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Abstract
Introduction: Anxiogenic and anxiolytic effects of cannabinoids are mediated by dif‐
ferent mechanisms, including neural signaling via cannabinoid receptors (CBRs) and 
nicotinic cholinergic receptors (nAChRs). This study examined the effects of prior 
nicotine (the psychoactive component in tobacco) exposure on behavioral sensitiv‐
ity to delta‐9‐tetrahydrocannabinol (THC; the psychoactive component of cannabis) 
challenge in animals.
Methods: Male and female adult Sprague‐Dawley rats (N = 96) were injected daily 
with nicotine (1 mg/kg, i.p.) or vehicle for 14 days, followed by a 14‐day drug‐free 
period. On test day, rats were injected with THC (0.5, 2.0, or 5.0 mg/kg, i.p.) or vehi‐
cle and anxiety‐related behavior was assessed in the emergence (EM), elevated plus 
maze (EPM), and social interaction (SI) tests.
Results: Chronic nicotine pretreatment attenuated some of the anxiogenic effects 
induced by THC challenge which can be summarized as follows: (a) THC dose‐de‐
pendently affected locomotor activity, exploratory behavior, and social interaction in 
the EM, EPM, and SI tests of unconditioned anxiety; (b) these effects of acute THC 
challenge were greater in females compared with males except for grooming a con‐
specific; (c) prior nicotine exposure attenuated the effects of acute THC challenge for 
locomotor activity in the EPM test; and (d) prior nicotine exposure attenuated the ef‐
fects of THC challenge for direct but not indirect physical interaction in the SI tests.
Conclusions: The ability of nicotine prior exposure to produce long‐lasting changes 
that alter the effects of acute THC administration suggests that chronic nicotine may 
induce neuroplastic changes that influence the subsequent response to novel THC 
exposure.
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1  | INTRODUC TION

The burden of disease attributable to substance use and the rates 
of comorbid tobacco and cannabis use are increasing, particularly 
for adolescents and young adults (Becker, Schaub, Gmel, & Haug, 
2015; Degenhardt, Stockings, Patton, Hall, & Lynskey, 2016; Keyes, 
Hamilton, & Kandel, 2016; Patton, Coffey, Carlin, Sawyer, & Lynskey, 
2005; Ramo, Liu, & Prochaska, 2012; Rubinstein, Rait, & Prochaska, 
2014; Subramaniam, McGlade, & Yurgelun‐Todd, 2016). Tobacco use 
is the primary preventable cause of death with an estimated mor‐
tality rate of 5 to 6 million people per year globally (World Health 
Organization [WHO], 2008, 2009, 2013). Cannabis is the most widely 
used illicit drug with cannabis use disorders becoming increasingly 
prevalent (United Nations Office on Drugs and Crime [UNODC], 
2015). Tobacco and cannabis use are highly comorbid, at rates of up 
to 90% in some studies, which has important implications for physical 
and psychosocial health (Agrawal, Budney, & Lynskey, 2012; Rabin & 
George, 2015). For example, the co‐occurrence of cannabis use disor‐
der and nicotine dependence is associated with higher rates of psy‐
chiatric disorders, particularly anxiety disorders, bipolar disorder, and 
antisocial and schizotypal personality disorders (Peters, Schwartz, 
Wang, O'Grady, & Blanco, 2014). Daily or almost daily cannabis use is 
associated with anxiety disorders, particularly social anxiety (Feingold, 
Weiser, Rehm, & Lev‐Ran, 2016). Although tobacco and cannabis, and 
their respective psychoactive constituents, nicotine and tetrahydro‐
cannabinol (THC), are reported to have anxiety‐alleviating effects, 
research in humans and animals also demonstrates their anxiogenic 
effects depending on the dose, timing, and route of administration 
and whether exposure is acute or chronic (Irvine, Cheeta, & File, 1999; 
Manwell, Charchoglyan, et al., 2014; Manwell, Ford, Ford, Matthews, 
Heipel, & Mallet, 2014; Manwell & Mallet, 2015; Morissette, Tull, 
Gulliver, Kamholz, & Zimering, 2007; Parrott, 1995; Pomerleau, Turk, 
& Fertig, 1984; Schramm‐Sapyta et al., 2007; Sethi et al., 1986; West 
& Hajek, 1997). Moreover, some of the adverse effects of THC, in‐
cluding intoxication, anxiety, and psychotic symptoms, are reduced 
by cannabidiol (CBD) also present in cannabis in varying amounts 
(Osborne, Solowij, & Weston‐Green, 2017; Solowij et al., 2019). A re‐
cent US national survey of tobacco use indicated that, although rates 
have decreased in the past decade, they remained constant for adults 
with one or more chronic health conditions and were greater in peo‐
ple with mental health comorbidities, specifically anxiety, depression, 
and substance abuse disorders (Stanton et al., 2016). The prevalence 
of comorbid tobacco and cannabis use is also greater in adolescents 
and young adults with mental illness and generally greater in males 
than in females (Hammerslag & Gulley, 2016; Ramo et al., 2012).

Epidemiological studies suggest that prior tobacco use increases 
the risk of cannabis use, but a causal relationship has not been 
well established. Evidence shows that illicit drug use (i.e., canna‐
bis, cocaine, and heroin) is often preceded by tobacco and alcohol 
use, which supports the well‐known gateway hypothesis of drug 
use; however, cannabis use is a strong predictor for the onset and 
lifetime use of tobacco use, which supports the reverse gateway 
hypothesis (Agrawal et al., 2012; Becker et al., 2015; Fergusson, 

Boden, & Horwood, 2006; Kandel & Kandel, 2015; Keyes et al., 
2016; Subramaniam et al., 2016; Wagner & Anthony, 2002). Thus, 
several neurobiological mechanisms for comorbid tobacco and can‐
nabis have been proposed to explain the association, for example, 
synergistic mechanisms, involving central nervous system nicotinic 
acetylcholine receptors (nAChRs) and cannabinoid receptors (CBRs), 
and compensatory mechanisms, involving attenuation of withdrawal 
symptoms (Rabin & George, 2015; Subramaniam et al., 2016). Both 
of these mechanisms involve changes in the opposing physiological 
processes of reward and aversion learning which are mediated by 
neural circuits in the brain's mesolimbic dopaminergic system (MDS; 
Kandel & Kandel, 2015; Scherma et al., 2016). After nicotine expo‐
sure, neurons in the MDS become sensitized to the effects of other 
drugs, particularly THC and cocaine (Kandel & Kandel, 2015; Rabin 
& George, 2015; Subramaniam et al., 2016). Nicotine's effects on the 
endocannabinoid system include the release of endocannabinoids in 
the MDS, affecting dopamine levels and thus the rewarding effects 
of nicotine (González et al., 2002; Scherma et al., 2008); these ef‐
fects can be blocked by administration of CBR antagonists, such as 
SR141716 (Cheer et al., 2007; Scherma et al., 2008). CBRs are also 
involved in the stress response: THC dose‐dependently elevates lev‐
els of stress hormones (e.g., corticosterone and adrenocorticotropic 
hormone [ACTH]; Schramm‐Sapyta et al., 2007), and downregula‐
tion of CBR‐mediated signaling induced by chronic stress is associ‐
ated with impairments in behavioral flexibility and may play a role in 
repetitive behaviors notably observed in anxiety‐related neuropsy‐
chiatric disorders (Hill et al., 2005).

