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Abstract

The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the
cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins,
especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This
study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter
function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1.
Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ,1.6- (PDZK1) and ,1.8- (NHERF1) fold of
control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional
increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at
the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-
3-sulfate uptake (Vmax: 138.964.1 (PDZK1) and 181.4616.7 (NHERF1) versus 55.563.2 pmol*(mg*4 min)21 in control;
P,0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by
direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by
decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1
enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1
regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by
enhancing protein stability.
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Introduction

Organic anion transporting polypeptides (OATPs) encoded by

solute carrier transporter (SLC) genes are a family of membrane

transporter proteins that are widely expressed in human tissues.

OATPs mediate the cellular influx of endogenous and exogenous

substances including a number of drugs [1–7]. OATP1A2 is

expressed in the renal tubules, intestine, brain capillary endothe-

lium and biliary cholangiocytes where it contributes to intestinal

drug absorption at the luminal apical membrane of enterocytes,

the tubular reabsorption of xenobiotics at the renal apical

membrane and drug transport into brain [3,8–13]. Important

substrates of OATP1A2 include bile acids, steroid and thyroid

hormones (and their conjugates), drugs such as imatinib,

fexofenadine, methotrexate, HIV protease inhibitors and HMG-

CoA reductase inhibitors, and certain peptides [2,3,11,14–20].

Indeed, OATP1A2 function influences the cellular uptake and

pharmacokinetic behaviour of a number of drugs [1,3,4,13,19].

Several important regulatory mechanisms have emerged for

OATPs, including post-translational processing by N-glycosylation

[21] and altered trafficking by protein kinase-mediated phosphor-

ylation [22–25]. OATPs are also regulated by interactions with

chaperones that include the PDZ (PSD95, D1g and ZO1) domain-

containing proteins [26–28]. These proteins interact with small

canonical sequences of 3–4 amino acid residues within C-termini

of target proteins to direct and anchor the latter to specific regions

of the cell [29]. The PDZ proteins PDZK1 and NHERF1 have

been shown to regulate the subcellular trafficking of certain

transporters and to be essential for optimal transport function [30–

32]. PDZK1 regulates the cellular polarity of rodent Oatps by

maintaining the asymmetrical distribution of proteins and lipids

between the apical and basolateral surfaces of cells [27,28].

Phosphorylation on serine residues upstream from the PDZ

binding consensus site in rat Oatp1a1 is required for optimal

binding to PDZK1 [26]. A recent study also implicated PDZK1 in

the selective recruitment of microtubule-based motor proteins that

mediate murine Oatp1a1 trafficking to the plasma membrane

[33].

From yeast two-hybrid library screening Kato et al. first

suggested the potential for interactions between PDZ proteins

and human OATP1A2 [34]. The present study investigated the

molecular mechanisms by which PDZ proteins regulate
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OATP1A2 transport function. The major findings to emerge were

that PDZ proteins regulate OATP1A2 function and expression in

HEK-293 cells by modulation of transporter trafficking and

protein stability.

Materials and Methods

Materials
[3H]Estrone-3-sulfate (E3S; specific activity 57.3 Ci/mmol) was

purchased from PerkinElmer (Melbourne, VIC, Australia).

Dulbecco’s modified Eagle’s medium (DMEM) was obtained from

Thermo Scientific (Lidcombe, NSW, Australia). Puromycin was

purchased from Sapphire Biosciences (Redfern, NSW, Australia).

Endo F and Endo Hf were purchased from Genesearch (Arundel,

Qld, Australia). Protease inhibitor cocktail tablets were obtained

from Roche Diagnostics Australia Pty. Ltd. (Castle Hill, NSW,

Australia). Anti-flag and anti-myc antibodies were from Gene-

search, the horseradish peroxidase-conjugated goat anti-rabbit

IgG was from Sapphire Biosciences and the anti-b-actin antibody

was obtained from Santa Cruz Biotechnology (Santa Cruz, CA,

USA). Unless otherwise stated, all other chemicals and biochem-

icals were purchased from Sigma-Aldrich (Castle Hill, NSW,

Australia).

