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ABSTRACT: Lubricants are important fluids and are commonly used to suppress friction between two metallic surfaces and as a
medium for heat transportation. In an industrial plant considered in this study, the base oil mode changes can only be detected based
on the kinematic viscosity values obtained using lab analysis. Since the lab analysis data are only available every 8 h, detecting the
change in the production modes for 4, 6, and 10 cSt and the transitions among them are significantly delayed, causing unnecessary
off-spec products that have to be directed to the slopping tank. In this paper, the innovativeness of the work comes from the idea of
trying to unravel the underlying pattern of the plant data that correlate to the changes in the base oil modes and using that to classify
hourly the kinematic viscosity values. Hence, a novel industrial application is presented to predict the class of base oil mode change
on an hourly basis that can significantly reduce the losses in terms of off spec products and sloping tank wastes. The modes are
segregated into three classes based on the values of kinematic viscosity. The classes are C-1 (4 cSt), C-2 (6 cSt), and C-3 (10 cSt).
Anything in between the stipulated thresholds is called transition [T-12 (C-1 to C-2), T-21(C-2 to C-1), T-23 (C-2 to C-3), T-31
(C-3 to C-1), and T-32 (C-3 to C-2)]. To unravel the pattern, principal component analysis (PCA) is utilized on 42,000 operating
plant data. After a thorough analysis, the third principal component provides the highest correlation to the eight classes of the base
oil mode changes [C-1 (4 cSt), C-2 (6 cSt), and C-3 (10 cSt) and the transitions T-12 (C-1 to C-2), T-21(C-2 to C-1), T-23 (C-2
to C-3), T-31 (C-3 to C-1), and T-32 (C-3 to C-2)]. This third principal component is then utilized together with plant process
variable values as inputs to four machine learning models, namely, XGBOOST, Random Forest, and CatBoost algorithms to predict
the mode of the base oil hourly. The overall comparison analysis shows that utilizing the XGBoost algorithm for the prediction of the
eight classes of the base oil modes at a faster hourly rate results in the most consistent classification accuracy of 92.96% for the test
set and 89.22% in the deployment set. This capability to predict the mode change in the hourly basis can significantly reduce the
losses in terms of off spec products in the production line.

1. INTRODUCTION
Lubricants are important fluids and are commonly used to
suppress the friction between two metallic surfaces and as a
medium for heat transportation. These base oils are obtained
from various sources such as petroleum raffinates,1 biobased
oils,2 olefins,3 and plastic wastes,4 with some additives to
enhance their properties. A few examples of processes used to
produce the base oils are solvent extraction,5 severe hydro-
cracking,6 olefin polymerization,7 and esterification.8

In an industrial plant involving severe hydrocracking for
producing three modes of base oil 4, 6, and 10 cSt, the

information on the current mode being processed is only made

available via lab sample analysis. However, the lab sampling has

its own limitation, as it is done only every 8 h due to the
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significant time consumption for the analyses. The most
significant change in the product quality is during the transition
between the 10 cSt product and 4 cSt product. During this
transition period, the product is diverted into a sloping tank (off-
specs). In the current practice, the decision to end the transition
period is made based on the laboratory analysis results which is
normally only available at the 10th hour from the start of the
transition. Due to this, significant delay is encountered in the
decision making causing useful products to be diverted
unnecessarily into the slopping tank.
Hence, in this paper, the innovativeness of the work comes

from the idea of trying to unravel the underlying pattern of the
plant data that correlates to the changes in the base oil modes
and using that to predict hourly the kinematic viscosity values.
This hourly prediction is very crucial as the existing plant
operation has to rely solely on the lab analysis, which is available
only every 8 h, causing unnecessary losses due to off-spec
products that has to be directed to the slopping tank. Hence, a
novel industrial application is presented to predict the base oil
mode change on an hourly basis that can significantly reduce the
losses in terms of off spec products and sloping tank wastes.
The modes are segregated into three classes based on the

values of kinematic viscosity. The classes are C-1 (4 cSt), C-2 (6
cSt), and C-3 (10 cSt). Anything in between the stipulated
thresholds is called transition [T-12 (C-1 to C-2), T-21(C-2 to
C-1), T-23 (C-2 to C-3), T-31 (C-3 to C-1), and T-32 (C-3 to
C-2)]. To unravel the pattern, the authors utilized principal
component analysis (PCA) on 42,000 operating plant data.9