Animal models are advantageous in studying the role of nicotine 
and other drugs in the development of anxiety‐related disorders 
and impaired social behaviors, although more research is necessary 
to demonstrate the mechanisms involved (Le Foll, Ng, Di Ciano, & 
Trigo, 2015). Behavioral measures established to model uncon‐
ditioned anxiety include the light–dark emergence test (EM), the 
elevated plus‐maze (EPM) test, and the social interaction (SI) test 
(Arrant, Schramm‐Sapyta, & Kuhn, 2013; Crawley, 1985; File, Cheeta, 
& Kenny, 2000; Le Foll et al., 2015; Pellow, Chopin, File, & Briley, 
1985). The emergence test assesses competing approach‐avoidance 
motivations and clinically effective anxiolytics significantly increase 
exploration of the open‐lit compartment whereas anxiogenics reduce 
exploration (Arrant et al., 2013; Chauoloff, Durand, & Mormede, 
1997; Crawley, 1985; Merlo Pich & Samanin, 1989). The EPM test 
also assesses approach‐avoidance conflict and clinically effective 
anxiolytic drugs, such as benzodiazepines (i.e., diazepam and chlor‐
diazepam) and barbiturates (i.e., phenobarbitone), typically increase 
exploration of open arms without increasing exploration of closed 
arms (Montgomery, 1955; Pellow et al., 1985). In contrast, drugs with 
anxiogenic effects in humans (i.e., amphetamine, caffeine, yohimbine, 
and pentylenetetrazole) reduce the number of open arm entries and 
exploration time (Pellow et al., 1985). In comparison with animals 
confined to the closed arm, animals confined to the open arms show 
markedly elevated plasma corticosterone levels and more anxiety‐
like behaviors (i.e., increased immobility, freezing behavior, and def‐
ecation; Pellow et al., 1985). The SI test assesses generalized anxiety 
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behaviors in a social context measured by behaviors toward a con‐
specific, such as sniffing, following, grooming, and aggression; anxio‐
lytic effects are generally inferred from increased social interaction, 
particularly in the absence of changes in locomotor activity reflecting 
nonspecific effects of a drug (File et al., 2000; Le Foll et al., 2015).

Evidence suggests the EM, EPM, and SI measures reflect different 
states of anxiety, which are potentially mediated by different neural 
mechanisms (Cheeta, Kenny, & File, 2000; File, 1992; File et al., 2000; 
File, Gonzalez, & Andrews, 1996; Genn, Tucci, Marco, Viveros, & File, 
2004). By itself, nicotine induces anxiolytic or anxiogenic effects de‐
pending upon the dose and testing conditions (File, Cheeta, Irvine, 
Tucci, & Akthar, 2002; File, Kenny, & Ouagazzal, 1998; Irvine et al., 
1999). Studies in male rodents show that acute or chronic exposure 
to high doses of cannabinoids tends to increase anxiogenic behav‐
iors on these three tests, whereas low doses have anxiolytic effects 
(Berrendero & Maldonado, 2002; Genn, Tucci, Marco, Viveros, & File, 
2003; Genn et al., 2004; Marco et al., 2004; Onaivi, Green, & Martin, 
1990; O'Shea, McGregor, & Mallet, 2006; O'Shea, Singh, McGregor, 
& Mallet, 2004; Schramm‐Sapyta et al., 2007; Valjent, Mitchell, 
Besson, Caboche, & Maldonado, 2002). When coadministered, acute 
nicotine potentiates some of the cannabinoid‐induced responses on 
these measures (Valjent et al., 2002). Prior nicotine exposure also 
potentiates the aversive effects of high doses of THC, but not the 
rewarding effects of low doses of THC in place conditioning (Le Foll, 
Wiggins, & Goldberg, 2006), and is known to promote cross‐sensiti‐
zation to other drugs including cocaine (Collins & Izenwasser, 2004; 
McQuown, Belluzzi, & Leslie, 2007), amphetamine (Collins, Montano, 
& Izenwasser, 2004), and morphine (Shippenberg, Heidbreder, & 
Lefevour, 1996). Several lines of evidence suggest that the anxio‐
genic and anxiolytic effects of cannabinoids are mediated by dif‐
ferent mechanisms, including neural signaling via CBRs, nAChRs, 
serotonin (5‐HT1A) receptors, and opioid receptors (Berrendero & 
Maldonado, 2002; Marco et al., 2004; Valjent et al., 2002). Taken to‐
gether, these findings suggest a physiological interaction between 
nicotine and THC in anxiety‐related behaviors.

Given this interaction, the objective of the current experiment 
was to determine whether chronic nicotine exposure induces neu‐
roplastic changes, which in turn alter the acute effect of THC on 
anxiety. The present study was designed to examine the effects of 
prior chronic nicotine exposure on acute THC challenge in male and 
female adult rats. We hypothesized that the aversive effects of acute 
THC exposure would be attenuated (i.e., less anxiogenic) in male and 
female rats.

2  | MATERIAL S AND METHODS

2.1 | Animals

Experimentally naïve adult CD IGS rats (N = 96 Charles River, QC, 
Canada) were used. At the beginning of the experiment, adult male 
(n = 50) and female (n = 46) rats weighed 225–250 g. Rats were fed 
standard rat chow (Harlan 8460) and water ad libitum and pair‐
housed with a same‐sex, treatment‐matched partner in standard 

plastic shoebox cages (45  ×  25  ×  20  cm) in a colony room main‐
tained at 21–22°C on a 12‐hr reverse light–dark cycle with light 
onset at 19:00 hr. All testing was conducted during the dark cycle. 
Experimental procedures followed Canadian Council on Animal Care 
Guidelines and were approved by the Wilfrid Laurier University 
Animal Care Committee. Rats were acclimatized to the colony room 
and handling procedures prior to experimentation.

