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Systematic analysis reveals 
molecular characteristics of  
ERG-negative prostate cancer
Qingyu Xiao1, Yidi Sun1, Albert Dobi2, Shiv Srivastava2, Wendy Wang3, Sudhir Srivastava3, 
Yuan Ji4, Jun Hou4, Guo-Ping Zhao1, Yixue Li   1 & Hong Li   1

The TMPRSS2:ERG gene fusion is the most prevalent early driver gene activation in prostate cancers 
of European ancestry, while the fusion frequency is much lower in Africans and Asians. The genomic 
characteristics and mechanisms for patients lacking ERG fusion are still unclear. In this study, we 
systematically compared the characteristics of gene fusions, somatic mutations, copy number 
alterations and gene expression signatures between 201 ERG fusion positive and 296 ERG fusion 
negative prostate cancer samples. Both common and group-specific genomic alterations were 
observed, suggesting shared and different mechanisms of carcinogenesis in prostate cancer samples 
with or without ERG fusion. The genomic alteration patterns detected in ERG-negative group showed 
similarities with 77.5% of tumor samples of African American patients. These results emphasize 
that genomic and gene expression features of the ERG-negative group may provide a reference for 
populations with lower ERG fusion frequency. While the overall expression patterns were comparable 
between ERG-negative and ERG-positive tumors, we found that genomic alterations could affect the 
same pathway through distinct genes in the same pathway in both groups of tumor types. Altogether, 
the genomic and molecular characteristics revealed in our study may provide new opportunities for 
molecular stratification of ERG-negative prostate cancers.

Prostate cancer is the second most commonly diagnosed cancer type in men globally and the fifth leading cause of 
cancer death, accounting for 6.6% of death among men1. Significant efforts have been made to characterize recur-
rent genomic alterations in prostate cancers, which may be potential driver events2–5. The overall mutation burden 
in prostate cancer is relatively low (0.3–2 non-synonymous somatic mutations per megabase) compared to other 
cancer types2,6,7. The most common genomic alteration is the fusion of 5′-UTR of TMPRSS2 (21q22) with 3′-end 
of ETS family members, such as ERG (21q22), ETV1 (7p21), ETV4 (17q21), or ETV5 (3q27)8–11. Significantly 
mutated genes include SPOP, FOXA1, TP53, MED12, and CDKN1B2,5,12. In addition to somatic mutations, 
somatic copy number alterations (SCNA) are recurrently seen in prostate cancer, including the amplification of 
chromosome 7 and 8q (affecting the MYC locus), and the focal deletion of chromosome 1q42, 3p13 (FOXP1), 
4p15, 6q12–22 (MAP3K7), 8p, 13q, 16q, 17p (TP53), 18q12, and 21q22.3 (TMPRSS2-ERG fusion)5,7,12,13. However, 
there is still a large proportion of prostate cancer genomes that remains to be evaluated5,14,15.

Further studies confirmed that the TMPRSS2-ERG fusion is caused by an interstitial deletion on chromo-
some 21 or by a chromosomal translocation. These genomic rearrangements results in the overexpression of the 
ERG oncogene and ERG oncoprotein16,17. A variety of biological processes and pathways including cell inva-
sion, Androgen receptor (AR) signaling, Transforming growth factor beta 1 (TGF-β) signaling have been impli-
cated in ERG dysregulation18–22. ERG oncogenic activation is an early causal event in prostate cancer23–25. In 
some reports TMPRSS2-ERG fusion is positively correlated with advanced tumor stage, high Gleason score, and 
worse survival17,26–30. While some studies did not found significant association between ERG fusion and disease 
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progression26,31–34, numerous studies reported positive correlation of ERG-negative prostate tumor type with 
disease progression35–37.

