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Abstract
Joint distribution between two or more variables could be influenced by the outcome
of a conditioning variable. In this paper, we propose a flexible Wald-type statistic to
test for such influence. The test is based on a conditioned multivariate Kendall’s tau
nonparametric estimator. The asymptotic properties of the test statistic are established
under different null hypotheses to be tested for, such as conditional independence or
testing for constant conditional dependence. Two simulation studies are presented:
The first shows that the estimator proposed and the bandwidth selection procedure
performwell. The second presents different bivariate andmultivariate models to check
the size and power of the test and runs comparisons with previous proposals when
appropriate. The results support the contention that the test is accurate even in complex
situations and that its computational cost is low. As an empirical application, we
study the dependence between some pillars of European Regional Competitiveness
when conditioned on the quality of regional institutions. We find interesting results,
such as weaker links between innovation and higher education in regions with lower
institutional quality.
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1 Introduction

The joint distribution of two or more variables is a topic of clear interest in statistics.
Actually, it provides a wealth information to analyze the degree of dependence and the
effects of conditional variables on comovements, among others. A classic measure of
the degree of dependence is pairwise linear correlation. For a multivariate setting, the
average of the pairwise linear correlations is widely used as a measure of multivari-
ate dependence (see for example Joe (1990), Longin and Solnik (1995), Moskowitz
(2003), Capiello et al. (2006), Pollet and Wilson (2010)).

Beyond Pearson’s correlation and normal distributions, Kendall’s tau provides a
descriptive statistic that detects monotonicity rather than linearity and has the benefit
of not being restricted to symmetric distributions. For a multivariate context, Kendall
and Smith (1940) suggest the average of pairwise taus as a coefficient of agreement.
Another approach is followed by Simon (1977), who suggests a sign function-based
multivariate extension. In a related paper, Joe (1989) finds that the latter proposal
does not meet the properties for consideration as a concordance measure. Therefore,
Joe (1990) suggests a family of unconditional measures based on Kendall’s tau as
multivariate concordance measures beyond the average of pairwise taus. In this line,
Nelsen (1992) and Nelsen (1996) analyze Kendall’s tau-based bivariate and multivari-
ate measures.

Our first aim is to estimate a conditional multivariate Kendall’s tau to analyze the
effect of a variable of interest in the strength of dependence. To that end, we extend
the proposal made by Joe (1990) to the conditional case and define a multivariate
conditional Kendall’s tau estimator as an extension of Gijbels et al. (2011), with the
corresponding asymptotic results.

Bandwidth selection is an important practical issue in nonparametric estimation.
In this sense, Silverman (1986) is a well-known reference for nonparametric densities
as well as Altman and Leger (1995), Sarda (1993), and Bowman et al. (1998) for
nonparametric distributions, who propose plug-in and cross-validation methods. In
order to select the bandwidth for the nonparametricKendall’s tau estimator,we propose
to minimize its mean squared error based on plug-in steps as in Gijbels et al. (2011).
Bouezmarni et al. (2019) also use a similar recursive procedure of bandwidth selection
for nonparametric local causality measures. As a data-driven method, we provide a
jackknifemethod for estimating bias and variance.We also derive a simulation study to
show the good performance of the multivariate estimator and the bandwidth selection
procedure in practice.

The second aim of the methodological part of our study is to provide a statistic
to test for the structure of dependence. For unconditional multivariate independence,
there are well-known tests in the literature [see e.g., (Genest and Rémillard 2004)].
When variables are normally distributed, a test based on linear correlation is suitable.
For more general cases, Leung et al. (2018) propose a rank correlation-based test for
independence between variables in high dimensions. In a related paper, Mao (2018)
proposes a new test with better performance for large and small samples that deals
with size distortion problems detected in the proposal of Leung et al. (2018) for small
sample sizes. Strzalkowska-Kominiak and Stute (2013) also propose rank correlation-
based statistics to test for independence with survival data.
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Here, we are interested in testing for conditional dependences, and in particular
for general restrictions among conditional Kendall’s taus. In a related paper, Gijbels
et al. (2017) analyze the so-called simplifying assumption, which assumes that the
conditional copula coincides with the partial copula. To do so, they propose tests
expressed as a linear restriction between conditional Kendall’s taus and compare their
performancewith other tests based on conditional copulas, such as the test proposed by
Acar et al. (2013). Using another approach, Bouezmarni et al. (2019) define Kendall’s
tau causality measures based on local causality copulas and propose tests for local
non-causality based on such measures.