Preparation of OATP1A2, PDZK1 and NHERF1 constructs
The OATP1A2, PDZK1 and NHERF1 cDNAs were pur-

chased from GeneCopoeia (Cat. No: GC-Q0577, GC-Q0230 and

GC-U0225) and subcloned into the PCI vector (Promega;

Alexandria, NSW, Australia). Nucleotide changes were generated

in cDNAs by site-directed mutagenesis using Pfu DNA polymerase

(Promega; Singapore) as described previously [35,36]. A Flag tag

(DYKDDDDK) was inserted at the N-terminus of OATP1A2 and

myc tags (EQKLISEEDL) were introduced into the N-termini of

PDZK1 and NHERF1. The OATP1A2-del mutant, that lacked

the PDZ binding domain (residues 667–670, KTKL), was

constructed by site-direct mutagenesis as described elsewhere

[1,37] with the forward primer: 59- GAAAGATGATGAATTG-

TAGCGGTACCTCTAG-39 and the reverse primer: 59- CTA-

GAGGTACCGCTACAATTCATCATCTTTC-39. All sequenc-

es were confirmed by the dideoxy chain termination method

(Ramaciotti Centre, University of New South Wales, Randwick,

NSW, Australia).

Substrate uptake in HEK-293 cells that over-express
OATP1A2

HEK-293 cells were cultured in DMEM supplemented with

10% fetal calf serum (37uC, 5% CO2). Cells were transfected with

plasmid DNA using Lipofectamine 2000 (Invitrogen, Mount

Waverley, VIC, Australia). Twenty-four h after transfection

cellular uptake of [3H]-E3S (final concentration 0.3 mM,

67 nCi/well) was estimated as described previously [1,2,23,38].

Uptake was initiated in phosphate-buffered saline (PBS; 137 mM

NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4,

pH 7.4) containing 1 mM CaCl2, and 1 mM MgCl2. Preliminary

experiments indicated that initial rates of OATP1A2-mediated

substrate uptake in HEK-293 cells were linear over at least

10 mins. Uptake was terminated by rapidly washing the cells in

PBS buffer at 4uC. The cells were then solubilized in 0.2 M

NaOH, followed by neutralization with 0.2 M HCl. Uptake rates

were standardized to the total amount of protein in each well.

Kinetic studies were conducted over the E3S concentration range

0.05–50 mM and were run for 4 min. Apparent Km and Vmax

values for substrate uptake were calculated by nonlinear regression

(GraphPad Prism 5.0; GraphPad Inc, LaJolla, CA, USA).

Electrophoresis and immunoblotting
Cell lysate proteins were denatured, loaded onto 7.5%

polyacrylamide minigels and electrophoresed as described previ-

ously [1,23,37]. Protein transfer to polyvinylidene fluoride

membranes was conducted in an electroelution cell (Bio-Rad;

Gladesville, NSW, Australia). Membranes were blocked for 1 h

with 5% nonfat dry milk in PBS-Tween (137 mM NaCl, 2.7 mM

KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4 and 0.05% Tween

20, pH 7.5), washed with TBS-Tween, and then incubated

overnight at 4uC with primary antibody. Membranes were

washed, incubated with horseradish peroxidase-conjugated goat

anti-rabbit IgG (1:5000; Sapphire Biosciences, Cat. No: sc-2004),

and signals were detected using the Immobilon Western Chemi-

luminescent HRP Substrate (Merck; Kilsyth, VIC, Australia).

Co-immunoprecipitation
HEK-293 cells were co-transfected with OATP1A2-N-flag and

either PDZK1-N-myc or NHERF1-N-myc and were lysed 24 h

later in gentle immunoprecipitation buffer (10 mm Tris/HCl,

10 mm NaCl, 0.5–1% Triton X-100, 2 mm EDTA, 10% glycerol

and protease inhibitor cocktail, pH 7.5). Cell lysates were

precleaned with protein G-agarose beads (Genesearch) to decrease

nonspecific binding and then incubated overnight with anti-flag

antibody (Genesearch; 1:200) at 4uC. Protein G-agarose beads

were then added and mixed by end-over-end rotation at 4uC for

2 h. Proteins bound to the protein G-agarose beads were eluted

with Laemmli buffer containing b-mercaptoethanol and analyzed

by immunoblotting with anti-myc antibody (Genesearch; 1:1000).