2.2 | Drugs

Nicotine ((–)‐nicotine tartrate salt; Sigma‐Aldrich) was dissolved in 
0.9% NaCl, and the pH was adjusted to 7.0–7.4 with 0.1 M NaOH. 
Nicotine was administered (i.p.) at a dose of 1 mg/kg in a volume of 
1 ml/kg body weight. This dose of nicotine was chosen to be within 
the range known to induce lasting changes in cannabinoid receptor 
density and activity (e.g., Werling, Collins Reed, Wade, & Izenwasser, 
2009). Δ9‐Tetrahydrocannabinol (THC; THC Pharm GmbH) was dis‐
solved in ethanol, mixed with a small quantity of TWEEN 80 (such 
that the final vehicle contained 1% TWEEN 80), and the ethanol was 
evaporated under a stream of nitrogen gas. THC was then suspended 
in 0.9% NaCl and injected (i.p.) in doses of 0.5, 2, or 5 mg/kg in a vol‐
ume of 1 ml/kg. These multiple doses of THC for an acute challenge 
were chosen based upon previous studies showing the minimum 
doses for observable effects (e.g., locomotor, anxiety‐like behavior, 
conditioned preference, or aversion) up to doses that are less than 
those that begin to produce sedation effects (e.g., catalepsy; Le Foll 
et al., 2006; Schramm‐Sapyta et al., 2007; Werling et al., 2009).

2.3 | Behavioral testing apparatus

2.3.1 | Emergence test

The emergence test was conducted in a dimly lit room illuminated by 
one 13 W compact fluorescent red lamp (5 Lux at apparatus level) 
within an apparatus consisting of a 120 × 120 × 45 cm white mela‐
mine arena with a black acrylonitrile butadiene styrene (ABS) floor 
and a 40 × 24 × 17 cm black melamine hide box. Rats were placed 
in the hide box at the beginning of the test period. Activity was re‐
corded by a video camera mounted 225  cm above the apparatus, 
using the ANY‐maze video tracking software (Stoeling Co., 2010). 
Scored behaviors included latency to emerge from the hide box (s), 
time spent in the open field (s), and time mobile (s) to determine 
whether any changes in hide box latency may be related to altered 
locomotion.

2.3.2 | Elevated plus‐maze test

The EPM test consisted of two open (52 × 12 cm) and two closed 
(52  ×  12  ×  40  cm high) ultra‐high‐molecular‐weight polyethylene 
(UHMWPE) arms arranged in a cross‐elevated position, 53 cm above 
the room floor. The maze floor was constructed of black ABS. This 
task was conducted in a dimly lit room illuminated by one 13 W com‐
pact fluorescent red lamp (5 Lux at apparatus level) and activity was 
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recorded by a camera mounted 140 cm above the apparatus, using 
ANY maze. Scored behaviors included number of entries to open and 
closed arms, time spent in open arms (s), and time mobile (s) which 
was used to quantify locomotor activity.

2.3.3 | Social interaction test

The social interaction test was conducted in a room dimly illuminated 
by white lights (37 Lux at apparatus level) and performed in an experi‐
mental chamber (61 × 26 × 40 cm) made of clear acrylic sides and top, 
and a black ABS floor. Animals were placed in the apparatus for 10 min 
with a treatment‐matched unfamiliar conspecific of approximately 
the same body weight. Activity was recorded by a video camera po‐
sitioned 75 cm in front of the apparatus. An observer blind to group 
allocations manually scored trials using ODLog software (Macropod 
Software, www.macro​podso​ftware.com). Scored behaviors included 
time (s) spent sniffing, following, and grooming a conspecific, and time 
spent rearing as a measure of general locomotor activity.

2.4 | Procedure

Rats (n = 12 per treatment group) were handled for seven consecu‐
tive days before the start of the experiment, after which half of the 
rats received chronic injections of nicotine and half received vehicle 
every 24 hr for 14 days. Following a two‐week washout period to 
ensure that tolerance and withdrawal effects would be reduced or 
absent (e.g., Irvine et al., 1999), rats were further divided into THC 
challenge groups that received either THC (0.5, 2.0, or 5.0 mg/kg, 
i.p.) or vehicle (1 ml/kg, i.p.) on test day (counterbalanced across 
nicotine pretreatment groups and males and females; see Table 1). 
Previous studies have shown that chronic nicotine exposure has 
lasting effects when rats are later challenged with an acute dose of 
THC (e.g., Werling et al., 2009). Rats were injected with THC or its 
vehicle, immediately returned to their home cage, and placed in ei‐
ther the emergence test or EPM 30 min later. Each rat was tested in 
the emergence test and EPM for 5 min per test. The order in which 
emergence and EPM testing were conducted was counterbalanced 
across groups. Following both tests, rats were placed in the social 
interaction test with an unfamiliar conspecific of the same sex and 
from the same treatment group for 10 min.

2.5 | Data analysis

Data for all behavioral measures of the emergence test (time spent in 
open field, latency to exit the hide box, percentage of time spent mo‐
bile in the open field, mean locomotor speed, and open field entries), 
EPM test (number of open arm entries, time spent in open arms, 
time spent in closed arms, number of entries to closed arms, total 
time mobile, and mean locomotor speed), and social interaction test 
(sniffing, following, and grooming the other rat, and time spent rear‐
ing) were analyzed using three‐way 2 × 2 × 4 ANOVAs with sex (male 
vs. female), drug pretreatment condition (vehicle vs. 1.0 mg/kg nico‐
tine), and acute drug challenge condition (vehicle vs. 0.5 mg/kg THC, 

2.0 mg/kg THC, 5.0 mg/kg THC) as independent variables. Results 
were followed with one‐way ANOVAs and post hoc Dunnett's t (2‐
sided) or Bonferroni's tests where warranted. For data with unequal 
variances (i.e., Levene's test significant) and/or sample sizes, Welch's 
F (WF) and Games‐Howell or Hochberg's GT2 post hoc tests were 
used where warranted (i.e., Field, 2009). The significance level was 
set at p < .05.

3  | RESULTS

Results of the behavioral analyses with means (M) and standard er‐
rors (SE) are presented in Figures 1–2, 3–4, and 5–6 for the EM, EPM, 
and SI tests, respectively. There were no interaction or main effects 
of counterbalancing order for the EM, EPM, and SI tests (all p's n.s.; 
see Table 2).