Since TMPRSS2-ERG fusion is a dominant molecular subtype in prostate cancer in European descents, it 
provides opportunities for targeted cancer therapy. Along these lines, direct and indirect ERG targeted therapeu-
tic approaches are being developed38–40. Patients harboring ERG oncoprotein positive tumors are more likely to 
benefit from ERG targeted therapy. However, the frequency of TMPRSS2-ERG fusion significantly varies in dif-
ferent ethnic groups41. African American (20%~30%) and Asian (less than 20%) has much lower fusion frequency 
compared to Caucasian (~50%)42–44. In contrast to ERG fusion positive tumors, the genomic characteristics are 
not yet clear for the ERG fusion negative tumor type45. Therefore, identification of driver events in ERG-negative 
prostate cancer is important for understanding the mechanism of tumorigenesis.

In this study, we systematically explored the genomic and molecular differences of gene fusions, somatic muta-
tions, SCNAs, gene expression signatures and dysregulation of pathways in prostate tumors with or without ERG 
fusion using publicly available data. Our results provide new insights into the molecular landscape highlighting 
specific mechanisms of prostate tumorigenesis.

Results
Data sources and the relationship between ERG fusion, deletion, and expression.  We col-
lected the ERG fusion status information from two prostate cancer genome studies and compared the rela-
tionship among ERG fusion, deletion and expression5,46. The two datasets were highly consistent, except for 13 
samples where the fusion status was unclear in the genomic data (Fig. 1a). We checked the ERG expression in 
these 13 samples and found significantly higher expression compared with ERG fusion negative samples (t.test, 
p-value = 0.001), indicating ERG may be activated in these 13 samples. Therefore, we assigned a sample into the 
ERG-positive group if its ERG fusion was detected in either study. As a result, we identified 201 ERG-positive 
samples and 296 ERG-negative samples for subsequent analysis (Supplementary Table 1). Also, we used ERG gene 
expression to verify the genomic classification of samples. Since, ERG fusion could result from either transloca-
tion or deletion at 21q22.316, we found that 40.8% ERG-positive samples harbored ERG deletion.

Clinical characteristics of the ERG-positive and ERG-negative groups are summarized in Table 1. Although, 
patients with higher Gleason score (4 + 3 or 8–10) were more frequently found in the ERG-negative group, bio-
chemical recurrence-free survival of patients showed no difference between the two groups (Supplementary 
Fig. 1, p-value = 0.29, Log-rank test). The TCGA prostate cancer cohort contained 279 Caucasian American 
(CA), 40 African American (AA), 5 Asian men and 173 without known ancestry. The proportion of ERG-positive 
samples in CA was higher than that in AA (47% vs. 35%, Fig. 1b), which is in accordance with previous stud-
ies (Supplementary Table 2). Like TCGA, most of the previous studies focused on patients of European ances-
try. Indeed, more studies are needed for African and Asian patients that harbor mostly ERG-negative prostate 
cancers.

Common and specific genomic alterations in ERG-positive and ERG-negative prostate can-
cers.  Gene fusions.  Consistent with previous studies47,48, in ERG-positive group, the most frequent fusion 
partner of ERG in our study was TMPRSS2 (94.1%), and the second was the SLC45A3 gene (6.4%, located at 
1q32.1, Fig. 2a). These two genes both have AR responsive promoter and share similar mechanisms in ERG over-
expression48. As expected, significantly higher ERG expression was detected in samples harboring SLC45A3:ERG 
fusion compared with samples with non-detectable ERG fusion (pvalue = 5e-5, one-tailed t.test). Other two 
ETS-family members, ETV1 and ETV4, show relatively high genomic rearrangement frequencies in ERG-negative 
group (4.7% and 2.7%, respectively). We found that the LSAMP gene that is frequently deleted in ERG-negative 
prostate tumors of African American men49, was often rearranged including fusion with ZBTB20 specifically 
in the ERG-negative group. Moreover, tumor suppressor gene MIPOL1 and TTC6 fusion were also specifically 
detected in the ERG-negative group at notable frequency (3.7%, Fig. 2a). Recent study of 65 Chinese prostate 
cancer whole genomes also reported TTC6:MIPOL1 fusion detected at 6.2% frequency44. Indeed, detection of 
TTC6:MIPOL1 fusion may have potential implication for prostate cancers of non-European ancestry. In addition, 
ten of eleven recurrent gene fusions (detected at least in three samples) have been reported in other literatures. 
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Figure 1.  Classification of prostate cancer samples based on ERG fusion. (a) The relationship among ERG 
fusion, copy number variation, ERG mRNA expression and the final sample group. The top two rows show 
ERG fusion status based on the evidences from TCGA research article (333 samples) and TFGDP database 
respectively (See Method). (b) The proportion of ERG-positive and ERG-negative samples in different ethnic 
groups. AA: African American; CA: Caucasian American. Asian is not shown because of the small sample size.
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Thus prostate cancer genomic fusions detected in our study, as well as in other reports are more likely real than 
false positives (Supplementary Table 3).