Biotinylation of OATP1A2 expressed at the plasma
membrane of HEK-293 cells

HEK-293 cells were co-transfected with OATP1A2-N-flag and

PDZK1 or NHERF1 cDNAs, or vector alone (control), in six-well

plates using Lipofectamine 2000 [37]. After 24 h, the medium was

removed and the cells were washed with ice-cold PBS (pH 8.0;

3 mL). Cells were incubated on ice with the membrane

impermeable NHS-SS-biotin (0.5 mg/mL in PBS). After 30 min,

cells were washed with PBS containing 100 mM glycine and

incubated on ice for 20 min to ensure complete quenching of

unreacted NHS-SS-biotin. The cells were then treated for 30 min

with lysis buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA,

0.1% sodium dodecyl sulfate, 1% Triton X-100, that contained

the protease inhibitors phenylmethylsulfonyl fluoride, 200 mg/

mL, and leupeptin, 3 mg/mL, pH 7.4; 400 mL). Unlysed cells

were removed by centrifugation at 14,000 g at 4uC.

Equivalent quantities of protein lysates from each sample

(Bradford assay) were loaded onto streptavidin-agarose beads

(50 mL; Quantum Scientific), eluted and subjected to immuno-

blotting analysis, as described above. After probing with the

OATP1A2 or Flag antibodies, the membranes of biotinylated

samples were routinely re-probed with anti-b-actin antibody to

confirm the absence of the intracellular protein b-actin. In

addition, 10% of each lysate was denatured and loaded onto

separate gels. Immunoblotting for b-actin on the membranes of

lysate was done to confirm uniform protein loading.

OATP1A2 internalization
As shown in Fig 1A, internalization of biotinylated OATP1A2

was evaluated in HEK-293 cells that were co-transfected with

OATP1A2-N-flag and PDZK1-N-myc, NHERF1-N-myc or

control vector [23,39]. Residual NHS-SS-biotin was quenched

with glycine (100 mM) and the cells were warmed to 37uC to

initialize internalization. At the end of incubations, sodium 2-
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mercaptoethanesulfonate (50 mM) in NT buffer (150 mM NaCl,

1 mM EDTA, 0.2% bovine serum albumin, 20 mM Tris, pH 8.6;

30 min, repeated twice) was added to strip biotinylated, but non-

internalized, proteins remaining at the cell surface. Cell lysates

were prepared in lysis buffer and 500 mg protein from each sample

was applied to streptavidin-agarose beads to capture biotinylated

proteins. Electrophoresis and immunoblotting of the lysate

proteins bound to streptavidin-agarose beads was conducted as

described above. Again uniform protein loading was confirmed by

immunoblotting for b-actin in separate lysate aliquots. Densito-

metric analysis (ImageJ software) was used to estimate relative

OATP1A2 internalization at each time point, which was expressed

as a percentage of the initial biotinylated pool of OATP1A2 at the

plasma membrane.

OATP1A2 targeting/recycling
HEK-293 cells co-transfected with OATP1A2-N-flag and

PDZK1-N-myc, NHERF1-N-myc or control vector were labeled

with NHS-SS-biotin (1 mg/mL) at 4uC and then warmed to 37uC

to initialize recycling/targeting for varying times; an additional

aliquot of NHS-SS-biotin (1 mg/mL, 30 min, 4uC) was applied to

cells to optimize biotinylation of recycled/targeted proteins

(Fig 1B). At the end of incubations residual NHS-SS-biotin was

quenched with glycine (100 mM) at 4uC [23,39]. Cell lysates were

prepared in lysis buffer and 500 mg protein each sample was

applied to streptavidin-agarose beads to capture biotinylated

proteins. Electrophoresis and immunoblotting of the lysate

proteins bound to streptavidin-agarose beads was conducted as

described above. Again uniform protein loading was confirmed by

immunoblotting for b-actin in separate lysate aliquots. Densito-

metric analysis (ImageJ software) was used to estimate the relative

amount of recycled and membrane targeted OATP1A2 at each

time point, which was expressed as a percentage of the initial

biotinylated pool of OATP1A2 at the plasma membrane.