3.1 | Emergence test

3.1.1 | Time spent in open field

Analysis of the time (s) spent in the open field showed a significant 
interaction between Sex × THC challenge [F(3,80) = 16.33, p < .001, 
�
2
p
  =  0.380] and significant main effects of Sex [F(1,80)  =  24.19, 

p < .001, �2
p
 = 0.232] and THC challenge [F(1,80) = 23.39, p < .001, 

�
2
p
  = 0.467] such that time in the open field was decreased for (a) 

female rats given the two highest doses of THC (2.0 and 5.0 mg/kg), 
(b) females compared with males, and (c) all rats given the highest 
dose of THC (5.0 mg/kg).

3.1.2 | Latency to emerge from the hide box

Analysis of the time (s) to emerge from the hide box showed only a 
significant main effect of THC challenge [F(1,80) = 9.86, p <  .001, 
�
2
p
 = 0.270] such that (a) latency to emerge from the hide box was 

increased for rats given only the highest dose of THC (5.0 mg/kg).

TA B L E  1  Assignment of adult male and female rats to chronic 
nicotine pretreatment (1.0 mg/kg) and acute THC challenge 
conditions (0, 0.5, 2.0, and 5.0 mg/kg)

Nicotine pretreatment – 
THC challenge Male Female Total

Veh‐Veh 7 5 12

Veh‐0.5 THC 6 6 12

Veh‐2.0 THC 6 6 12

Veh‐5.0 THC 6 6 12

Nic‐0.5 THC 6 6 12

Nic‐0.5 THC 6 6 12

Nic‐2.0 THC 6 6 12

Nic‐5.0 THC 7 5 12

Total 50 46 96

http://www.macropodsoftware.com
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F I G U R E  1  Light–dark emergence tests show anxiogenic effects of acute THC exposure. (Top panel) Time in open field (s). (Middle panel) 
Latency to emerge from the hide box (s). (Bottom panel) Time mobile (s). Behavioral data (means ± SE) for eight experimental conditions 
(n = 12/group; Veh‐Veh, Veh‐0.5THC, Veh‐2.0THC, Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and Nic‐5.0THC) in male and female 
adult rats. ANOVAs and Dunnett's t test (2‐sided): *p < .05 and **p < .01 and ***p < .001 compared to vehicle (Veh‐Veh)
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3.1.3 | Time mobile

Analysis of the total time mobile (s) showed that there were no sig‐
nificant differences across sex or treatment groups.

3.1.4 | Mean locomotor speed

Analysis of the mean locomotor speed (distance traveled (m)/
time (s)) showed a significant interaction between Sex  ×  THC 
challenge [F(3,80)  =  11.853, p  <  .001, �2

p
  =  0.308] and signifi‐

cant main effects of Sex [F(1,80) = 16.18, p <  .001, �2
p
 = 0.168] 

and THC challenge [F(1,80) = 16.03, p  <  .001, �2
p
  =  0.375] such 

that locomotor speed was decreased for (a) female rats given the 
two highest doses of THC (2.0 and 5.0 mg/kg), (b) females com‐
pared with males, and (c) all rats given the highest dose of THC 
(5.0 mg/kg).

3.1.5 | Open field entries

Analysis of the number of open field entries showed main ef‐
fects of Sex [F(1,80) = 4.96, p < .05, �2

p
 = 0.058] and THC challenge 

[F(1,80) = 25.60, p <  .001, �2
p
 = 0.490] such that open field entries 

were decreased for (a) males compared with females and (b) all rats 
given the two highest doses of THC (2.0 and 5.0 mg/kg).

3.2 | Elevated plus maze

3.2.1 | Number of open arm entries

Analysis of the number of open arm entries showed a significant 
main effect of THC challenge [F(1,80) = 13.88, p < .001, �2

p
 = 0.342] 

such that the number of open arm entries was decreased for (a) all 
rats given the two highest doses of THC (2.0 and 5.0 mg/kg).

F I G U R E  2  Light–dark emergence tests show anxiogenic effects of acute THC exposure. (Top panel) Mean locomotor speed (distance 
traveled (m)/time (s)). (Bottom panel) Open field entries. Behavioral data (means ± SE) for eight experimental conditions (n = 12/group; Veh‐
Veh, Veh‐0.5THC, Veh‐2.0THC, Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and Nic‐5.0THC) in male and female adult rats. ANOVAs 
and Dunnett's t test (2‐sided): *p < .05 and **p < .01 and ***p < .001 compared to vehicle (Veh‐Veh)
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F I G U R E  3  Elevated plus‐maze tests show anxiogenic effects of acute THC exposure. (Top panel) Number of open arm entries. (Middle 
panel) Number of closed arm entries. (Bottom panel) Time spent in open arms. Behavioral data (means ± SE) for the elevated plus‐maze test 
for eight experimental conditions (n = 12/group; Veh‐Veh, Veh‐0.5THC, Veh‐2.0THC, Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and 
Nic‐5.0THC) in male and female adult rats. ANOVAs and Dunnett's t test (2‐sided): *p < .05 and **p < .01 and ***p < .001 compared to vehicle 
(Veh‐Veh)



8 of 18  |     MANWELL et al.

F I G U R E  4  Elevated plus‐maze tests show anxiogenic and locomotor effects of acute THC exposure attenuated by prior nicotine 
exposure. (Top panel) Time spent in closed arms (s). (Middle panel) Time mobile (s). (Bottom panel) Mean locomotor speed (m/s). Behavioral 
data (means ± SE) for the light–dark emergence tests for eight experimental conditions (n = 12/group; Veh‐Veh, Veh‐0.5THC, Veh‐2.0THC, 
Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and Nic‐5.0THC) in male and female adult rats. ANOVAs and Dunnett's t test (2‐sided): 
*p < .05 and **p < .01 and ***p < .001 compared to vehicle (Veh‐Veh)
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3.2.2 | Number of entries to closed arms

Analysis of the number of closed arm entries did not reveal any sig‐
nificant effects.

3.2.3 | Time spent in open arms

Analysis of the time spent in the open arms (s) main effects of Sex 
[F(1,80) = 6.35, p < .05, �2

p
 = 0.074] and THC challenge [F(1,80) = 4.88, 

p <  .01, �2
p
 = 0.155] such that time spent in the open arms was de‐

creased for (a) females compared with males, and (b) rats given the 
two highest doses of THC (2.0 and 5.0 mg/kg).

3.2.4 | Time spent in closed arms

Analysis of the time spent in the closed arms (s) showed a signifi‐
cant interaction between Nicotine pretreatment  ×  THC challenge 

[F(3,80) = 3.00, p < 0.05, �2
p
 = 0.101] and main effects of Nicotine 

pretreatment [F(1,80) = 3.80, p < 0.05, �2
p
 = 0.045] and THC challenge 

[F(1,80) = 2.80, p < .05, �2
p
 = 0.095] such that time spent in the closed 

arms was increased for (a) rats given the two highest doses of THC 
(2.0 and 5.0 mg/kg) and (b) previous nicotine exposure abolished this 
effect of THC in all rats.