After a thorough analysis, the third principal component
provides the highest correlation to the eight classes of the base
oil mode changes [C-1 (4 cSt), C-2 (6 cSt), C-3 (10 cSt), and
the transitions T-12 (C-1 to C-2), T-21(C-2 to C-1), T-23 (C-2
to C-3), T-31 (C-3 to C-1), and T-32 (C-3 to C-2)]. This third
principal component is then utilized together with process
variables values as inputs to four machine learning models,
namely, XGBOOST, Random Forest, and CatBoost algorithms
to predict the mode of the base oil hourly.

2. LITERATURE REVIEW
2.1. Base Oil Process Description. The data for this

investigative study are retrieved from a production plant that
produces base oil from a severe hydrocracking process. The
hydrocracking process involves three series of reactions which
are hydrotreating, hydroisomerization, and hydrodearomatiza-
tion. The feedstock used originates from the waxy raffinate
obtained from crude oil atmospheric distillation. This waxy

raffinate is then distilled under vacuum condition to obtain three
different grades with the final product kinematic viscosities of 4
cSt (C-1), 6 cSt (C-2), and 10 cSt (C-3) ranges. In the
hydrotreating process, the feedstock is fed into the hydrotreating
reactor to reduce the sulfur and nitrogen contents to an
acceptable level. The hydrotreating reactor also cracks the
hydroisomerization reaction, where the base oil molecules are
isomerized to lower its pour point. Next, the product undergoes
the hydrodearomatization process to increase the oxidative
stability of the base oil product oxidative stability. Finally, the
product is distilled under vacuum conditions to remove the

Figure 1. Simplified process flow diagram of the base oil processing plant from ref 10. Copyright [2021] [M. A. M. Fadzil et al.].

Figure 2. Venn-diagram describing the multi domain view of machine
learning adapted from lecture slides by ref 12. Copyright [2021] [Liviu
Ciortuz Department of Computer Science, University of Iasi,
Romania].

Figure 3. Illustration of random forest tree adapted with permission
from ref 25. Copyright [2021] [M.Y. Khan et al.].
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lighter materials. Figure 1 shows a simplified flow diagram of the
industrial base oil processing plant taken from ref 10.

2.2. Machine Learning Algorithms. Machine learning is a
branch of artificial intelligence (AI) and computer science which
focuses on the use of data and algorithms to imitate the way that
humans learn, gradually improving its accuracy. Machine
learning is a teamwork between multiple disciplines with each
of them strive to solve the formulated general learning problem
in their individual own way. The general learning problem is
described by ref 11 as “A computer program is said to learn from
experience E with respect to some class of tasks T and
performance measure P, if its performance a tasks in T, as
measured by P, improves with experience E”. Figure 2 illustrates
the multidomain view of machine learning connections with
other relevant disciplines of study.
There are two broad categories of machine learning problems:

supervised and unsupervised learning. Supervised learning, also
known as supervised machine learning, is a subcategory of
machine learning and artificial intelligence. It is defined by its use
of labeled data sets to train algorithms to classify data or predict
outcomes accurately. Some examples of supervised machine
learning are support vector regression (SVR),13 decision tree
regression (DTR),14 and extreme gradient boosting
(XGBoost).15 Gradient boosting is a supervised learning
algorithm that attempts to accurately predict a target variable
by combining the estimates of a set of simpler, weaker models. It
is a popular supervised-learning algorithm used for the
regression and classification on large data sets. It uses
sequentially built shallow decision trees to provide accurate
results and a highly scalable training method that avoids
overfitting.
Unsupervised learning is the training of a machine using

information that is neither classified nor labeled and allowing the
algorithm to act on that information without guidance. Unlike
supervised learning, no training is given to the machine.
Therefore, the machine is restricted to finding the hidden
structure in unlabeled data by itself. Some examples of
unsupervised learning algorithms include K-means clustering,16