Our proposal is to derive a Wald-type statistic to test for general linear restrictions.
The statistic enables tests to be run for specific, interesting cases such as constant con-
ditional dependence, linear restrictions between different Kendall’s taus, and equality
of conditional Kendall’s tau across different populations.

To study its performance in practice, we run a simulation study and compare the
results with the proposal in Gijbels et al. (2017) for those situations where their test
can be applied. Results support the idea that the Wald-type test performs better for
many different models, with a noteworthy advantage in computational cost.

For an empirical application, we consider the European Union Regional Competi-
tiveness Index (EU-RCI) data for 2019 for 268 regions. The index is formed by eleven
pillars that help to identify the strengths and weaknesses in competitiveness of each
region. All pillars provide indicators for the prosperity of a region and they are linked
to one another. For instance, the more prosperous a region is, the better the indicators
for all groups are expected to be. Obviously, this relationship is not perfect, and that is
one reason to draw up a combined index. The overall index will reflect this combina-
tion of pillars. A classic question of interest is whether changes in one pillar are related
to changes in another. Here, another question arises: How the value of one pillar can
influence or is related to the intensity of cross relations between other pillars. The
test proposed is used to test for any significant effect of one pillar on the relationship
between others.

In particular, we focus on the quality of regional institutions, which plays a very
important role in the prosperity of a region. Dimant and Tosato (2018) provide a very
helpful review of empirical results from the past few decades. One of the pillars in
the Basic group is the Institutions index, which reports the quality of governments at
regional and national levels, measured through perception and experience as collected
via a survey. The interest lies in detecting the contribution of institutional quality to
the relationship between pillars and in testing for changes in those relationships con-
ditional on institutional quality levels. Moreover, tests for any other type of restriction
can be run, such as changes in effects across different waves.

We find that tests of this type have interesting applications in practice in many
different fields, particularly inmedicine. For instance, Echouffo-Tcheugui et al. (2018)
find that higher cortisol levels are associatedwithworsememory and visual perception.
Moreover, morning rises in cortisol levels have been found to increase with body mass
index. In this context, it would be interesting to test whether the relationship between
cortisol as a “stress hormone” and the cognitive performance of patients changes
with body mass index. Related to the current COVID-19 pandemic, Toyoshima et al.
(2020) analyze individuals mutations in SARS-CoV-2 genome sequences and their
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relationship with fatality rates, concluding that some virus variants are significantly
correlated with them. Since host differences contribute to variations in response to
pathogens, this test enables the effects of factors such as the genetics, age, and obesity
of patients to be assessed in the relationshipsmeasured by the rank correlation to better
understand the spread of COVID-19 and improve vaccine efficacy.

The rest of the paper is structured as follows. Section 2 states themain results for the
nonparametric estimators and sets out the practical estimation and testing procedures.
Section 3 provides the simulation studies that show the performance of the smoothing
parameter selection and of the test proposed. Section 4 applies the methodology to the
link between regional efficiency and innovation pillars conditional on the quality of
institutions. Section 5 concludes. Details of proofs and additional simulation results
are given as supplementary material.

2 Estimation and tests

Let Y = {Y j }p
j=1 be a set of p variables, and F1, . . . , Fp and F their contin-

uous marginal and joint distributions, respectively. In this context, Sklar (1959)
states that there is a unique copula function C : [0, 1]p → [0, 1] such that
F( y) = F(y1, . . . , yp) = C(F1(y1), . . . , Fp(yp)) for all y = (y1, . . . , yp) ∈ R

p.
That is, copulas are joint distribution functions whose marginals are standard uni-
form variables. Patton (2006) extends this result to conditional copulas and states
that, given a covariate Z , there is a unique copula Cz : [0, 1]p → [0, 1] such that
Fz( y) = Cz(F1z(y1), . . . , Fpz(yp)), where Fjz(y) = P(Y j ≤ y|Z = z), for any
y ∈ Y j , j = 1, . . . , p. In inverting Sklar’s theorem, the Cz function can be expressed
asCz(u) = Fz(F−1

1z (u1), . . . , F−1
pz (u p)) in terms of the joint andmarginal distribution

functions, where u = (u1, . . . , u p) ∈ [0, 1]p and F−1
j z (u) = in f {y : Fjz(y) ≥ u} is

the z-conditional quantile function of Y j .
To estimate conditional copulas, Gijbels et al. (2011) propose a nonparametric esti-

mator in a bivariate context.Weuse the natural extension to themultivariate conditional
copula estimator,

