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The structure of WbnH in a near active state

Dear Editor,

Gram-negative bacteria possess a complicated membrane
system that plays an essential role in interactions between
bacteria and the environment (Reeves and Wang, 2002).
The inner leaflet of the membrane is composed of various
glycerophospholipids, and the outer leaflet consists primarily
of lipopolysaccharide (LPS) molecules.

LPS serves as a barrier to protect bacteria against adverse
environmental elements and is thus necessary for bacterial
growth (Raetz and Whitfield, 2002). LPS consists of a lipid A
moiety, by which LPS is anchored to the membrane, a core
oligosaccharide, which extends outward from the membrane,
and a distal O-specific polysaccharide chain (O antigen)
(Raetz and Whitfield, 2002). The core oligosaccharide is
typically strain-specific, while the O antigen is serotype-spe-
cific. In addition, bacteria often mimic human polysaccharide
processing by generating O-antigenic polysaccharides that
are structurally similar to human polysaccharides in order to
evade the human immune system. This mimicry can lead to
infections and serious consequences for humans (Jones,
2005). Thus, the development of vaccines that inhibit the
generation of bacterial O antigen is urgently needed (Yi et al.,
2003).

O-Antigen biosynthesis has been studied for several dec-
ades.O-Antigenic polysaccharides consist of one to ten sugars
with up to 50 repeating oligosaccharide units. Two major
O-antigen biosynthetic mechanisms have been described;
thesemechanisms diverge primarily in O-antigen translocation
and polymerization (Hug and Feldman, 2011). One of these
mechanisms is the Wzy-dependent pathway. First, O-units are
sequentially assembled onto lipid carriers in the cytoplasm.
Second, these O-units are translocated across the inner
membrane to the periplasm via the flippase Wzx. Finally, the
O-antigen polymerase Wzy catalyzes the polymerization of
O-units from the sugar-reducing end and the enzyme Wzz si-
multaneously controls the chain length of the polysaccharide
(Woodward et al., 2010). The majority of heteropolysaccha-
rides are synthesized via this mechanism. The second
mechanism is the ABC transporter-dependent pathway. In this
pathway, the O-units are completely assembled in the cyto-
plasm, and the polymers are then translocated across the
membrane by the ABC transporter (Linton and Higgins, 1998).

In the Wzy-dependent pathway, the first reaction transfers
a sugar phosphate from the nucleotide sugar donor

substrate to the carrier lipid undecaprenyl phosphate (Und-
P). This reaction is typically processed by the sugar phos-
phate transferase WecA and its orthologs (Touze et al.,
2008). Specific glycosyltransferases catalyze the sequential
addition of different sugars onto the Und-PP-sugar after ini-
tiation (Hug et al., 2010). WbnH is one of these glycosyl-
transferases. WbnH catalyzes the formation of the GalNAc
α-1,3-GalNAc structure that precedes the tetrasaccharide
fragment in the O-unit of E. coli O86 (Yi et al., 2006). In
addition to WbnH, WbnJ, WbnK and WbnI also contribute to
the sequential generation of the repeating unit pentasac-
charide-PP-Und (Woodward et al., 2010). Glycosyltrans-
ferases have distinct specificities that correspond to different
donors and substrates. The pyrophosphate and lipid portions
of the substrates are essential elements for WbnH activity.
The WbnH acceptor naturally contains a 55-carbon unde-
caprenyl hydrophobic chain. However, the chemically syn-
thesized 11-carbon lipid chain GalNAc α-PP-O(CH2)11-OPh
can also act as a substrate of WbnH in vitro (Yi et al., 2006).

The majority of glycosyltransferases are classified into the
GT-A and GT-B superfamilies based on their fold types and
catalytic mechanisms (Charnock and Davies, 1999). WbnH
belongs to the GT-B superfamily, as it does not require a
metal ion for activity (Albesa-Jove et al., 2014). Thus, WbnH
does not contain the canonical DXD motif for binding divalent
metal ions (Albesa-Jove et al., 2014). However, the exact
catalytic mechanism of the WbnH glycosyltransferase is
currently unclear. Here we report the crystal structure of
WbnH and provide a structural foundation for explorations of
the molecular mechanism by which WbnH adopts acceptors
and substrates.