PCA,17 and hierarchical clustering.18

2.2.1. XGBOOST Algorithm. The supervised learning
algorithm XGBoost models the connection between input
features and output labels using decision trees.19 The algorithm
creates a group of decision trees, each of which is trained to
predict the residual error of the one before it. The total of all
trees’ predictions makes up the final forecast.20

For predictive monitoring, XGBoost has been used in a
number of areas including fault diagnosis, anomaly detection,
and quality prediction. XGBoost has been used in fault diagnosis
to find and identify faults in mechanical systems, such as
bearings and turbines.21 XGBoost has been used in anomaly
detection to identify an unusual behavior in a range of systems,
including computer networks, production lines, and trans-
portation systems,22 as well as for quality prediction method a
variety of manufacturing processes, including the production of
semiconductors and steel.23

2.2.2. Random Forest Algorithm. Random forest (RF) is an
ensemble learning method employed in classification, regres-
sion, and other tasks that operates by constructing a multitude of
decision trees.24 A randomly selected subset of the training data
and features are used to construct each decision tree, as shown in
Figure 3. The final prediction is created by combining the
outputs of the trees either through voting or averaging. Due to its
ability for dealing with high-dimensional data, nonlinear

relationships, and interactions between features, RF is one of
the popular machine learning algorithms.24

Numerous industries have made an extensive use of RF for
applications involving predictive maintenance of bearings in
rotating machinery,26 and failure detection of wind turbine
gearboxes.27 It is a popular option for predictive maintenance
applications due to its capacity to handle high-dimensional data,
nonlinear relationships, and interactions between features.
2.2.3. CatBoost Algorithm. CatBoost is a gradient boosting

algorithm that models the association between input features
and output labels using decision trees.28 The algorithm handles
categorical data by one-hot encoding them into numerical values
and then employing an ordered boosting variation of gradient
boosting. In order to increase the model’s precision and speed,
the algorithm also makes use of techniques like gradient-based
sampling and feature importance calculation.
For predictive monitoring, CatBoost has been used in a

number of areas including fault diagnosis, anomaly detection,
and quality prediction. CatBoost has been used in fault diagnosis
to find and identify faults in a variety of systems, including
engines, pumps, and bearings,29 in anomaly detection to identify
an unusual behavior in a variety of systems, including computer
networks, manufacturing processes, and financial systems30 and
to predict product quality in a number of manufacturing
processes, including the production of food and semi-
conductors.41

3. METHODOLOGY
The general methodology for executing this study is illustrated
in Figure 4. The first step is collecting plant data from the plant
information system (PI).

3.1. Data Set Descriptions.The original data set consists of
approximately 42,000 data points of hourly process variable
values (excluding any lab samples) collected from an industrial
base oil processing facility. Historical data from January 1, 2016
to June 29, 2020 were used in the training of the models. The
preprocessed data are then split into 70% training set and 30%
validation set. An additional out-of-sample data set from June
29, 2020 to January 13, 2021, that has not been used during the
machine learning models training/validation runs, is utilized as
the test set to get a better estimation of the generalization
performance of the models.
The data set consists of 40 input variables and 1 output

variable (the classes of the product grades). Table 1 lists the
input variables considered in this study. Note that variable t_3 is
the third principal component derived from PCA, which is
described in detail in Section 3.2. Tank level data are also added
to check whether the level change from the feed tank to the first
reactor (hydrotreating reactor) in Figure 1 would have any
impact in facilitating the mode change detection. These feed
tanks come in pairs for each product grade, i.e., Tank1a and
Tank1b refer to the feedstock for C-1, Tank2a and b for C-2, and
Tank3a and b for C-3.
The collected data consist of erratic values that need to be

removed. These issues may occur due to faulty sensors,
connections error, tag no longer existing, and uncalibrated
instruments. Prior to model development, data cleaning is
performed to remove all of the error values. The input which has
erratic values of more than 50% of the total data is removed,
while inputs with faulty readings below that are replaced by the
median of the input value, resulting in the final data of 10,000
points. This step is important to ensure PCA can provide
accurate results in discovering the underlying patterns that the
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data holds. The final data set is then cleaned from outliers by
using the z score method.31