Ĉz,hn (u) =
n∑

i=1

wi (z, hn)I
{

Y1i ≤ F̂−1
1z,hn

(u1), . . . , Ypi ≤ F̂−1
pz,hn

(u p)
}

, (1)

where {wi (z, hn)} is a sequence of weights depending on (z − Zi )/hn and hn

is the bandwidth. Considering Nadaraya–Watson weights, {wi (z, hn)} = k((z −
Zi )/hn)/

∑
j k((z − Z j )/hn), where k is a kernel function. I {·} is the indicator func-

tion and F̂j z,hn (y) = ∑n
i=1 wi (z, hn)I {Y ji ≤ y} is the nonparametric conditional

j-marginal estimator. It is noteworthy that the bandwidth in this case does not have
the usual smoothing effect as in regression. In fact, when the bandwidth hn increases,
the copula estimator Ĉz,hn tends to the empirical copula Ĉz(u) = n−1 ∑n

i=1 I {Y1i ≤
F̂−1
1z (u1), . . . , Ypi ≤ F̂−1

pz (u p)}.
To quantify the degree of dependence, we estimate the Kendall’s tau coefficient as a

measure of the ordinal association between two measured quantiles. The multivariate
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Kendall’s tau is defined as in Joe (1990), τ = (2p−1−1)−1
(
2p

∫
Ip C(u)dC(u) − 1

)
,

where Ip = [0, 1]p. The multivariate Kendall’s tau accounts for common comove-
ments beyond pairwise effects and quantifies simultaneous concordance. Thus, more
variables imply more conditions to be met at the same time and so fewer concordances
are expected. The distortion that the number of variables can produce is mitigated
by the p-dependent correction factor included in the definition of the tau. Note that
Kendall’s tau is a measure of dependence that depends only on the copula and not on
the marginals. We also note the advantage of the multivariate Kendall’s tau over the
pairwise average as an overall dependence measure, since it accounts for multivariate
distribution and not only for bivariate effects. As the multivariate nonparametric esti-
mator of τ , we consider an extended version of the empirical bivariate Kendall’s tau
(Deheuvels 1980),

τ̂ = 1

2p−1 − 1

( 2p

n(n − 1)

n∑

i=1

n∑

j=1

I {Yi <Y j } − 1
)
,

where Y i = (Y1i , . . . , Ypi ) and I {Yi < Y j } = I {Y1i < Y1 j , . . . , Ypi < Ypj }.
An extended version of the multivariate Kendall’s tau proposed by Joe (1990) to

conditional copulas can be defined as

τz = 1

(2p−1 − 1)

(
2p

∫

Ip
Cz(u)dCz(u) − 1

)
. (2)

The nonparametric estimator proposed is

τ̂z,hn = 1

2p−1−1

⎛

⎝ 2p

1−∑n
i=1wi (z, hn)2

n∑

i, j=1

wi (z, hn)w j (z, hn)I {Yi <Y j }−1

⎞

⎠ , (3)

where the weights are based on the recommendations given by Gijbels et al. (2011).
Note that as for the copula estimator, the conditional Kendall’s tau (3) tends to the
unconditional empirical Kendall’s tau as the bandwidth increases. This estimator gene-
ralizes the bivariate estimator in Gijbels et al. (2011). The asymptotic normality of
the conditional Kendall’s tau estimator is established by Veraverbeke et al. (2011) for
the bivariate case. The next proposition generalizes the consistency and asymptotic
normality of the multivariate conditional Kendall’s tau estimator in (3) under the usual
set of assumptions:

A1. (Y i , Zi ), i = 1, . . . , n are i .i .d. tuples.
A2. The conditional joint distribution Fz(·) = F(·|z) and the density of the covari-

able Z , f (z), have continuous first and second order derivatives with respect to
z, all denoted with the respective primes.

A3. The kernel is a bounded symmetric second-order kernel with compact support
� = [−1, 1] such that

∫
�

k(η)dη = 1. Moreover, ck = ∫
�

k(η)η2dη and
dk = ∫

�
k(η)2dη are nonzero quantities.

A4. hn → 0 and nhn → ∞ as n → ∞.
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Proposition 1 Under assumptions A1 to A4, the conditional Kendall’s tau esti-
mator τ̂z,hn defined in (3) is a consistent estimator of τz defined in (2), where

the asymptotic bias is Bias(τ̂z,hn ) = 2p−1h2
nck((2p−1 − 1)f (z))−1

∫
Rp

(
Fz( y)×

g ( fz( y)) + fz( y)g (Fz( y))
)

d y + o(h2
n) with g(rz( y)) =

(
rz( y) f ′′(z) + 2r ′

z( y)

f ′(z) + r ′′
z ( y) f (z)

)
.