Somatic mutations.  We used MutSigCV to identify significantly mutated genes in the ERG-positive and 
ERG-negative groups respectively50. Only two genes, TP53 and PTEN, were significantly mutated in ERG-positive 
group. By contrast, eight genes were significantly mutated in the ERG-negative group (Fig. 2b). In addition to 
known recurrently mutated genes SPOP and FOXA1 which were reported to be mutually exclusive with ERG 
rearrangements2,5, we found that the mutation frequency of CDK12 and KDM6A were significantly higher in the 
ERG-negative group (Fig. 2b, p-value = 1.18e-3 and 3.26e-4, respectively. Fisher.test).

Somatic copy number alterations.  We applied the GISTIC algorithm to discern significant copy number alter-
ations in the ERG-positive and ERG-negative groups51. First, we assessed the overall distribution of copy num-
ber alterations of all prostate cancer genomes in our study (Fig. 2c,d). Overall, deletions were more commonly 
than amplifications showing similar distribution in both ERG-positive and ERG-negative groups. Copy number 
alterations affected similar regions within the two groups, while deletion and amplification frequencies showed 
variations.

Twenty one amplified regions including chromosome 8q, 11q13, 14q21, 16q11, 1q22, 3q26 and 17q23, were 
recurrently altered in the ERG-negative group (Supplementary Table 4, residual q value < 0.05). The ERG-positive 
group harbored similar amplified regions, but did not reach statistical significance due to lower frequencies. 
Among the regions of copy number gains, chromosome 8q that includes the MYC oncogene exhibited a relatively 
high frequency (~40%). In another complex CNV region at 14q21.1 spanning MIPOL1/FOXA1/TTC6 locus, 
the MIPOL1:TTC6 gene fusion was detected. Moreover, we found several chromosome arm-level amplifications 
with significantly higher frequency in the ERG-negative tumors than in ERG-positives, including chromosome 8 
(38.5% vs. 19%) and chromosome 7 (26.1% vs. 11.5%) (Fig. 2c).

Ten regions were commonly deleted in both ERG-positive and ERG-negative groups, including 6q14.3, 
13q14.13, 10q23.31, 12p13.1, 5q11.2, 5q13.2, 17p13.1, and 16q22.3 (residual q < 0.05), which is consistent with 
previous reports5,13. Twenty two and twenty five copy number losses were detected only in the ERG-positive or 
in the ERG-negative group, respectively. Among these focal deleted regions, some showed significantly different 
frequency between the two groups. Similar to previous studies we also detected frequent deletions of 21q22 (ERG, 
TMPRSS2), 17p13.1 (TP53), and 10q23.31 (PTEN) in ERG-positive tumors, while 6q14.3 and 13q14.13 deletions 
were more frequent in ERG-negatives (Fig. 2d). Additionally, two novel regions, 6q16.3 (HACE1) and 6q22 (FRK) 
were deleted more frequently in the ERG-negative group.