The kinematic viscosity dictates the class of the hydrocarbon.
The range of the hydrocarbon classes is defined as follows:

C 1: 3.50 kinematic viscosity 4.80

C 2: 5.40 kinematic viscosity 7.40

C 3: 8.91 kinematic viscosity 13.00

C-1, C-2, and C-3 are considered the main classes. Four
transitions between each class are also being considered and
labeled as T12 for transition from Class 1 and Class 2, T21 for
transition fromClass 2 andClass 1, T23 for transition fromClass
2 and Class 3, and T31 for transition from Class 2 and Class 3.

3.2. Pattern Extraction Using Principal Component
Analysis. PCA is one of the statistical methods that is used to
find and recognize underlying patterns in these high dimensional
data. PCA is a dimensionality reduction technique used to
obtain a smaller data set consisting only of important features
from the model inputs with a set of related variables via linear
features learning. In this study, the PCA model is used to
generate principal components (features). The decomposition
of the model input data matrix x via PCA is mathematically
expressed in eq 1:

= +x TP ET (1)

where T is the score matrix with a dimension of m × k, P is the
loading matrix with a dimension of n × k, E is the residual matrix
with a dimension of m × n, and k is the total number of retained
principal components.
PCA is the oldest technique32 of multivariate data analysis

which is being widely used. PCA is a dimensionality reduction
technique used to reduce the dimension of the input data set
into a new data set which preserves as much statistical
information (variability) as possible for further analysis
purposes.33 During the dimensionality reduction process, the
algorithm strives toward finding a new set of variables that are
uncorrelated with each other with maximum variance. These
variables, which are also termed the principal components, are
the linear representations of features in the original data set.
In this paper, SIMCA Free Trial software34 is used to analyze

the data set via PCA to take advantage of the excellent features
available on SIMCA. The scores calculated are then extracted
and manually plotted. The PCA is applied on the data set
consisting of hourly process variable values as listed in Table 1.
This multivariate data analysis using PCA is initially utilized to
extract the key principal components that capture the key
variations in the data with respect to mode changes in the base
oil and the transitions between modes. In order to develop these
principal components, eigenvalues and eigenvector problems
are to be solved. Three PCA analyses are done, namely, the first

Figure 4. Overall methodology.

Table 1. List of Input Variables Used in This Study

Input Variables
1 HDT_ART 21 LBO_DrawTemp
2 HDT_PInlet 22 MPSteamFlow rate
3 HDT_POutlet 23 Diesel_Drawrate
4 ISO_ART 24 PD_TopPA
5 ISO_Pinlet 25 PD_PA
6 ISO_POutlet 26 PD_FlowtoStorageTank
7 HDA_ART 27 PD_BedTemp
8 HDA_Pinlet 28 MD_Drawrate
9 HDT_Poutlet 29 MD_Bed_Temp
10 Feed_Flow rate 30 HD_Drawrate
11 UCOfeed_Flow rate 31 HD_BedTemp
12 PFU_Vacuum 32 LBO_Drawrate
13 PFU_MPSteamflow rate 33 LBODrawTemp
14 PFU_OvhdTemp 34 Tank1a.Level
15 MD_Flow rate 35 Tank1b.Level
16 C1901_TopTemp 36 Tank2a.Level
17 C1905_TopTemp 37 Tank2b.Level
18 F1903_Outlet_Temp 38 Tank3a.Level
19 C1905_OverflashTemp 39 Tank3b.Level
20 C1905_OverflashFlow rate 40 t_3

Output Variable
1 product class
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principal component (t_1), the second principal component
(t_2), and the third principal component (t_3).
Figure 5 shows the line plot for t_1 scores colored according

to the base oil classes. The y-axis represents the t_1 scores, and

the y-axis represents the hourly real data points value. At this
level, the class segregation of C-1, C-2, and C-3 is not obvious.
Upon validation with plant operators, major variations captured
by this first principal component are dominated by the plant

Figure 5. t_1 score plot of the data.