The crystal structure of WbnH from E. coli O86:H2 was
determined at a resolution of 2.2 Å using the single-wave-
length anomalous dispersion (SAD) methodology. The
overall structure of WbnH displays the typical fold of GT-B
glycosyltransferases. The structure consists of two Ross-
mann fold-like lobes: the N-lobe and the C-lobe (Fig. 1A).
Both of these lobes are composed of a core of seven or eight
parallel β-strands surrounded by α-helices. The N-lobe in-
cludes residues 1–166 (β-strand 1–8 and α-helices 1–8) and
residues 323–338 (α-helix 15), and the C-lobe includes
residues 167–322 (β-strand 9–13 and α-helices 9–14). The
N-lobe and C-lobe are separated by a deep cavity, which
presumably accommodates the donor and the acceptor for
the enzymatic reactions.
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To further explore the details of the working mechanism of
WbnH, we performed structural homology searches using
the DALI server. The results revealed that the WbnH struc-
tures are highly similar to several previously reported GT-B
enzymes, although the protein sequence homology is quite
low (Fig. S1). The most similar of these enzymes is the
Corynebacterium glutamicum glycosyltransferase MshA-
UDP·1-L-Ins-1-P complex (DALI Z-score of 32, r.m.s.d. of 2.7 Å
and 19% sequence identity), followed by a GT-B family
glycosyltransferase from Bacillus anthracis ORF BA1558
that is termed BaGT4BA1558 (DALI Z-score of 31.3, r.m.s.d. of
3.2 Å and 18% sequence identity), the PimB’ phos-
phatidylinositol mannosyltransferase from Corynebacterium
glutamicum in complex with GDP-man (DALI Z-score of
28.3, r.m.s.d. of 3.6 Å and 18% sequence identity) and the
phosphatidylinositol mannosyltransferase PimA from My-
cobacteria in complex with GDP-man (DALI Z-score of 28.3,
r.m.s.d. of 3.1 Å and 16% sequence identity). A multiple
sequence alignment among these proteins revealed that
WbnH shares a low sequence identity of no more than 20%
with these enzymes; however, residues around the active
site are quite conserved (Fig. S1).

The superposition of the structure of MshA in complex
with UDP (PDB code 3C4Q) onto WbnH revealed a similar
overall structure (r.m.s. deviation of 2.7 Å for 314 of 393 Cα
pairs) (Fig. 1B). In contrast, a structural comparison of MshA
without substrate (PDB code 3C48) to WbnH revealed a
large difference, particularly in the C-lobe (Fig. 1C). In ad-
dition, residues 16–22 of the MshA structure without sub-
strate are disordered but become well-ordered upon binding
of the UDP substrate. In contrast, the corresponding region
of WbnH (i.e., residues 7–15) formed a loop that was located
in the cavity even in the absence of substrate. These results
indicate that the WbnH structure is close to the active con-
formational state of substrate binding glycosyltransferases
(i.e., in a “near-active” conformation). To further confirm this

hypothesis, we performed a structural superposition of PimA
alone (PDB code 4N9 W) and in complex with the donor
substrate GDP-Man (PDB code 2GEJ) onto WbnH. The re-
sults demonstrate that WbnH structure is more close to the
substrate binding PimA than apo-PimA (DALI Z-score of
28.3 versus 26.4) (Figs. 1D and S2).

We then investigated the residues that are critical for
substrate binding in the catalytic cavity (Fig. 1E). Four resi-
dues (i.e., His133, Lys236, Glu316 and Glu324) in the MshA
structure were previously demonstrated to be responsible for
substrate binding (Vetting et al., 2008). The corresponding
residues (i.e., His118, Lys202, Glu274 and Glu282) in the
PimA structure are conserved and in very similar positions
(Guerin et al., 2007; Ruane et al., 2008). In the WbnH
structure, four conserved residues (i.e., His109, Lys192,
Glu256 and Glu264) are located in similar positions to those
of MshA and PimA, further suggesting that the WbnH
structure is in a “near-active” conformation.