3.2.5 | Time mobile

Analysis of the time mobile (s) showed a significant interaction 
between Nicotine pretreatment × THC challenge [F(3,80) = 4.54, 
p  <  .01, �2

p
  =  0.145] significant main effect THC challenge 

[F(1,80)  =  11.02, p  <  .001, �2
p
  =  0.292] such that the time mo‐

bile was (a) decreased for rats given the two highest doses of 
THC (2.0 and 5.0 mg/kg) and (b) this effect was attenuated for 

F I G U R E  5  Social interaction tests show the effects of acute THC exposure and prior nicotine exposure on female rats. (Top panel) Time 
spent sniffing conspecific. (Bottom) Time spent following conspecific (s). Behavioral data (means ± SE) for the social interaction tests for 
eight experimental conditions (n = 12/group; Veh‐Veh, Veh‐0.5THC, Veh‐2.0THC, Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and 
Nic‐5.0THC) in male and female adult rats. ANOVAs and Dunnett's t test (2‐sided): *p < .05 and **p < .01 and ***p < .001 compared to vehicle 
(Veh‐Veh)
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rats preexposed to nicotine and given the middle dose of THC 
(2.0 mg/kg).

3.2.6 | Mean locomotor speed

Analysis of the mean locomotor speed (distance traveled (m)/time 
(s)) showed a significant interaction between Sex  ×  THC chal‐
lenge [F(3,80) = 5.15, p <  .01, �2

p
 = 0.162], a significant interaction 

between Nicotine pretreatment  ×  THC challenge [F(3,80)  =  3.53, 
p <  .05, �2

p
 = 0.117], and a significant main effect of THC challenge 

[F(1,80) = 18.01, p < .001, �2
p
 = 0.403] such that locomotor speed was 

decreased for (a) female rats given the two highest doses of THC 
(2.0 and 5.0 mg/kg) and (b) all rats given the highest dose of THC 
(5.0 mg/kg), and (c) nicotine preexposure attenuated this effect for 
rats given the middle dose of THC (2.0 mg/kg).

3.3 | Social interaction test

3.3.1 | Time spent sniffing conspecific

Analysis of the time (s) spent sniffing a conspecific showed sig‐
nificant interaction between Nicotine pretreatment  ×  THC chal‐
lenge [F(3,80) = 3.740, p < .05, �2

p
 = 0.123], between Sex × Nicotine 

pretreatment [F(3,80)  =  4.881, p  <  .05, �2
p
  =  0.058], and between 

Sex  ×  THC challenge [F(3,80)  =  3.55, p  <  .05, �2
p
  =  0.118], and a 

significant main effect of THC challenge [F(1,80) = 8.80, p <  .001, 
�
2
p
 = 0.248] such that time spent sniffing was decreased for (a) female 

rats preexposed to vehicle and the two highest doses of THC (2.0 
and 5.0 mg/kg), and (b) female rats preexposed to nicotine, and (c) 
all rats preexposed to vehicle and the two highest doses of THC (2.0 
and 5.0 mg/kg).

F I G U R E  6  Social interaction tests show the effects of acute THC exposure and prior nicotine exposure on male and female Rats. (Top 
panel) Time spent grooming conspecific. (Bottom) Time spent rearing (s). Behavioral data (means ± SE) for the social interactions tests for 
eight experimental conditions (n = 12/group; Veh‐Veh, Veh‐0.5THC, Veh‐2.0THC, Veh‐5.0THC, Nic‐Veh, Nic‐0.5THC, Nic‐2.0THC, and 
Nic‐5.0THC) in male and female adult rats. ANOVAs and Dunnett's t test (2‐sided): *p < .05 and **p < .01 and ***p < .001 compared to vehicle 
(Veh‐Veh)
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3.3.2 | Time spent following conspecific

Analysis of the time (s) spent following a conspecific showed a sig‐
nificant interaction between Sex × THC challenge [F(3,80) = 7.30, 
p < .001, �2

p
 = 0.215] and significant main effects of Sex [F(1,80) = 6.05, 

p  <  .05, �2
p
  =  0.070] and THC challenge [F(1,80)  =  5.54, p  <  .01, 

�
2
p
 = 0.172] such that time spent following the conspecific was de‐

creased for (a) female rats given the highest dose of THC (5.0 mg/kg) 
and (b) females than males.

3.3.3 | Time spent grooming conspecific

Analysis of the time (s) spent grooming a conspecific showed a signif‐
icant interaction between Sex × Nicotine pretreatment × THC chal‐
lenge [F(1,80) = 2.72, p <  .05, �2

p
 = 0.093], between Sex × Nicotine 

pretreatment [F(3,80) = 25.75, p < .001, �2
p
 = 0.2443], and a significant 

main effect of THC challenge [F(1,80) = 84.13, p < .001, �2
p
 = 0.759] 

such that time spent grooming the conspecific was increased for (a) 
males preexposed to vehicle and given the two lowest doses of THC 
(0.5 and 2.0 mg/kg), (b) males preexposed to nicotine and given the 

lowest dose of THC (0.5 mg/kg), (c) females preexposed to vehicle 
and given the lowest dose of THC (0.5 mg/kg), and (d) females pre‐
exposed to nicotine and given the two lowest doses of THC (0.5 and 
2.0 mg/kg).

3.3.4 | Time spent rearing

Analysis of the time (s) spent rearing showed significant main ef‐
fects of Sex [F(1,80) = 5.54, p < .05, �2

p
 = 0.065] and THC challenge 

[F(1,80) = 7.13, p < .001, �2
p
 = 0.211] such that time spent rearing was 

decreased for (a) males compared with females and (b) rats given the 
lowest dose of THC (0.5 mg/kg).