Moreover, if C L
z is the limiting distribution of (nhn)1/2

(
Ĉz,hn (u) − Cz(u)

)
and ϕz

is a Gaussian variable given by

ϕz = 2p(2p−1−1)−1
(∫

I p
Cz(u)dC L

z (u) +
∫

I p
C L

z (u)dCz(u)

)
,

the asymptotic variance of τ̂z,hn is given by the variance of ϕz , σ 2(ϕz). Additionally,
assuming that hn = o(n−1/5) and

∫
�

k(η)ζ dη �= 0 for ζ > 2,

(nhn)1/2
(
τ̂z,hn − τz

) d−→ ϕz .

The limiting distribution of the multivariate estimator (3) is obtained from the
asymptotic normality of the conditional copula estimator Ĉz,hn (u), provided that
Kendall’s tau can be written as a functional of the copula and the Hadamard dif-
ferentiability of such functional (tangentially to the set of continuous functions on
[0, 1]p). The details are given in Appendix A.

2.1 Bandwidth selection

Classic proposals for selecting the smoothing parameter are based on the rule of thumb,
cross-validation or plug-in methods. Smoothing parameter selection for distribution
functions has been proposed by Altman and Leger (1995), Sarda (1993) and Bowman
et al. (1998). Derumigny and Fermanian (2019) propose a cross-validation bandwidth
selection procedure for the conditional Kendall’s tau. Here, we propose a plug-in
pointwise bandwidth selection method for the nonparametric conditional Kendall’s
tau by minimizing the overall mean squared error of the conditional tau.

The bias and variance for computing the MSE are estimated via the jackknife
method based on Quenouille (1956) for bias and Tukey (1958) for variance. The pro-
cedure is an iterative process strongly related to the bootstrap resampling method
proposed by Efron (1979). Actually, the jackknife is a linear approximation of the
bootstrap (Abdi and Williams 2010) that entails lower computational costs and is
more suitable for small data samples (Oyeyemi 2008; Efron 1982). The main steps
for selecting the bandwidth for the conditional Kendall’s tau are summarized in Algo-
rithm 1. We consider h0 = 0.9An−1/5 (Silverman 1986) as the initial bandwidth for
variance estimation, where A=min(γ (Z)/1.34, σ (Z)), and γ (Z) and σ(Z) are the
interquartile range and the standard deviation of the covariable Z , respectively. The
initial bandwidth for the bias is taken as proposed in Gijbels et al. (2011).
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Algorithm 1 Bandwidth selection for Kendall’s tau

Require: A fixed conditioning value z and an initial bandwidth h0=0.9An−1/5

Set the bandwidth hv
n = h0 for variance in the first iteration

STEP 1
Set initial bandwidth hb

n = 2γ (Z)hv
nn1/10 for bias

for l = 1 to n do

Define Y (−l)
j =

{
(Y j2, . . . , Y jn) l =1, j =1, ..., p
(Y j1, . . . , Y j(l−1), Y j(l+1) . . . , Y jn) l ≥ 2, j =1, ..., p

Define Z (−l)=

{
(Z2, . . . , Zn) l =1
(Z1, . . . , Z(l−1), Z(l+1) . . . , Zn) l ≥2

Calculate τ̂
(−l)
z,hv

n
and τ̂

(−l)
z,hb

n
, the estimator (3) for (Y (−l), Z (−l)) with hv

n and hb
n , respectively

end for
τ̂ z,hv

n
= n−1 ∑

l τ̂
(−l)
z,hv

n

σ̂ 2
J (τ̂z,hn ) = (n−1)n−1 ∑

l (τ̂
(−l)
z,hv

n
− τ̂ z,hv

n
)2

τ̂ z,hb
n

= n−1 ∑
l τ̂

(−l)
z,hb

n
STEP 2
Calculate τ̂z,hb

n
, the estimator (3) for (Y , Z) using hb

n

B̂ias J (τ̂z,hn ) = (n − 1)(τ̂ z,hb
n

− τ̂z,hb
n
)

STEP 3
Obtain ĥv = argmin

hn∈R+ (nhn)−1 σ̂ 2
J (τ̂z,hn ) + h4n B̂ias J (τ̂z,hn )2

STEP 4
Put hv

n = ĥv and go to STEP 1

Repeat steps above for s > 0 times until |ĥs
v − ĥ(1+s)

v | < ε, for a prefixed |ε| < 1

2.2 Testing for restrictions in conditional dependence

In this section, we propose a test for linear restrictions for all null hypothesis that can
be expressed as