To gain more insight into the functional effects of SCNA regions, we assessed the genomic defects of tumor 
suppressor genes (TSGs) and oncogenes (Supplementary Table 5). Thirty-two TSGs were recurrently altered with 
frequencies higher than 20% in both groups (Fig. 2e). Twenty-one (65.6%) of these genes were previously shown 
to play roles in the progression of prostate cancer. Other genes with high alteration frequencies need to be further 
defined. Thirteen TSGs and one oncogene showed significantly higher alteration frequency in the ERG-negative 
group, and another thirteen tumor suppressor genes and one oncogene showed significantly higher alteration 
frequency in ERG-positives (Fig. 2f). The candidate CNV genes found in TCGA dataset show comparable alter-
ation frequency in an independent whole genome sequencing dataset, which includes 7 ERG-positive and 7 
ERG-negative prostate tumors (Supplementary table 5, CPDR dataset). Among these group-specific SCNA genes, 
we found that ten genes were significantly associated with biochemical recurrence. In addition to previously 

Overall
ERG-positive 
(n = 201)

ERG-negative 
(n = 296) p-value

Clinical characteristics
Age(median) 61.5 (42–78) 61 (42–76) 62 (44–78) 9.29E-03

PSA(mean) 1.74 1.14 2.18 4.31E-01

Gleason Score

< = 6 44 19 25 8.20E-01

3 + 4 146 70 76 3.59E-02

4 + 3, 8–10 306 111 195 2.13E-02

Pathologic Stage

pT2a/b 23 14 9 6.78E-02

pT2c 164 64 100 7.23E-01

pT3a 158 65 93 9.06E-01

pT3b 135 54 81 9.84E-01

pT4 10 3 7 7.47E-01

PSA Recurrence

yes 58 23 35 1

no 371 146 215 1

Not available 68 22 46 —

Ethnicity

Caucasian 279 131 148 1.14E-03

African descent 40 14 26 5.73E-01

Asian 5 2 3 1

Not available 173 54 119 —

Table 1.  Distribution of clinical variables stratified by ERG status (n = 497).
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reported disease progression related genes TP53, PTEN and FOXP1, we also found that an additional seven genes 
were associated with biochemical recurrence (Supplementary Fig. 2). Although ERG rearrangement status alone 
might not be a definitive marker for disease progression, our findings highlight a subset of genes associated with 
higher risk of disease progression (Overall prevalence: 44.87%). Furthermore, we found a group of tumor sup-
pressor genes including FRK, WISP3, PRDM1, and LRP1B whose CNV and expression may indicate interactions 
with known drugs and therefore, are potentially actionable (Supplementary Fig. 3).

Candidate genes associate with genomic alteration patterns in ERG-negative prostate tum-
ors.  Since we have characterized both common and group-specific genomic alterations with high frequency in 
ERG-positive and ERG-negative prostate tumors, we next examined the molecular portrait of the ERG-negative 
group based on the associated candidate genes. First, we combined the genomic alterations of gene fusions, 
somatic mutations and copy number alterations which occur recurrently in the ERG-negative group. Next, we 
removed the redundant alterations to find a subset of genes highly represented in the genomic alteration pattern 
of ERG-negative tumors. Nine representative genes have emerged from the analysis (Fig. 3a). Genomic alteration 
of one or more of these nine genes were detected in 67.7% of the ERG-negative group.