Statistics
Data are presented throughout as mean6S.E. The Student’s t-

test was used to test for differences between two sets of normally

Figure 1. Scheme outlining the biotinylation-based internalization and recycling/membrane targeting assays. (A) Internalization assay.
HEK-293 cells co-transfected with OATP1A2-N-flag and PDZK1-N-myc, NHERF1-N-myc or control vector were labeled with NHS-SS-biotin at 4uC. After
quenching of residual NHS-SS-biotin with glycine (100 mM) the cells were warmed to 37uC to initialize internalization. At the end of incubations,
sodium 2-mercaptoethanesulfonate (50 mM) was added to strip biotinylated, but non-internalized, proteins remaining at the cell surface. Cell lysates
were prepared in lysis buffer and 500 mg protein from each sample was applied to streptavidin-agarose beads to capture biotinylated proteins. (B)
Recycling/membrane targeting assay. HEK-293 cells co-transfected with OATP1A2-N-flag and PDZK1-N-myc, NHERF1-N-myc or control vector were
labeled with NHS-SS-biotin at 4uC and then warmed to 37uC to initialize recycling/targeting for varying times; an additional aliquot of NHS-SS-biotin
was applied to cells to optimize biotinylation of recycled/targeted proteins. At the end of incubations residual NHS-SS-biotin was quenched with
glycine (100 mM) at 4uC. Cell lysates were prepared in lysis buffer and 500 mg protein from each sample was applied to streptavidin-agarose beads to
capture biotinylated proteins. Electrophoresis and immunoblotting of lysate proteins bound to streptavidin/agarose beads was performed as
described in Materials and Methods.
doi:10.1371/journal.pone.0094712.g001
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distributed data and one-way analysis of variance and Dunnett’s

testing for multiple treatment comparisons.

Results

PDZK1 and NHERF1 enhance the expression and
functional activity of OATP1A2 in HEK-293 cells

The interaction between PDZ proteins and human OATP1A2

was identified by yeast two-hybrid library screening [34], but the

functional significance has not been established. In the current

study, we tested whether PDZ proteins alter transporter function

after co-expression in HEK-293 cells. As shown in Fig. 2A, co-

expression of the major PDZ proteins, PDZK1 and NHERF1,

enhanced the transporter activity of OATP1A2 in HEK-293 cells

to ,1.6- (PDZK1) and ,1.8- (NHERF1) fold of control

(OATP1A2 + vector). Because the available antibodies of

OATP1A2, PDZK1 and NHERF1 lack specificity, we prepared

N-Flag tagged OATP1A2 and N-myc tagged PDZK1 and

NHERF1 constructs for use in this study. This enabled the use

of the highly specific anti-flag and anti-myc antibodies in the

analysis of OATP1A2/PDZ protein interactions. Inclusion of the

Flag and myc tags at the N-terminus did not influence OATP1A2

function or its activation by PDZK1 or NHERF1 (data not

shown).

The putative PDZ binding domain of OATP1A2 is located at

the last four C-terminal amino acids of the transporter (residues

667–670, KTKL); this motif is also highly conserved among

OATPs. An OATP1A2-del mutant cDNA that lacked the PDZ

binding domain was constructed by site-directed mutagenesis. In

functional experiments neither PDZK1 nor NHERF1 enhanced

E3S uptake by the OATP1A2-del mutant, although basal uptake

of this mutant was comparable to wild type OATP1A2 (Fig 2A).

Consistent with previous findings [1], two signals were observed

at ,95 KDa and ,65 KDa in direct immunoblots of OATP1A2-

Figure 2. Altered transport function and expression of OATP1A2 in HEK-293 cells in the presence and absence of co-transfected
PDZK1 and NHERF1. (A) Transport of 300 nM [3H] E3S in OATP1A2-transfected HEK-293 cells with or without co-expressed PDZK1 or NHERF1 at
37uC. Values are means 6 S.E. (n = 3). **: Different from control (OATP1A2 + vector): P,0.01. (B) Western blot analysis of total cellular expression of
OATP1A2-N-flag isoforms with or without co-expression of PDZK1 or NHERF1. Top Panel: Cells were lysed and proteins were separated by SDS-
polyacrylamide gel electrophoresis, followed by Western blotting with anti-flag antibody. Bottom Panel: After stripping, the blot was reprobed with
anti-b-actin antibody. (C) Western blot analysis of cell surface expression of OATP1A2-N-flag with or without co-expression of PDZK1 or NHERF1. Cells
were biotinylated, and the labeled cell surface proteins were precipitated with streptavidin beads and separated by gel electrophoresis, followed by
Western blotting with anti-flag antibody.
doi:10.1371/journal.pone.0094712.g002
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N-flag in total cell lysates from HEK-293 cells (Fig 2B). In contrast,