H0 : R τz = r, (4)

where τz = (τz1 , . . . , τzm )′ is a m-dimensional column vector of Kendall’s taus and
z1, . . . , zm are m deterministic conditioning values in the range of the covariable Z.
Actually, z1, . . . , zm are determined to be sufficiently spaced so that the subsamples
used in the nonparametric estimator of the conditional Kendall’s tau for each {τz


}m

=1

do not overlap. R is a q × m matrix of rank q ≤ m and r is a q-dimensional column
vectorwhereq is the number of restrictions to be tested. Both R and r are deterministic.
The alternative is Ha : R τz �= r . The test statistic under H0 is

J n = nhn(R τ̂z,hn
− r)′(RVτ̂z,hn

R′)−1(R τ̂z,hn
− r), (5)

where Vτ̂z,hn
is the covariance matrix of τ̂z,hn

, and hn is the bandwidth. The following
proposition establishes the asymptotic distribution of the test statistic Jn in (5) and
the asymptotic local power for local alternatives of type Ha(ξn) : R τz = r + ξn ς ,
where ς is a q × 1 nonzero deterministic column vector and ξn → 0 as n → ∞.

Proposition 2 Consider the same assumptions as in Proposition 1 and a set of condi-
tioning values z = (z1, . . . , zm), m <n, sufficiently spaced between them such that the
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subsamples used in the estimation for each z
 ∈ z are disjoint to ensure independence.
Under the null hypothesis, the Jn statistic asymptotically has a χ2 distribution with
q degrees of freedom.

Under local alternatives Ha(ξn) with ξn = (nhn)−1/2, the Jn statistic is asymptot-
ically distributed as a non-centered χ2 distribution with q degrees of freedom and the
noncentrality parameter δn =ς ′(RVτ̂z,hn

R′)−1ς .

The limiting distributions in Proposition 2 can be obtained from the joint asymptotic
normality of themultivariateKendall’s tau conditioned to different points andSlutsky’s
theorem. An outline of the proof is given in Appendix A.

The main steps for the practical implementation of the above test are presented
in Algorithm 2. Without loss of generality, we consider a single bandwidth value,
although it can be generalized to local bandwidth values. Note that in practice, Vτ̂z,hn
must be consistently estimated.An alternative is considered in Step 2. In related papers,
Gijbels et al. (2017) and Lemyre and Quessy (2017) propose different resampling
procedures to test for covariate effects. We propose adapted resampling procedures to
test for the hypothesis considered that will be detailed in each case.

Algorithm 2 Hypothesis test procedure
Require: Determine a set of points z = (z1, . . . , zm ) for m < n such that |z
 − z
′ | > hn 
, 
′ =
1, . . . , m, ∀
 �= 
′
Define R and r according to H0
Consider hn ∼ 2n−1/5hopt where hopt is obtained using Algorithm 1
STEP 1
for each z
 ∈ z do

Estimate τ̂z
,hn
as in (3)

end for
STEP 2
Define τ̂z,hn

= (τ̂z1,hn
, . . . , τ̂zm ,hn

)′

Estimate the elements in V̂ τ̂z,hn
under H0, as the sample variance of τ̂z,hn

STEP 3
Compute Jn = (Rτ̂z,hn

− r)′(RV̂τ̂z,hn
R′)−1(Rτ̂z,hn

− r)

Reject H0 if Jn > χ2
q|1−α

for a prefixed α

The null hypothesis in expression (4) accounts for many possible situations. In
particular, it enables to test for conditionally constant dependence. Alternative tests to
determinewhether there are covariate effects for conditional distributions can be found
in Lemyre and Quessy (2017), and for conditional copulas in Gijbels et al. (2017) and
Derumigny and Fermanian (2017). Specifically, Gijbels et al. (2017) review some
existing procedures purely based on conditional copula structures and introduce some
nonparametric proposals using conditional Kendall’s tau.