Since ERG-rearrangement are less frequent in prostate cancers of African descents, we explored whether can-
didate gene defects found in the ERG-negative group are present or absent in prostate cancers of AA men. As 
ERG is less frequent in prostate cancers of AA patients, we evaluated the alteration patterns of the nine genes 
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Figure 2.  Comparision of the genomic characteristics between ERG-positive and ERG-negative groups. (a) 
The number of gene fusions in the two groups. Fusions present in more than two patients are shown. Red stars: 
fusions with significantly different frequency (p < 0.05, fisher test). (b) The frequency of significantly mutated 
genes in the two groups. Genes with significantly different mutation frequency in the two groups are marked 
with red stars. (p < 0.01, chi-squared test). The frequency of copy number amplification (c) and deletion 
(d) in two groups. Significantly altered cytobands separately detected in each group are annotated in black. 
Recurrently altered cytobands with significantly different frequency between the two groups are indicated in 
red. (chi-squared test, p < 0.01; frequency > 30%). Common (e) and group-specific (f) SCNA genes.
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characteristic to ERG-negative tumors in available datasets of 40 AA prostate tumor samples. We found that 
77.5% AA tumors harbor at least one of the nine gene signatures associated with ERG-negative tumors indi-
cating similar patterns between prostate cancers of AA patients and the overall genomic alteration pattern of 
ERG-negative tumors (Fig. 3b).

Among the nine representative genes, NKX3-1, RB1, and CDH13 were commonly deleted in both 
ERG-positive and ERG-negative tumors. Other genes had significantly more alterations in ERG-negative samples. 
The oncogene MYC mRNA is up-regulated in tumor compared to normal. Tumors with MYC amplification show 
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significantly higher expression of MYC gene and higher probability of disease progression than other patients 
(Fig. 3c,d). The Zinc finger transcription factor, ZNF292 was shown to function as a tumor suppressor in gastric 
cancer, colorectal cancer, and chronic lymphocytic leukemia52,53. Deletion of ZNF292 in prostate cancer results in 
decreased expression (Fig. 3e), which may promote tumor development.

Comparison of methylation and expression between ERG-positive and ERG-negative tum-
ors.  Since promoter hypermethylation is widely observed in multiple cancers, we investigated the hypermeth-
ylated sites in promoter regions (TSS200, TSS1500, 5’UTR and 1stExon) of genes with low mRNA expression 
(See Method). Compared to normal samples, 2191 CpG sites (694 genes) and 1871 CpG sites (645 genes) were 
hyper-methylated in ERG-positive and ERG-negative groups, respectively. Approximately 70% of them were over-
lapped between the two groups (Supplementary Fig. 4a). Direct comparison between two tumor groups indicated 
51 hyper-methylated sites (31 genes) in ERG-negative and 14 hyper-methylated sites (8 genes) in ERG-positive 
tumors (Supplementary Fig. 4b). Therefore, the overall methylation profiles showed similarities between the two 
groups.

We compared the expression profiles of ERG-positive, ERG-negative tumor and prostate tissue samples with 
morphologically normal appearance to identify differentially expressed genes among these three groups. A large 
proportion (>70%) of differentially expressed (DE) genes were common in the ERG-positive and negative groups 
(Fig. 4a). As expected, common DEs were significantly enriched in essential pathways like calcium signaling and 
cAMP signaling pathways (Fig. 4b). Common up-regulated genes were significantly enriched in cell cycle which 
is recurrently altered in cancer. However, no significant functional GO term was enriched for group-specific genes 
indicating comparable expression profiles between ERG-positive and ERG-negative prostate tumor types, despite 
in their differences in their dominant driver genomic alterations. These findings indicate that different genomic 
alternations may have similar effects on gene expression, resulting in similar phenotype.