only the ,95 KDa isoform was detected on immunoblots after

biotinylation (Fig 2C), which supports the contention that this

isoform may be a fully glycosylated mature surface form of

OATP1A2, while the ,65 KDa isoform may be an immature

intracellular form. In supporting experiments, both OATP1A2

Figure 3. Michaelis-Menten plot of E3S transport kinetics by OATP1A2 with or without co-transfected PDZK1 or NHERF1. E3S uptake
was conducted over a 4 min experimental duration. Radioactivity in cells was corrected for non-specific uptake by vector transfected cells and was
also standardized to the amount of protein in each well. Kinetic parameters were calculated by nonlinear regression. Values are means 6 S.E. (n = 3).
**: Different from control: P,0.01.
doi:10.1371/journal.pone.0094712.g003

Figure 4. Association of OATP1A2 with PDZK1 and NHERF1. (A) co-immunoprecipitation of OATP1A2-N-flag and PDZK1-N-myc or NHERF1-N-
myc. HEK-293 cells that co-expressed OATP1A2-N-flag and either PDZK1-N-myc or NHERF1-N-myc were lysed and subjected to immunoprecipitation
with anti-flag antibody, followed by immunoblotting with anti-myc antibody. (B) Direct immunoblotting for N-Flag and N-myc tags, respectively, in
the lysates of HEK-293 cells co-expressed with OATP1A2-N-flag and either PDZK1-N-myc or NHERF1-N-myc prior to immunoprecipitation.
doi:10.1371/journal.pone.0094712.g004
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isoforms were sensitive to treatment with Endo F (an endoglyco-

sidase that cleaves N-linked oligosaccharides in glycoproteins), but

only the ,65 KDa isoform exhibited a band shift after treatment

with Endo Hf (an endoglycosidase that cleaves high mannose and

some hybrid oligosaccharides from N-linked glycoproteins) (data

not shown).

Co-expression of PDZK1 or NHERF1 also increased plasma

membrane expression of OATP1A2 to ,1.760.3- (PDZK1) and

,2.060.5- (NHERF1) fold of control (n = 3; Fig 2C) and total

cellular expression of the ,95 KDa and ,65 KDa isoforms

(P,0.01, Fig 2B). These findings were supported by the kinetic

analysis that found the Vmax, but not the Km, for E3S uptake by

OATP1A2 was increased by co-expression of PDZ proteins

(P,0.01; Fig 3).

PDZK1 and NHERF1 interact with OATP1A2
PDZK1-N-myc or NHERF1-N-myc constructs were transiently

co-transfected with the OATP1A2-N-flag construct into the HEK-

293 cells. Cell lysates were prepared, immune precipitates were

isolated with the anti-flag antibody, and were then subjected to

immunoblotting for myc-tagged PDZK1 or NHERF1. As shown

in Fig 4A, specific bands were detected in immune precipitates at

,70 KDa (PDZK1) and ,50 KDa (NHERF1), which correspond

to the anticipated sizes of PDZK1 and NHERF1 [30,40]. The

findings in Figs 4B and 4C were obtained by direct immunoblot-

ting of cell lysates with anti-flag and anti-myc, respectively.

Together these findings suggest that OATP1A2 interacts directly

with PDZ proteins.

PDZK1 and NHERF1 regulate subcellular trafficking of
OATP1A2

The increased cell surface expression of OATP1A2 following

co-expression of PDZK1 or NHERF1 could be due to decreased

protein internalization (endocytosis), increased recycling/targeting

between the plasma membrane and intracellular compartments,

or a combination of both. As shown previously, OATP1A2 is

subject to constitutive internalization [23]. In the present studies

OATP1A2-N-flag was co-expressed with PDZK1 or NHERF1.