4  | DISCUSSION

The present study demonstrates that nicotine reduced sensitiv‐
ity to some of the anxiogenic effects of THC. These results show 
that acute THC induced anxiety‐like behavior in adult rats, which 
was generally greater in females than in males. Prior chronic nicotine 

TA B L E  2  Analysis of potential order effects for EM, EPM, and SI tests

    Order Order × Sex Order × Treatment Order × Sex × Treatment

Emergence tests Time in open 
field

F (1,67) = 0.839, 
p = .363

F (1,67) = 0.664, 
p = .418

F (6,67) = 0.896, p = .503 F (5,67) = 1.31, p = .270

Latency to 
emerge

F (1,67) = 0.741, 
p = .391

F (1,67) = 0.030, 
p = .863

F (6,67) = 1.98, p = .081 F (5,67) = 0.138, p = .983

Time mobile F (1,67) = 0.502, 
p = .481

F (1,67) = 0.030, 
p = .863

F (6,67) = 1.31, p = .266 F (5,67) = 0.300, p = .911

Mean locomo‐
tor speed

F(1,67) = 0.091, 
p = .764

F (1,67) = 0.387, 
p = .536

F (6,67) = 1.39, p = .229 F (5,67) = 0.392, p = .853

Open field 
entries

F (1,67) = 0.163, 
p = .688

F (1,67) = 1.93, 
p = .170

F (6,67) = 1.11, p = .383 F (5,67) = 0.939, p = .462

Elevated plus maze Number open 
arm entries

F (1,67) = 0.7.38, 
p = .393

F (1,67) = 1.02, 
p = .316

F (6,67) = 0.841, p = .543 F (5,67) = 0.374, p = .865

Number closed 
arm entries

F (1,67) = 0.546, 
p = .463

F (1,67) = 0.014, 
p = .905

F (6,67) = 0.760, p = .604 F (5,67) = 0.837, p = .528

Time spent in 
open arms

F (1,67) = 0.221, 
p = .640

F (1,67) = 0.002, 
p = .961

F (6,67) = 0.421, p = .863 F (5,67) = 1.2, p = .313

Time spent in 
closed arms

F (1,67) = 0.084, 
p = .773

F (1,67) = 2.87, 
p = .094

F (6,67) = 0.872, p = .520 F (5,67) = 2.20., p = .064

Time mobile F (1,67) = 3.10, 
p = .082

F (1,67) = 0.525, 
p = .471

F (6,67) = 0.421, p = .862 F (5,67) = 0.420, p = .833

Mean locomo‐
tor speed

F (1,67) = 2.10, 
p = .152

F (1,67) = 0.798, 
p = .375

F (6,67) = 1.05, p = .401 F (5,67) = 0.505, p = .772

Social interaction test Sniffing 
conspecific

F (1,67) = 0.083, 
p = .775

F (1,67) = 0.699, 
p = .406

F (6,67) = 0.825, p = .555 F (5,67) = 1.22, p = .310

Following 
conspecific

F (1,67) = 4.40, 
p = .083

F (1,67) = 0.934, 
p = .337

F (6,67) = 0.882, p = .513 F (5,67) = 0.573, p = .721

Grooming 
conspecific

F (1,67) = 0.090, 
p = .765

F (1,67) = 1.46, 
p = .231

F (6,67) = 0.713, p = .640 F (5,67) = 1.01, p = .419

Rearing (self) F (1,67) = 0.057, 
p = .813

F (1,67) = 0.124, 
p = .726

F (6,67) = 1.12, p = .361 F (5,67) = 0.163, p = .975
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exposure attenuated some of the anxiogenic effects of acute THC 
without producing lasting effects on its own. Dose‐ and task‐specific 
effects can be summarized as follows: (a) THC dose‐dependently af‐
fected locomotor activity, exploratory behavior, and social interac‐
tion in the EM, EPM, and SI tests of unconditioned anxiety; (b) these 
effects of acute THC challenge were greater in females compared 
with males except for grooming a conspecific; (c) prior nicotine ex‐
posure attenuated the effects of acute THC challenge for locomotor 
activity in the EPM test; and (d) prior nicotine exposure attenuated 
the effects of THC challenge for direct but not indirect physical in‐
teraction in the SI tests. This evidence of nicotine's potential to at‐
tenuate some of the aversive effects of THC provides support for 
the hypothesis of a functional link between the cholinergic and can‐
nabinoid systems that may underlie increased risk of cannabis use 
arising from prior tobacco use.

4.1 | Novelty of anxiety‐related behavioral findings

Results of the current study add to the body of research demon‐
strating the broad anxiogenic effects of high doses of THC, which 
are influenced by sex, and present new findings demonstrating that 
nicotine has long‐lasting effects on the endocannabinoid system 
that moderate a range of anxiety‐related behaviors in male and fe‐
male rats. Results of the EM, EPM, and SI tests demonstrated that 
prior exposure to chronic nicotine alone did not affect anxiety‐re‐
lated behaviors but did attenuate some of the anxiogenic behaviors 
that were dose‐dependently induced by acute THC in both male and 
female adult rats.

First, the EM and EPM test results are highly consistent with 
previous studies demonstrating anxiogenic effects of THC at similar 
doses in male rodents (Schramm‐Sapyta et al., 2007; Valjent et al., 
2002). Specifically, acute THC dose‐dependently produces anxio‐
genic responses in both the EM and EPM tests with some locomotor‐
suppressing effects in male rats (0.5 to 2.5 mg/kg; Schramm‐Sapyta 
et al., 2007) and in the EM test in male mice (5 mg/kg; Valjent et al., 
2002). In the EPM test, the CB1 receptor agonist CP 55,940 pro‐
duces anxiogenic and anxiolytic responses at high and low doses, 
respectively, in male rats (Marco et al., 2004).

Second, the SI test results are also consistent with previous 
findings that acute exposure to CB1 receptor agonists reduces so‐
cial interaction in male rats, including THC (Malone, Jongejan, & 
Taylor, 2009; van Ree, Niesink, & Nir, 1984), CP 55,940 (Genn et al., 
2004), and WIN 55212‐2 (Trezza & Vanderschuren, 2008a,2008b) 
even inducing conditioned anxiety in subsequent drug‐free tests 
(Genn et al., 2004). Chronic exposure to CB1 agonists also re‐
duces social interaction in drug‐free tests in male adolescent and 
adult rats (O'Shea et al., 2006) and female adolescent rats but not 
female adult rats (O'Shea et al., 2004). Grooming behavior (of a 
conspecific) was the only measure in the current study to sug‐
gest an anxiolytic effect of low dose THC; however, the effect 
was moderated by both sex and nicotine exposure. Self‐grooming 
and social‐grooming behaviors recruit neighboring, but function‐
ally dissociable, inhibitory and excitatory neurons in the medial 

amygdala that act antagonistically (Hong, Kim, & Anderson, 2014; 
Kalueff et al., 2016), controlling the induction and suppression of 
social and asocial behaviors (Hong et al., 2014). Opposing behav‐
iors could be triggered by activation of CB1 receptors via THC, 
in neighboring amygdala neurons, potentially explaining the simul‐
taneous occurrence of decreased sniffing, following, and rearing, 
but increased grooming behaviors in the present study. Similarly, 
rearing is considered a measure of exploratory and/or escape be‐
havior in rats (Lever, Burton, & O'Keefe, 2006) and could be me‐
diated by similar mechanisms in the amygdala (Hong et al., 2014), 
as suggested by research showing increased dopaminergic activity 
is associated with decreased rearing induced by THC (Hernández‐
Tristán, Arévalo, Canals, & Leret, 2000).