Figure 6. t_2 score plot of the data.

Figure 7. t_3 score plot of the data.
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changes due to plants shutdown. Hence, the analysis proceeds to
t_2 analysis, as shown by Figure 6. At this level, the class
segregation has become relatively clearer with the emergence of
two regions, positive and negative, on the t_2 score axis.

However, there is still mixed-up during transitions, which results

in additional classes to emerge. This makes labeling for machine

learning training (C-1, C-2, and C-3) not yet possible.

Figure 8. Close up of the C-1 to C-2 transition on the t_3 plot.

Figure 9. Close up of C-2 to C-3 transition on the t_3 plot.

Figure 10. Close up of C-3 to C-1 transition on the t_3 plot.
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The transitions between modes can be observed satisfactorily
using the third principal component t_3, as shown in Figure 7.
The colors are defined based on the range of kinematic viscosity
of the hydrocarbon taken at each data point. It is observed that
class transitions from C-1 to C-2 and vice versa are usually
followed by a sudden fluctuation in the value of t_3. The same
observation applies to C-2 to C-3 and vice versa, where there is a
subtle fluctuation of t_3 in between. Hence it can be concluded
that t_3 score plots show the best representation (with
significant observable changes) for themode transitions. Further
close-up analyses shown in Figures 8−10 preserved the same
trends. For example, the transition between data points 9340
and 9350 in Figure 8 shows how the t_3 score values
experienced a sudden and very steep score increase before the
class changes from C-1 to C-2. Similarly, the same pattern is
observed in Figures 9 and 10.

3.3. Class and Transitions Labeling. The modes obtained
from the third PCA based on only hourly data process variables
are carefully labeled as C-1, C-2, and C-3 to identify the main
modes of 4, 6, and 10 cSt. The third principal component t_3 is
chosen because it can capture most of the transitions/mode
variations as shown in the previous section. Using the
information obtained from this third principal component

plot, the transitionmodes/classes are then identified accordingly
as T-12 (Class 1 to Class 2), T-21(Class 2 to Class 1), T-
23(Class 2 to Class 3), T-31(Class 3 to Class 1), and T-32(Class
3 to Class 2) in the 42,000 data sets.
The class and transition labeling is crucial for any supervised

machine learning algorithm as it functions as the reference for
the algorithm to learn and compute the prediction later on.
Once the data labeling is completed, the data are then split into a
70:30 ratio, where 70% of the data is used for training/validation
and 30% for external testing or deployment to test the
generalization capability of the developed model. 80% of that
70% is used for training and the remaining 20% is used for
validation. All of the remaining 30% from the first ratio split is
used as real test data (or referred to as deployment data). Then,
machine learning models are developed from the data. The
model with the most satisfactory performance is deployed to
predict the classes of the testing data.

3.4. Developing the Machine Learning Model for
Mode Classification. The steps of developing the machine
learning model are illustrated in Figure 11.
Table 2 provides a detailed description of the characteristics of

the data set used to build the machine learning models. Each
pairing is decided by leveraging process knowledge, trial and
error, and tuning of the algorithm to reach the optimum
accuracy. There are four data sets considered: benchmark, Run
1, Run 2, and Run 3. For Run 2 and Run 3, a heat map is utilized
(see Figure 12) to determine the correlative values among the
variables in order to select the most significant ones. In Run 2,
the variables with correlation values higher than 53% are chosen;
meanwhile, for Run 3, feed flow rate is added as the additional
data. The respective correlative values for the selected variables
are shown in Table 3.
Machine learningmodels are then developed using Python for

each data set listed in Table 2 and the performance is analyzed.
Hyper-parameters are optimized via trial and error methods, and
the best performance for each XGBoost, Random Forest, and

Figure 11. Flowchart of developing the machine learning classification
model.