The impact of genomic alterations on pathway dysregulation in ERG-positive and ERG-negative 
prostate tumors.  We selected eleven pathways either cancer-related or reported to be important in prostate 
cancer from Misgdb54–56. Next, we compared the frequency of CNV, somatic mutation and gene fusion of the 
ERG-positive and ERG-negative groups based on publicly available TCGA data. The male hormone axis (AR 
pathway) was the only node that altered significantly more frequently in ERG-positive group that is consistent 
with the AR regulation of ERG in the context of TMPRSS2:ERG fusion (Fig. 5a). However, there were still 65.3% 
of ERG-negative samples with AR pathway disruption, which were apparently affected by other genes in the AR 
pathway (Fig. 5b). For example, CDK6 (10.7% ERG-negative vs. 4% ERG-positive), NCOA2 (23.7% ERG-negative 
vs. 10.5% ERG-positive) and PRKDC (20.0% ERG-negative vs. 11.5% ERG-positive). Similarly, some compo-
nent of NOTCH signaling pathway signatures had higher alteration frequency in the ERG-positive group (e.g., 
DVL2,11.3% ERG-negative vs. 25.0% ERG-positive) while HDAC2 (24.4% ERG-negative vs. 7.0% ERG-positive) 
had higher alteration frequency in ERG-negative group (Fig. 5c). They both inhibit NOTCH signaling pathway 
but function at different contexts. Therefore, the observed prostate cancer genomic and expression alterations of 
different genes may affect the same pathway resulting in comparable expression profiles between ERG-positive 
and ERG-negative prostate tumor types.

Discussion
Our study provides new insights into the molecular landscape of ERG-negative prostate cancers. Except for 
known alterations mutually exclusive with ERG rearrangements, such as mutation in SPOP and FOXA1, we 
found that gene fusion of TTC6:MIPOL1 and somatic mutation on CDK12 and KDM6A occurred more fre-
quently in the ERG-negative group. Recurrent gene fusions and somatic mutations could explain only a subset of 
ERG-negative tumors, noting that more of these genes harbor somatic copy number alterations. Some of them 
are shared between the two groups of tumors, others occurred more frequently in one group over the other. In 
addition to confirm several previous studies, we found novel recurrent SCNA for ERG-negative prostate cancers, 
such as ZNF292 deletion. In summary, the ERG-negative group was found more heterogeneous in our study.

When validated, the recurrently altered genes in specific patient groups may contribute to better tumor strat-
ification and prognosis. Among these genes, MYC is a well-known oncogene that plays an important role in 
tumor progression. The amplification of MYC is frequently observed in numerous human cancers57. In this study, 
we found that MYC amplification frequency was significantly higher in the ERG-negative group. As expected, 

a b
POS−normal NEG−normal

hsa04024:cAMP signaling pathway
hsa04970:Salivary secretion

hsa05414:Dilated cardiomyopathy
hsa04020:Calcium signaling pathway

0.010.101.00
FDR

No significant Term

789 643
2,020

(Common DEs
 >70%)

No significant Term

Figure 4.  Gene expression in ERG-positive and ERG-negative groups. (a) Venn diagram for differentially 
expressed genes (DEs) detected in ERG-positive and ERG-negative groups respectively compared to normal 
samples. 2020 DEs (>70%) are common. (b) The enriched KEGG pathways for the common DEs (FDR < 0.05). 
No significantly terms were enriched for group-specific DEs.
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patients with tumors harboring MYC amplification show a strong association with poor outcome. Previous stud-
ies have reported that intact CHD1 is required for ERG rearrangements in the process of tumor initiation and 
deletion of CHD1 is mutually exclusive with ETS fusions58, that was consistently observed in our study. In addi-
tion to confirming known gene defects, we also identified several novel prostate cancer associated genes which 
may play important roles in the tumorigenesis of ERG-negative cancer type.

Our study highlights potentially actionable genes which may provide opportunities for target therapy of 
ERG-negative prostate tumors. These findings include the frequent deletion of the tumor suppressor gene FRK 
(6q22.1), a tyrosine-protein kinase that negatively regulates cell proliferation59, in ERG-negative group (22.3% 