Third, measures of locomotor activity in the EM, EPM, and SI 
tests showed that THC had no effect, or a locomotor‐suppressing 
effect, with some sex differences and interaction with nicotine 
observed. Previous studies show locomotor‐suppressing effects 
of THC in rats (Allen, McGregor, Hunt, Singh, & Mallet, 2003; 
McGregor, Arnold, Weber, Topple, & Hunt, 1998; Schramm‐Sapyta 
et al., 2007; Tseng & Craft, 2001) which are greater in adults than 
adolescents (Schramm‐Sapyta et al., 2007) and in females than 
males (Tseng & Craft, 2001). Nicotine has been reported to potenti‐
ate various effects of high doses of THC (e.g., hypothermia, hypolo‐
comotion, antinociception, tolerance, and precipitated withdrawal) 
and low doses of THC (e.g., anxiolytic responses and conditioned 
place preference) in male mice (Valjent et al., 2002). Although it is 
possible the reduction in anxiety‐like behaviors could be a by‐prod‐
uct of a reduced ability or desire to move, this is unlikely because 
overall mobility was not generally affected or it was attenuated by 
prior nicotine exposure.

Thus, the present study extends previous findings in adult 
male rats and mice to demonstrate that THC also induces anxio‐
genic behaviors in adult female rats, which is greater than in males, 
and the anxiogenic effects of THC are lessened by prior nicotine 
exposure for both male and female rats, although females are 
also more sensitive to the effects of nicotine. The present results 
are also consistent with previous findings that other behavioral 
effects induced by THC (e.g., antinociception and catalepsy) are 
greater in female than in male rats (Tseng & Craft, 2001), that 
prior nicotine exposure can alter other behavioral effects induced 
by THC (Trauth, Seidler, & Slotkin, 2000), and that sensitization 
to nicotine varies depending upon sex and age in rats (Collins & 
Izenwasser, 2004; Collins, Montano, et al., 2004; Faraday, Elliott, 
& Grunberg, 2001; Schochet, Kelley, & Landry, 2004). The media‐
tion of THC‐induced effects by sex and prior nicotine exposure in 
the current study is also consistent with reports in animals and in 
humans (Fattore, Altea, & Fratta, 2008; Subramaniam et al., 2016), 
for example, strong associations between anxiety and reduced so‐
cial functioning in cannabis users (Feingold et al., 2016), greater 
risk of anxiety‐related disorders in younger female cannabis users 
(Patton et al., 2002), and higher rates of anxiety‐related disorders 
in individuals reporting cannabis and nicotine dependence (Peters 
et al., 2014).
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4.2 | Potential mechanisms involved

Several potential neurobiological mechanisms may underlie nico‐
tine's mediation of different types of THC‐induced anxiogenic 
behaviors in male and female rats. First, nicotine and THC admin‐
istered alone induce similar pharmacological effects (Ahsan et al., 
2014; Howlett et al., 1990; Jackson et al., 2010; Justinová, Goldberg, 
Heishman, & Tanda, 2005; Lichtman, Cook, & Martin, 1996; Sañudo‐
Peña, Romero, Seale, Fernandez‐Ruiz, & Walker, 2000; Scherma et 
al., 2016) which are dose‐dependent and biphasic, typically pro‐
ducing anxiolytic effects at low doses and anxiogenic effects at 
high doses (Brioni et al., 1994; Cheeta, Irvine, Kenny, & File, 2001; 
Olausson, Akesson, Engel, & Söderpalm, 2001; Ouagazzal, Kenny, 
& File, 1999; Patel & Hillard, 2006; Viveros, Marco, & File, 2005). 
Second, when coadministered, nicotine mediates THC‐induced be‐
havioral effects, which are potentiated (Balerio, Aso, Berrendero, 
Murta, & Maldonado, 2004; Balerio, Aso, & Maldonado, 2006; Le 
Foll et al., 2006; Pryor, Larsen, Husain, & Braude, 1978; Scherma 
et al., 2012, 2016; Valjent et al., 2002) or attenuated (Le Foll et al., 
2006), even when administered at subthreshold levels (Valjent et 
al., 2002). Acute nicotine potentiates a range of stress‐related re‐
sponses induced by THC, including unconditioned anxiogenic and 
anxiolytic responses, conditioned place preference, antinociception, 
hypolocomotion, and hypothermia, which involve activation of neu‐
ral circuits in the MDS, including the amygdala and prefrontal cortex 
(Valjent et al., 2002), brain regions involved in emotional regulation, 
and expressing high densities of CBRs and nAChRs (Viveros et al., 
2005; Watkins, Koob, & Markou, 2000). Third, the degree of nAChR 
activation by nicotine appears to affect downstream regulation of 
neurotransmitters in the MDS differently (Watkins et al., 2000). 
Acute nicotine briefly stimulates nAChRs (Corringer et al., 1998), ac‐
tivating dopaminergic and serotonergic neurons (Bang & Commons, 
2011; Nisell, Nomikos, & Svensson, 1994), after which nAChRs be‐
come transiently desensitized (Corringer et al., 1998). Consequently, 
chronic nicotine upregulates nAChRs (Wonnacott, 1997) across sev‐
eral brain regions (Collins, Wade, Ledon, & Izenwasser, 2004; Doura, 
Gold, Keller, & Perry, 2008; Slotkin, Cousins, & Seidler, 2004; Trauth, 
Seidler, McCook, & Slotkin, 1999) leading to increased dopamine 
(Carboni, Bortone, Giua, & Chiara, 2000) and AEA and 2‐AG levels 
in the brain (González et al., 2002; Scherma et al., 2008). However, 
age of first exposure to nicotine greatly affects the distribution and 
density of nAChRs (Doura et al., 2008). Specifically, nAChR subtype 
α4β2* receptors are expressed more abundantly in drug‐naïve ado‐
lescent rats than in adult rats (Doura et al., 2008) and chronic nico‐
tine exposure upregulates nAChRs in greater numbers across more 
brain regions in adult rats than in adolescent rats (Collins, Wade, et 
al., 2004; Doura et al., 2008; Slotkin et al., 2004; Trauth et al., 1999). 
Fourth, during nicotine abstinence, there is a period of recovery of 
nAChR function (Dani & Heineman, 1996; Koob, Sanna, & Bloom, 
1998) that coincides with the somatic and motivational effects of 
withdrawal, which peak at 10–16 hr and return to baseline around 
96  hr after the last nicotine exposure (Shoaib & Bizarro, 2005). 
Symptoms of nicotine withdrawal are associated with decreased 