To obtain the details of substrate binding, we per-
formed a co-crystallization of WbnH with UDP-GalNAC.
However, this co-crystallization failed. Because the ac-
ceptor is not commercially available, we used a docking
technique to determine the binding mode of WbnH with its
acceptor and donor. A comparison with substrate-bound
MshA revealed that the donor UDP-GalNAC was manually
docked into WbnH (Fig. S3A). Four conserved residues
(i.e., His109, Lys192, Glu256 and Glu264) surround the
proposed position of UDP-GalNAC (Fig. S3B). Through a
comparison with the structure of MshA in complex with
both UDP-GalNAC and the acceptor analog 1-L-Ins-1-P,
we are able to pinpoint the WbnH structure in complex
with both the donor and the acceptor (Fig. S3C and S3D).
The donor UDP-GalNAC binds primarily to the C-lobe,
and the acceptor binds to the N-lobe. Moreover, one end
of the acceptor is buried in the active site cavity while the
other end of the acceptor is exposed in the flexible sol-
vent region.

In this paper, we report the crystal structure of WbnH in
the absence of substrate. The overall topology of WbnH is
quite similar to previously reported structures of other pro-
teins in the GT-B glycosyltransferase family. Unexpectedly,
the conformation of WbnH without substrate is close to the
structures of other glycosyltransferases with their substrates,
especially the structure of CgMshA in complex with the
UDP·1-L-Ins-1-P complex. Moreover, the key residues for
substrate binding (i.e., His109, Lys192, Glu256 and Glu264)
are highly conserved in both the protein sequence and the
three-dimensional structure. These results strongly suggest
that our WbnH structure is in a “near-active” conformational
state.

WbnH has been proposed to transfer GalNAc from UDP-
GalNAc to the C3 hydroxyl of GalNAc-PP-C55 in bacteria (Yi
et al., 2006). Due to the lack of commercial availability and
the difficult synthetic process of the natural acceptor for the
WbnH enzyme, we were unable to explore the catalytic
mechanism biochemically. Instead, we manually docked

b Figure 1. WbnH in a near active state. (A) Cartoon represen-

tation of the overall structure of WbnH. The α-helix and β-sheet

in the N-lobe are presented in orange (except α-helix 15, which

is presented in yellow) and pink, respectively. The α-helix and

β-sheet in the C-lobe are presented in yellow and red,

respectively. (B) Structural comparison of WbnH and MshA in

complex with UDP (PDB code 3C4Q). WbnH is presented in

yellow, and MshA is presented in purple. The UDP substrate of

MshA is represented as red sticks. (C) Structural comparison of

WbnH and MshA without substrate (PDB code 3C48). WbnH is

presented in yellow, and MshA is presented in purple.

(D) Structural comparison of WbnH and PimA in complex with

the donor substrate GDP-Man (PDB code 2GEJ). WbnH is

presented in yellow, and PimA is presented in blue. The GDP-

Man substrate of PimA is represented as red sticks sticks.

(E) Stereo view of an overlay of the conserved donor substrate

binding sites of WbnH, MshA with UDP and PimA with

GDP-Man.
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both the donor substrate UDP-GalNAC and the acceptor
substrate analog 1-L-Ins-1-P into the WbnH structure based
on structural conservation. UDP-GalNAC primarily binds to
the C-lobe and is surrounded by four conserved residues
(i.e., His109, Lys192, Glu256 and Glu264). The acceptor
analog 1-L-Ins-1-P binds to the N-lobe, and the tail portion
extends into the solvent region in the model; this finding is
consistent with the properties of the natural acceptor Gal-
NAc-PP-C55, which has a long tail. The model we provided
here may contain some inaccuracies due to technical
limitations. Nevertheless, this model provides useful clues
for exploring the mechanism by which WbnH catalyzes the
transfer of GalNAc from UDP-GalNAc to the GalNAc-py-
rophosphate-lipid acceptor.
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