Table 2. Data Pairing for Model Development

data set main data tank level data

benchmark 10,000 data set not used
41 variables (40 inputs and 1 output)

Run 1 10,000 data set default tank level
41 variables (40 inputs and 1 output) Pseudo Tank1a

Pseudo Tank1b
Pseudo Tank2a
Pseudo Tank2b
Pseudo Tank3a
Pseudo Tank3b

Run 2 4 highest correlated features (above 53%) default tank level
Pseudo Tank1a
Pseudo Tank1b
Pseudo Tank2a
Pseudo Tank2b
Pseudo Tank3a
Pseudo Tank3b

Run 3 5 correlative features default tank level
Tank1a
Tank1b
Tank2a
Tank2b
Tank3a
Tank3b
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CatBoost models are recorded. The settings of the model
parameters are summarized in Table 4.
The performance of each model is reflected by the confusion

matrices and the average accuracy (ACC). ACC is calculated as
the number of all correct predictions divided by the total number
of the data set.35 The best accuracy is 1.0, whereas the worst is 0.
It can also be calculated by the 1 − error (ERR). Specifically,
ACC is calculated as shown by eq 2:

= +
+ + +

ACC
TP TN

TP TN FP FN (2)

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives.

4. RESULTS AND DISCUSSION
4.1. Model Performance Comparison Analysis. For

classification, a confusion matrix is used to evaluate the
performance of the machine learning models. As mentioned
previously, each model is tested using four different data sets,
and the corresponding accuracy is recorded. To ease the
analysis, the corresponding representation used in the confusion
matrix for each of the product class is summarized in Table 5.
4.1.1. Benchmark Data Performance Analysis. The

confusion matrices for the benchmark data are presented in
both real values and percentages, as shown in Figure 13. It can be
observed that with benchmark data, all the models work well in
classifying the base oil into its three main classes which are C-1
(i.e., Class 0), C-2 (i.e., Class 1), and C-3 (i.e., Class 2).
However, all three models XGBoost, Random Forest, and
CatBoost have low accuracies in classifying the transition classes
especially in class T-21 (i.e., Class 4), i.e., the transition fromC-1
to C-2. This could be due to the fact that in the 10,000 data set

Figure 12. Pearson correlation heat map on the data set.

Table 3. Correlative Values for Variables Selected for Run 2
and Run 3

variable name correlative value

Run 2 Selected Variables
C1905_OverflashFlow rate 0.699507
PD_TopPA 0.716433
PD_PA 0.532214
t_3 0.704034

Run 3 Selected Variables
C1905_OverflashFlow rate 0.699507
PD_TopPA 0.716433
PD_PA 0.532214
t_3 0.704034
Feed_Flow rate 0.524323
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used in this study, the transition T-21 has the least data in both
the training and testing sets.
It can be observed also from Figure 13 that the XGBoost

model surpasses the performance of both Random Forest and
CatBoost algorithms as higher percentages (as well as real
values) of correct detection are shown in the diagonal matrix of
the XGBoost model. As typical in any machine learning
application, the efficiency of a model type highly dependent
on the nature of the data being analyzed.36 In this study, it is
apparent that XGBoost is able to classify the base-oil mode
change data more accurately in comparison with the other two
models.
4.1.2. Run 1 Data Performance Analysis. From Figure 14, it

can be observed that with run 1 data all the models work almost
similarly well in classifying the base oil into its threemain classes.
Similarly, the CatBoost also has difficulty in classifying the T-21
(i.e., Class 4). Only XGBoost and Random Forest models are
able to correctly classify this transition to some extent with the
accuracy of 25%.

4.1.3. Run 2 Data Performance Analysis. As described in
Section 3.2, Run 2 uses only variables with correlation values
higher than 53% as determined from the Pearson correlation
map. As shown in Figure 15, all three models are able to
accurately classify the main classes C-1, C-2, and C-3. Reducing
the number of variables, however, affects the classification
accuracy for the transition class T-21 (Class 4). The lack of data
for this particular transition mode proves to cause difficulty for
most models to properly identify the class.
4.1.4. Run 3 Data Performance Analysis. Using Run 3 data

set, a similar behavior observed in the previous sections is
observed as shown in Figure 16.