dopaminergic function in the MDS, particularly the amygdala, and 
thus, it is hypothesized that protracted abstinence involves neurore‐
adaptation of dopaminergic function in the amygdala that affects the 
stress response, mood, and anxiety levels, essentially creating a new 
“hedonic set point” (Koob, 1996; Koob & Le Moal, 1997; Watkins 
et al., 2000) and potentially contributing to greater tolerance of 
the anxiogenic effects induced by high doses of THC (Valjent et 
al., 2002). THC is known to activate the HPA axis, increasing stress 
hormone levels and prolonging their circulation in the bloodstream 
(Patel, Cravatt, & Hillard, 2005; Schramm‐Sapyta et al., 2007), which 
likely contributes to its anxiogenic effects at high doses. Thus, neu‐
roreadaptation of dopaminergic function in the MDS, particularly 
in the amygdala, after chronic nicotine exposure, may have led to a 
diminished stress response to high doses of THC that induced anxi‐
ogenic effects in male and female rats in the current experiment. 
Fifth, sex‐related differences in anxiogenic responses observed in 
the current study may be related to hormonal levels in female rats; 
higher levels of oestradiol in cycling female rats are associated with 
decreased CB1 receptor densities in the prefrontal cortex and amyg‐
dala and reduced motor activity and impaired social interaction 
(Castelli et al., 2014). Sex differences are also found in the effects 
of chronic nicotine on different types of locomotor activity, such as 
horizontal versus vertical locomotor activity, and in the moderating 
effects of stress (Faraday, O'Donoghue, & Grunberg, 2003). These 
findings are consistent with some of the sex differences reported in 
the association between comorbid THC and nicotine use and anxi‐
ety‐related disorders in humans (Hammerslag & Gulley, 2016; Ramo 
et al., 2012).

4.3 | Implications and future research

Increasing trends worldwide toward cannabis legalization are asso‐
ciated with higher rates of tobacco and cannabis co‐use, and co‐use 
is a significant predictor of nicotine dependence for adolescents 
and adults (Wang, Ramo, Lisha, & Cataldo, 2016). This increase co‐
incides with chronic cannabis users reporting smoking cannabis pri‐
marily to relieve symptoms of both physical conditions (e.g., sleep 
disturbances, pain, and concentration problems) and psychologi‐
cal conditions (e.g., anxiety, stress, and depression) rather than for 
merely recreational use (Bottorff, Johnson, Moffatt, & Mulvogue, 
2009; Hyman & Sinha, 2009; Temple, Driver, & Brown, 2014). 
Addressing comorbid drug use and psychiatric symptoms requires 
a better understanding of the biological mechanisms that link the 
cannabinoid and cholinergic systems in the brain, specifically areas 
of structural and functional overlap between their neurotransmit‐
ters and receptors in mediating the rewarding and aversive effects 
of nicotine and THC. The present study's results provide additional 
support for theories of tobacco and cannabis co‐use focusing on 
compensatory effects, specifically, that nicotine and THC attenu‐
ate each other's negative effects and aversive states (reviewed in 
Rabin & George, 2015). For example, tobacco and cannabis can 
be used to mitigate each other's withdrawal symptoms (e.g., dys‐
phoria, cravings, irritability, and sleep disturbances) and cognitive 
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and affective impairments (e.g., THC can produce both euphoria 
and paranoia and impairs learning and memory; nicotine increases 
arousal and improves concentration and cognition; Rabin & George, 
2015). Pharmacological treatments targeting the cannabinoid and/
or cholinergic systems may prove beneficial in weakening the psy‐
chological and neurobiological associations between tobacco and 
cannabis and thus reducing their co‐use.

Future research could focus on other common mechanisms un‐
derlying tobacco and cannabis use, including conventional routes 
of administration (via smoking), similar environmental influences, 
particularly social stressors, and shared genetic factors (Agrawal et 
al., 2012; Rabin & George, 2015). For example, future studies could 
compare the effects of tobacco smoke and cannabis smoke on anx‐
iety‐related behavior and social interaction adult and adolescent 
rats. Indeed, in a limited number of studies, extracts from abused 
drugs (e.g., THC from marijuana, salvinorin A from dried Salvia 
leaves, and toluene from industrial chemicals) have been shown 
to produce different effects on behavior and memory depending 
upon the route of administration, specifically whether they are in‐
haled or injected (Benignus, Muller, Barton, & Bittikofer, 1984; Fá 
et al., 2000; Manwell, Charchoglyan, et al., 2014; Manwell, Ford, 
et al., 2014; Manwell & Mallet, 2015; Manwell et al., 2015; Naef, 
Russman, Petersen‐Felix, & Brenneisen, 2004; Niyuhire, Varvel, 
Martin, & Lichtman, 2007; Perit et al., 2012). Future studies could 
also evaluate the potential of other agents to attenuate the anx‐
iety‐ and abuse‐related behavioral effects of both nicotine and 
THC, including cannabidiol, a major nonpsychoactive constituent 
of marijuana (Viveros et al., 2005), fatty acid amide (FAAH) inhibi‐
tors such as URB597 that prevent the degradation of natural endo‐
cannabinoids (Scherma et al., 2012), and D3 antagonists that target 
dopaminergic neurons activated by nAChR and CBR signaling (Le 
Foll, Goldberg, & Sokoloff, 2005; Le Foll, Schwartz, & Sokoloff, 
2000; Le Foll, Sokoloff, Stark, & Goldberg, 2005; Pak et al., 2006).

5  | CONCLUSIONS

The current study demonstrates that there are important differences 
in THC‐induced anxiety‐related behavior that are sex‐ and dose‐de‐
pendent and attenuated by prior nicotine exposure. Our results pro‐
vide evidence in support of a broad anxiogenic profile for high doses 
of THC in male rodents, extend those findings to show similar but 
augmented responses in female rodents, and present new data dem‐
onstrating that these behavioral responses can be modified by prior 
exposure to nicotine. The ability of nicotine preexposure to produce 
long‐lasting changes that alter the effects of acute THC administra‐
tion suggests that chronic nicotine may induce neuroplastic changes 
that contribute to both anxiety‐related disorders and cannabis use. 
These findings contribute to the existing literature on functional in‐
teractions between the cholinergic and endocannabinoid systems in 
the MDS and help explain the strong association between comorbid 
nicotine and cannabis use and increased risk of stress‐ and anxiety‐
related disorders in epidemiological studies.
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