammatory 
mechanisms; however, this hypothesis requires further 
study. The genus Sedimenticola is a genus of bacteria 
from the order of unclassified Gammaproteobacteria, 
and animal studies have been conducted regarding 
autoimmune uveitis [5]. In this study, Gammaproteo-
bacteria tended to be inversely proportional to uvei-
tis activity, and these results were consistent with our 
results [5].

A study on the gut microbiome has shown that the 
genus Faecalibacterium, which is known to be an anti-
inflammatory organism, was enriched in healthy con-
trols than in the uveitis group [11]. These results were 
not consistent with our findings, considering our gut 
specimen from the buccal area, although the previous 
study was from a faecal sample [11]. Moreover, accord-
ing to a microbiome study on irritable bowel syndrome 
(IBS), the largest difference between patients with IBS 
and control participants was observed in the Lachno-
spiracea incertae sedis subnetwork [49]. This result 
supports our findings that UG is also an inflammatory 
disease. Pseudomonas has been reported to be abun-
dant in patients with reactive arthritis and spondyloar-
thritis, which is consistent with our results [50]. These 
buccal microbiomes are related to pro-inflammation 
and anti-inflammation, which supports our findings 
that dysbiosis may be associated with anterior uveitis 
and glaucoma.

A recent study on the microbiome in UG compared 
with OAG had shown that Lactobacillus and Proteus was 
depleted, whereas Enterococcus was enriched in UG [24]. 
Combining these results with those of the present study 
suggests that lactic acid bacteria for UG decreased not 
only compared to healthy control but also compared to 
OAG. This dysbiosis might be related to the inflammatory 
component for UG. In addition, it should be considered as 
a potential factor affecting anti-inflammatory medications, 
such as steroids, anti-glaucoma medication, and anti-biot-
ics during UG treatment. The high-fat and high-glycaemic 
index diet drives inflammation and angiogenesis in uveitis; 
therefore, further research is needed to determine whether 
it is a surrogate or pathological finding.

A major strength of our study is the inclusion of a rel-
atively large number of patients with UG with metagen-
omic analysis and a multicentre base. In addition, both 
ocular and gut microbiomes were investigated, as the 
ocular microbiome may influence local inflammation 
in the eye, and the gut microbiome may influence local 
immune regulation. However, it was difficult to deter-
mine causality in this study, and there are several limi-
tations to this study. First, the UG group was younger 
than the control group. According to a previous study 
on the effects of age on the microbiome [51], the Shan-
non index and abundance of microbiome were related 
to aging. In our study, beta-diversity was lower in the 
UG group than in the control group (older than UG), 
which is expected to offset the effect of age. Moreo-
ver, an age-based subgroup analysis was performed to 
minimise the age effect, which might have overcome 
this limitation. Second, this study was conducted as a 
multicentre study, and it could potentially be biased 
by the inclusion of people living in various locations 
in Korea. Third, patients with UG were enrolled with 
a wide range of phenotypes, such as active uveitis and 
uveitis-associated systemic disease. Furthermore, topi-
cal anti-inflammatory drugs, steroid medications, and 
anti-glaucoma medications may affect microbiome 
changes. Although this study focused on various UG, 
including Posner-Schlossman syndrome, a more well-
organised subtype cohort needs to be created and ana-
lysed to address this problem.

Fig. 5 Volcano plots of the eyelid and buccal microbiome in UG patient comparison with control for DEG The x‑axis is the log2 of the fold change 
between UG and control, the y‑axis represents the negative decade log of the significance (q-value) A Volcano plot of the eyelid microbiome 
showed various taxa differences such as Morganella, Psychrobacter, and Lactococcus were depleted, whereas Paenibacillus and Dermacoccus 
were enriched in UG patients than in control participants. B Volcano plot of the buccal microbiome showed that taxa, such as Lactococcus and 
Sedimenticola were significantly depleted, whereas Faecalibacterium, Lachnospiracea incertae sedis, and Pseudomonas were enriched in UG patients 
than in control participants.UG, uveitic glaucoma; FDR, false discovery rate < 0.01 was significant (red indicates significance in FDR); DEG, differential 
expression of genes.

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Conclusion
In conclusion, the microbiome of the eyelid and buccal 
area in patients with UG was different from that in con-
trol participants, which raised concerns surrounding 
environmental influences on the pathogenesis of UG. 
Although these microbiome differences may be second-
ary changes to related medications for UG management 
or pathophysiology related to UG itself, further study is 
necessary for answering these questions.
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