Cell surface proteins were pre-labeled with membrane imperme-

able NHS-SS-biotin and then subjected to experimental protocols

to individually evaluate OATP1A2 internalization and recycling/

targeting (Fig 1). As shown in Fig. 5A and 5B, the internalization

rate of OATP1A2 was significantly decreased by co-expression of

PDZK1 and NHERF1 (P,0.05). In contrast with this finding,

Figure 5. Biotinylation analysis of OATP1A2-N-flag internalization and recycling/targeting in HEK-293 cells co-expressing PDZK1-
N-myc and NHERF1-N-myc. (A) OATP1A2-N-flag internalization was undertaken as described under ‘‘Materials and Methods,’’ followed by Western
blotting with an anti-Flag antibody; a representative of 3 separate experiments was shown. Stripping control: biotinylated cells were treated with
50 mM sodium 2-mercaptoethanesulfonate to remove the biotin label prior to initiating internalization. (B) Densitometric analysis of internalized
OATP1A2-N-Flag as a percentage of the total initial pool of biotinylated OATP1A2-N-Flag at the cell surface (means 6S.E. from 3 individual
experiments). *: Different from control: P,0.05. (C) OATP1A2-N-Flag recycling/targeting was undertaken as described under ‘‘Materials and Methods,’’
followed by Western blotting with an anti-Flag antibody; a representative of 3 separate experiments was shown. (D) Densitometric analysis of
membrane OATP1A2-N-Flag as a percentage of the pool of biotinylated OATP1A2-N-Flag prior to initiation of recycling/targeting (means 6S.E. from 3
individual experiments). Blotting for b-actin in separate aliquots of total lysates was used to confirm uniform protein loading.
doi:10.1371/journal.pone.0094712.g005
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PDZK1 and NHERF1 did not alter OATP1A2 trafficking from

intracellular compartments to the cell membrane (Fig 5C and 5D).

These findings suggest that OATP1A2 internalization, but not

recycling/targeting, is regulated by PDZ proteins.

PDZK1 and NHERF1 modulate OATP1A2 internalization
via a clathrin-dependent pathway

Membrane transporter internalization may be clathrin-depen-

dent, caveolin-dependent or clathrin/caveolin-independent. Here

protein is relocated from the cell membrane to the cytoplasm via

clathrin-coated pits and/or caveolin-enriched membrane invagi-

nations [41,42]. Previous studies have shown that the internaliza-

tion of OATP1A2 and OATP2B1 is associated with clathrin-

dependent pathways in renal cells in vitro [22,23], while certain

other proteins, such as the norepinephrine transporter in human

placental trophoblast cells, are subject to caveolin-dependent

endocytosis [43]. In the current study, inhibitors of clathrin- or

caveolin-dependent pathways were used to evaluate OATP1A2

internalization in HEK-293 cells. Previous studies from this and

other laboratories have indicated that clathrin-dependent endo-

cytosis is effectively inhibited by K+-depletion or acidification of

the cytoplasm [23,39,44], whereas caveolin-dependent endocytosis

is prevented by filipin [22,23,45,46] and nystatin [22,23,47].

The present data suggest that the constitutive internalization of

OATP1A2 in HEK-293 cells is both clathrin- (Fig 6A and 6B) and

caveolin- (Fig 7A and 7B) dependent. Interestingly, the decreased

OATP1A2 internalization following the co-expression of PDZK1

or NHERF1 was diminished by pre-treatment with either acetic

acid or K+-depletion buffer (Fig 6C and 6D), but not by pre-

treatment with filipin or nystatin (Fig 7C and 7D).

PDZK1 and NHERF1 regulate OATP1A2 expression by
increasing protein stability

As shown in Fig. 2C, the co-expression of OATP1A2 with

PDZK1 and NHERF1 increased the total cellular expression of

the transporter. From real-time PCR analysis, this was not due to

Figure 6. Clathrin-dependent internalization of OATP1A2 by PDZK1 and NHERF1. (A) Disruption of the clathrin-dependent pathway
impairs OATP1A2-N-flag internalization. HEK-293 cells over-expressing OATP1A2-N-flag were treated with K+ depletion buffer or 10 mM acetic acid
for 30 mins, relative to PBS-treated control. Internalization continued at 37uC for 5 or 10 mins as described under ‘‘Materials and Methods,’’ followed
by immunoblotting for OATP1A2-N-flag. (B) Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated OATP1A2-N-flag at
the cell surface (means6S.E. of 3 individual experiments). *: Different from control: P,0.05. (C) Top panel: immunoblot analysis of OATP1A2-N-flag in
HEK-293 cells containing co-expressed PDZK1-N-myc or NHERF1-N-myc after treatment with 10 mM acetic acid for 30 mins, followed by
internalization at 37uC for 5 or 10 mins. Bottom panel: Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated OATP1A2-
N-flag at the cell surface (means6S.E. of 3 individual experiments). (D) Top panel: immunoblot analysis of OATP1A2-N-flag in HEK-293 cells containing
co-expressed PDZK1-N-myc or NHERF1-N-myc after treatment with K+ depletion buffer for 30 mins, followed by internalization at 37uC for 5 or
10 mins. Bottom panel: Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated OATP1A2-N-flag at the cell surface
(means6S.E. of 3 individual experiments). Blotting for b-actin in separate aliquots of total lysates was used to confirm uniform protein loading.
doi:10.1371/journal.pone.0094712.g006
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pre-translational up-regulation (data not shown). In further studies