Figure 5.  Genomic alterations show different preference on pathway dysregulation in ERG-positive and ERG-
negative groups. (a) The overall alteration frequency on prostate cancer-related pathways. AR pathway show 
significant difference in two groups (p < 0.01). Genomic alterations in AR pathway (b) and NOTCH signaling 
pathway (c). Genes with significantly different alteration frequency in the two groups are shown. Red: higher 
frequency in ERG-positive group. Blue: higher frequency in ERG-negative group. Green: high expression in 
both groups.
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vs. 8.0%). Decreased expression of FRK gene strongly correlated with its deletion. Moreover, FRK protein could 
interact with known drugs and may have potential application in clinical practice60. Other potentially druggable 
genes including WISP3 (6q21), LRP1B (2q22.1), and PRDM1 (6q21)60,61. In total, 21 (34.4%) genes in our candi-
date gene list have potential clinical relevance, covering 66.7% of ERG negative tumors.

Interestingly, we found that different gene alterations may result in similar expression change or pathway alter-
ation. NOTCH signaling pathway is a typical example. Similar phenomenon has been observed in other cancer 
types. Taken Wnt signaling pathway as an example, TP53, CTNNB1 and AXIN1 are important elements in Wnt 
signaling network; CTNNB1 is more frequently mutated in HCV-infected hepatocellular carcinoma (HCC)62, 
while the mutations of TP53 and AXIN1 are more frequent in HBV-infected HCC63,64, which indicated different 
viral etiologies might activate Wnt signaling in distinct ways.

Increasing number of studies reports race/ethnicity differences in cancer research. Due to the lack of 
large-scale omics study of African and Asian prostate cancer patients, directly comparisons among multiple races 
are challenging. Our focuse on the ERG-negative group could provide a reference for populations with low fre-
quency of ERG positive tumor types. Nine representative genes were sufficient to classify into sub-categories 
67.7% ERG-negative tumors that was consistently seen in 77.5% of prostate cancers of African American men. 
Our previous studies found that approximately 20% Chinese patients harbor ERG-positive tumors41. Therefore 
we are particularly interested in the frequently altered and targetable genes in the ERG-negative tumor type. The 
validation of the genomic alteration and expression of these genes in Chinese patients is warranted. Accumulating 
data on ERG negative prostate cancer will help to discover more disease progression associated and actionable 
driver genes. Additionally, further experimental assessments of the functional significance for recurrent genomic 
and gene expression alterations are also warranted.

Our study highlights new aspects of ERG-positive and ERG-negative prostate cancers at genomic, epigenetic, 
and expression levels. In this study, multi-omics data integration provided a methodological reference to prior-
itize candidate CNV genes and to evaluate the effects of overall alterations. The observed molecular differences on 
gene fusions, somatic mutations and copy number alterations between ERG-positive and ERG-negative prostate 
tumors suggest both common and distinct mechanisms of prostate tumorigenesis. Genes with recurrent alter-
ation may act as potential drivers and contribute to patient stratification into distinct prognostic or therapeutic 
groups. These results will help experimental biologist and clinical doctors for further assessment of the functional 
significance of candidate genes. Together, our results provide new insights into prostate tumorigenesis further 
refining the sub-classes of ERG-negative and ERG-positive prostate tumor types.

Methods
Data collection.  Somatic mutation (496 tumor samples), SCNA (492 tumor samples), methylation (497 
tumor + 35 normal samples), and expression (497 tumor + 52 normal samples) data from TCGA primary pros-
tate cancer cohort were used in this study65. Clinically actionable genes and the interactions between genes and 
drugs were retrieved from DGIdb (http://dgidb.org/)60.

Patient group and ethnic information.  Samples were stratified into ERG-positive and ERG-negative 
groups based on the combined ERG fusion evidences from TCGA research article (333 samples) and TFGDP 
database (http://www.tumorfusions.org/, 502 samples)5,46. A patient was assigned to ERG-positive group if its 
ERG fusion was detected in either study. For genome wide fusion analysis and statistics except for ERG fusion, 
data from TFGDP database was used. The ethnic information was collected from literature in which G. Petrovics 
et al. determine the ancestry of TCGA cohort by principal component analysis based on SNP genotype data49.