4.2. Overall Analysis and Discussion. From the analysis
of the model performance comparison in Section 4.1 and as
summarized in Table 6, it is shown that XGBoost models are
able to retain satisfactory performances of over 90% accuracy
when tested with different sets of data. As one of the gradient-
based ensemble classifiers, XGBoost increases its confidence in
classification gradually and thus make it possess greater
classification power in comparison to standard neural network
model in general.36 CatBoost is another variant of gradient
boosting techniques that has been equipped with “prediction
shift” shield by the introduction of permutation-driven
alternatives and innovative algorithm for processing categorical
features. These additional features have given CatBoost the
ability to perform unbiased boosting.37 On the other hand,
Random Forest is a classic example of ensemble classifier which
on its own is a “black box” model which made it not be able to be
visualized and hence made it unexplainable. To overcome this, it
works together with a white box decision tree model as a weak
learner. In general, all three of these machine learning models
can be applied for classification problems and can perform
reasonably well. It will be significantly subjective according to
the nature of the data and other case-by-case criteria to
determine which model is better.38,39

The final XGBoost model is then tested for its generalization
capability using the test data set (or deployment data set). It is
observed from the confusion matrices in Figure 17a that the
performance of themodel in predicting themodes are consistent
for all the different data sets especially for the main classes C-1,
C-2, and C-3. However, it is apparent from the confusion
matrices that when the transitions are taken into consideration,
the addition of tank level data is helpful, as shown in Figure 17b.
It is observed that with tank level data addition, the model
manages to have a correct prediction for T-21 class (Class 4).

5. CONCLUSIONS
This paper considers a real practical issue faced by a real
industrial plant involving severe hydrocracking for producing
three modes of base oil 4, 6, and 10 cSt. In this paper, a proactive
method with the aim to minimize the production loss due to lab
sampling delay has been studied and developed using plant
historical data to classify hourly the correct mode for the base oil.
As the current practice in this plant relies on the laboratory
analysis results which is normally only available at the eighth
hours from the start of the transition, large amounts of useful
products have to be diverted unnecessarily into the slopping
tank. In this study, an automated mode detection tool using
XGBOOST has been developed and shown to be able to
satisfactorily provide early detection of the mode change as well
as the transition modes by utilizing the base oil correlative
pattern unraveled by the third principal component calculated
by PCA together with the plant hourly operating data. This is a

Table 4. Model Parameter Settings

Parameters Value

XGBoost
Alpha 0
Booster gbtree (uses tree models)
Gamma 0 (making the algorithm nonconservative)
Lambda 0
learning_rate 0.3
max_depth 6
normalize_type tree (i.e., trees have the same weight of each of dropped

trees)
num_parallel_tree 1
n_jobs 1
Objective “multi:softprob”
n_estimators 100

Random Forest
max_features Sqrt max_features = sqrt(n_features)
n_estimators 100
max_leaf nodes none unlimited number of leaf nodes
min_sample_leaf 1
min_sample split 2
n_jobs 1
random_state none the state is not randomized
oob_score false the default accuracy_score is used.

CatBoost
Iterations 1000
Depth 6
learning_rate 0.1
loss_function “MultiClass”
Verbose 200

Table 5. Corresponding Representation of Confusion Matrix
Numbering and the Classification

confusion matrix numbering class

0 C-1 (main)
1 C-2 (main)
2 C-3 (main)
3 T-12 (transition)
4 T-21 (transition)
5 T-23 (transition)
6 T-31 (transition)
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Figure 13. Classification performance comparison for benchmark data.
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Figure 14. Classification performance for Run 1 data.
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Figure 15. Classification performance for Run 2 data.
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Figure 16. Classification performance for Run 3 data.
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Figure 17. XGBoost performance in predicting the transitions with different deployment data sets.
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promising alternative to minimize the reliance on the lab
sampling and minimize the production losses.
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