the stability of OAT1A2 protein was assessed in HEK-293 cells

that had been treated with puromycin, an inhibitor of de novo

protein synthesis [48,49]. It emerged that the degradation rate of

the ,95 KDa isoform of OATP1A2 was significantly decreased

by co-expression of PDZK1 and NHERF1 under these conditions

(Fig 8A and 8B).

Discussion

OATP1A2 facilitates the cellular uptake of hormones and other

endogenous substrates, and drugs and other exogenous com-

pounds. OATP1A2 is expressed in cells of kidney, intestine,

cholangiocytes and brain and is an important determinant of drug

penetration into those tissues [8,11–13]. Currently, there is only

limited information regarding the mechanisms that regulate

OATP1A2 function; such information could have clinical and

physiological significance.

There are about 180 human PDZ-domain-containing proteins.

The mechanisms by which PDZ protein-protein interactions

regulate the biological functions of proteins include altered

phosphorylation, autoinhibition and allostery [50]. PDZ protein-

protein interactions regulate membrane transporters in polarized

epithelial cells [26–28,30–32,40,51–54]. Interactions between

PDZ proteins and SLC transporters, including OATP1A2, were

first identified by Kato et al. using yeast two-hybrid screening [34].

Subsequent studies confirmed that interactions between PDZK1

and Oatp1a maintained the cellular polarity of murine Oatp1a

[27,28]. To our knowledge the present study is the first to report

the interaction between OATP and NHERF1. Due to the

intermolecular association between NHERF1 and PDZK1 [55],

the present findings suggest that PDZ proteins form complexes

that modulate the expression and function of OATP1A2. The

Figure 7. Caveolin-dependent internalization of OATP1A2 by PDZK1 and NHERF1. (A) Disruption of the caveolin-dependent pathway
impairs OATP1A2-N-flag internalization. HEK-293 cells over-expressing OATP1A2-N-flag were treated with filipin (5 mg/ml) or nystatin (25 mM) for
30 mins, relative to dimethylsulfoxide-treated control. The cells were allowed to internalize at 37uC for 5 or 10 mins as described under ‘‘Materials and
Methods’’ followed by immunoblotting for OATP1A2-N-flag. (B) Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated
OATP1A2-N-flag at the cell surface (means6S.E. of 3 individual experiments) *: Different from control: P,0.05. (C) Top panel: immunoblot analysis of
OATP1A2-N-flag in HEK-293 cells containing co-expressed PDZK1-N-myc or NHERF1-N-myc after treatment with filipin (5 mg/ml) for 30 mins, followed
by internalization at 37uC for 5 or 10 mins. Bottom panel: Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated
OATP1A2-N-flag at the cell surface (means6S.E. of 3 individual experiments). *: Different from control: P,0.05 (D) Top panel: immunoblot analysis of
OATP1A2-N-flag in HEK-293 cells containing co-expressed PDZK1-N-myc or NHERF1-N-myc after treatment with nystatin (25 mM) for 30 mins,
followed by internalization at 37uC for 5 or 10 mins. Bottom panel: Internalized OATP1A2-N-flag as a percentage of the total initial pool of biotinylated
OATP1A2-N-flag at the cell surface (means6S.E. of 3 individual experiments). *: Different from control: P,0.05. Blotting for b-actin in separate aliquots
of total lysates was used to confirm uniform protein loading.
doi:10.1371/journal.pone.0094712.g007
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present study provides novel mechanistic detail underlying the

regulation of human OATP1A2 by PDZ proteins. Increased

OATP1A2 function was reflected by the increase in protein

expression at the plasma membrane and in the whole cell (Fig 2B,

2C and 2D) and by the increased Vmax for E3S uptake (Fig 3).