Detection of significantly mutated genes and copy number alterations.  We used MutSigCV 
(version: 1.2) to detect significantly mutated genes for ERG-positive and ERG-negative groups, respectively50. 
Chi-squared test and Fisher exact test (determined by theoretical frequencies and sample size) were used to test 
the significance of different alteration frequency between the two groups. GISTIC 2.0 (version 6.10) was used to 
identify genomic regions that are significantly amplified or deleted in ERG-positive and ERG-negative groups, 
respectively51,66. To find the common and specifically altered regions in the two groups, we divided the whole 
genome into consecutive bins (window length = 10 kb). For each bin, the SCNA status is determined by the SCNA 
status of majority of bases in it (that is, longer than 5 kb). For arm-level SCNA regions, the frequency was esti-
mated by the median frequencies of all bins in that region.

Since the significant SCNA regions usually contained huge genes, we focused on the copy number alterations 
of tumor suppressor genes (TSGs) and oncogenes. We obtained 1217 TSGs and 232 oncogenes from TSGene 
Database (v2.0) and UniProtKB database (keyword:“Proto-oncogene [KW-0656]”)67,68. These genes were clas-
sified into two types based on the following filtering rules: 1) Common SCNA genes: high frequency (>20%) in 
both ERG-positive and ERG-negative groups; 2) Group-specific SCNA genes: TSGs (Oncogenes) whose deletion 
(amplification) frequencies were significantly different between two groups (P < 0.001) and the frequency differ-
ence was larger than 10%.

Selection of representative genes for ERG-negative group.  We used genes with recurrent SCNA 
(frequency >15%) or mutation (frequency >10%) as candidate feature genes for ERG-negative group. We defined 
a group of genes with higher priority: genes whose alteration frequency were significantly higher in ERG-negative 
group than that in ERG-positive group, genes which were targetable or had interaction with drugs, and genes 
whose copy number alteration was significantly correlated with expression. To remove genes with similar alter-
ation pattern, we calculated Pearson correlation coefficient between genes and did unsupervised hierarchical 
clustering. For each cluster, we selected genes with the highest frequency or higher priority as the representative 

http://dgidb.org/
http://www.tumorfusions.org/
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genes. At last, six CNV genes and three mutation genes were selected as final representative feature genes for 
ERG-negative group. OncoPrint was used to display the mutation landscape in ERG-negative group69.

Independent validation dataset.  We used an independent whole genome sequencing data (CPDR data-
set) to validate the CNV candidate genes. The CPDR dataset including 7 ERG-positive and 7 ERG-negative pros-
tate tumors. The Genomatix software suite/NGS Analysis (http://www.genomatix.de) was used for CNV calling.

Differential expression analysis.  We identified the differentially expressed genes among ERG-positive 
(n = 201), ERG-negative (n = 296) and normal samples (n = 52). Normalized read counts were used to detect 
differential expression genes with R package voom and limma70. Genes with P value < 0.05 and the absolute value 
of fold change (FC) > 2 were considered as differentially expressed.

Differential methylation analysis.  We identified the differentially methylated genes among ERG-positive 
(n = 201), ERG-negative (n = 296) and normal samples (n = 35) based on TCGA methylation data. Firstly, we 
removed the probes on X/Y/M chromosome or NA. Secondly, we found diff-methylated sites with t-test p < 0.01 
and the absolute difference of beta value > 0.2. Thirdly, we selected diff-methylated sites on promoter region 
(TSS200, TSS1500, 5’UTR and 1stExon). Fourthly, we retained methylation sites negatively correlated with the 
corresponding gene expression in a cis-regulatory manner. Fifthly, we concentrated on hyper-methylated sites 
whose corresponding genes have significantly lower expression in tumor samples compared to normal samples. 
For the comparison between ERG-positive and ERG-negative group, genes hyper-methylated in either group 
were taken into account.

Data availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).
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