PDZ proteins may regulate transporter functions by several

mechanisms. PDZK1 and NHERF1 modulate the function of

human organic anion transporter 4 (OAT4) by inhibiting

internalization, which increases expression at the plasma mem-

brane [30,51]. Increased transporter function and cell surface

expression following co-expression of PDZ proteins in cells has

also observed for human proton-coupled peptide transporter 2

(hPepT2) and Organic Cation/Ergothioneine Transporter 1

(OCTN1) [31,40,52]. PDZ proteins also stabilized the apical

expression of human organic cation/carnitine transporter 2

(OCTN2) [53,54]. PDZ-dependent modulation of the cellular

polarity of rat Oatp1a also required the phosphorylation of

upstream serine residues [26]. The present data indicate that the

increase in OATP1A2 function that occurred with co-expression

of PDZK1 and NHERF1 is dependent on the PDZ binding

domain located within the C-terminus of the transporter (residues

667–670, KTKL); this motif is highly conserved among OATPs.

It is well established that membrane transporters follow a

constitutive internalization/recycling process in which they shuttle

between the cell surface and intracellular compartments. Expres-

sion at the plasma membrane reflects both newly synthesized

protein that is specifically targeted to the cell surface and recycled

protein. During internalization, protein is relocated from the cell

membrane to the cytoplasm by associating with clathrin-coated

pits and/or caveolin-enriched membrane invaginations [41,42].

Internalization of OATP1A2 in HEK-293 cells is partially

dependent on clathrin-dependent endocytosis; this process is

regulated by PKC [23]. In the current study, it was found that

increased surface expression of OATP1A2 with co-expressed

PDZK1 and NHERF1 was due in part to decreased protein

internalization (Fig 5A, 5B) but not to altered recycling/targeting

(Fig 5C, 5D). In subsequent experiments both clathrin- and

caveolin-dependent pathways were implicated in the constitutive

internalization of OATP1A2 (Fig. 6A, 7A). It is noteworthy,

however, that decreased internalization in the presence of PDZ

proteins was clathrin-dependent (Fig 6C, 6D), but not caveolin-

dependent (Fig 7C, 7D).

OATP1A2 degradation was assessed in the presence and

absence of the protein synthesis inhibitor puromycin. The

apparent half life of OATP1A2 immunoreactive protein in HEK

293 cells was ,24 h under these conditions and was prolonged on

co-expression of PDZK1 and NHERF1, a finding consistent with

enhanced stability; OATP1A2 mRNA expression was unchanged.

Figure 8. Stability of OATP1A2 protein in HEK-293 cells in the presence or absence of co-expressed PDZK1 or NHERF1. (A) Western
analysis of total cellular expression of OATP1A2-N-flag with or without co-expression of PDZK1 or NHERF1. Top Panel: HEK-293 cells were treated with
5 mg/ml puromycin for 24 and 48 h. Cells were harvested and lysate proteins were separated by SDS-polyacrylamide gel electrophoresis, followed by
Western blotting with anti-flag antibody. Bottom Panel: After stripping, blots were reprobed with anti-b-actin antibody. (B) Densitometric analysis of
the mature (,95 KDa) isoform of OATP1A2-N-flag as a percentage of total OATP1A2 protein in the absence of puromycin treatment (means6S.E. of 3
individual experiments). Different from control: *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0094712.g008
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Interestingly, and consistent with the present findings regarding

OATP1A2, PDZK1 has also been shown to enhance the stability

of the scavenger receptor class B type I protein in mouse

hepatocytes [56].

Conclusion

In summary, the present findings indicate that (i) co-expression

of PDZK1 and NHERF1 activates OATP1A2 function by direct

interaction with the putative PDZ binding domain located within

the C-terminus of the transporter; (ii) enhanced OATP1A2

function is due to increased protein expression at the plasma

membrane following decreased clathrin-dependent protein inter-

nalization; and (iii) PDZ proteins also stabilize OATP1A2 protein

expression in HEK 293 cells. The potential significance of the

present findings is that PDZ proteins, in particular PDZK1 and

NHERF1, may represent novel molecular targets for the

modulation of the intracellular distribution of drugs that are

transported by OATP1A2.
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