In this particular case, q = m − 1, R is a (m − 1) × m matrix with ones in the
main diagonal and – 1 values in the upper diagonal, and r = 0(m−1)×1. Due to the
complexity of the asymptotic variance–covariance matrix, we use a permutation pro-
cedure to estimate V̂τ̂z,hn

under the null hypothesis: Keep Z fixed and obtain permuted
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{(Y b
1i , . . . , Y b

pi )}n
i=1 p−tuples from {(Y1i , . . . , Ypi )}n

i=1 for a large number of permu-

tations B. Then, with the permuted samples estimate {τ̂ b
z
,hn

}B
b=1 for each 
 = 1, ..., m

and compute the sample variance of the set of estimated conditional Kendall’s taus.
The statistic Jn can also be used to test linear restrictions across different

waves. Let s1 and s2 be two independent samples. Then, τz is a 2m × 1 stacked
vector accounting for the conditional dependence in the two samples, τz =
(τ

s1
z1 , . . . , τ

s1
zm , τ

s2
z1 , . . . , τ

s2
zm ) = (τz

s1 ′
, τz

s2 ′
)′. R = (Im,−Im), where I is the iden-

tity matrix, and r = 02m×1. The estimated variance–covariance matrix V̂τ̂z,hn
is now

a block diagonal matrix with (V̂
s1
τ̂z,hn

, V̂
s2
τ̂z,hn

) in the diagonal and ̂Cov(τ̂z,hn

s1 , τ̂z,hn

s2 )

in the nondiagonal. The permutation procedure to estimate V̂τ̂z,hn
in this context

is quite different since it has to be adapted into an appropriate resampling proce-
dure. For each sample s = s1, s2, a bootstrap procedure is implemented: Bootstrap
{(Y b

s,1i , . . . , Y b
s,pi , Zb

s,i )}n
i=1 (p + 1)−tuples from {(Ys,1i , . . . , Ys,pi , Zs,i )}n

i=1 for a

sufficiently large number of times B. Estimate τ̂ s,b
z
,hn

for each bootstrapped sample and

calculate the variances σ̂ 2(τ̂z
,hn
) = (2B)−1 ∑

s,b(τ̂
s,b
z
,hn

− τ̂ z
,hn
)2. Then, set V̂τ̂z,hn

to

be a diagonal matrix with size 2m × 2m and the estimated values {σ̂ 2(τ̂z
,hn
)}m


=1.
These two applications of the Jn statistic are implemented in the simulation study

presented in the next section.

3 Simulation study

3.1 Bandwidth robustness

We consider two models to study the performance of the conditional Kendall’s tau
estimator and the robustness of the bandwidth selection from Algorithm 1. For the
sake of simplicity and ease of comparison, the data are generated under constant
conditional dependence. In the first model (Model L), variables Y1 and Y2 depend
linearly on a third variable Z : Y1i = 7Zi + ε1i and Y2i = 9Zi + ε2i . In the second
model (Model NL), the dependence ofY1 andY2 on Z is nonlinear:Y1i = 4eZi +ε1i and
Y2i = 5eZi + ε2i . In both models, Z is an i.i.d variable uniformly distributed between
0 and 1 and independent from the error terms. The error terms are two i.i.d random
variables such that ε1i ∼ N (0, 1), ε2i = ρε1i + √

1 − ρ2εi with εi ∼ N (0, 1) also
i.i.d and independent from ε1i , and ρ = 0, 0.75. Note that normality implies a direct
link between Pearson’s linear correlation coefficient and Kendall’s tau. Therefore,
ρ = 0 means that the dependence of Y1 and Y2 is fully explained by the relationship
with Z , while ρ = 0.75 indicates that there is an added dependency not related to Z .
For the two models considered S = 1000 samples of sizes n = 250, 500, and 1000
are generated. The Epanechnikov kernel is used and the smoothing parameter for the
Kendall’s tau estimator is selected via Algorithm 1.

The results (reported in the supplementary materials, Appendix B.1) show that the
conditional Kendall’s tau estimator is highly sensitive to the selection of the correct
smoothing parameter. As expected, for high values of the smoothing parameter, the
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conditional Kendall’s tau tends to an unconditional value. The smoothing parameter
selection proposed in Sect. 2.1 performs quite well and the estimated conditional
Kendall’s tau figures are quite close to the real conditional Kendall’s tau, regardless
of the dependence structure between the variables.

3.2 Testing for constant conditional Kendall’s tau

This section studies the size and power performance of the test proposed in Sect.
2.2. Given that the linear restriction accounts for the constant conditional Kendall’s
tau among others, the proposed statistic is an alternative to the statistics proposed
by Gijbels et al. (2017). We analyze the behavior of the test statistic for H0 : τz1 =
· · · = τzm , where z1, . . . , zm are m distinct conditioning values of a covariable Z.

For the purpose of comparison, the Vn1 = n−1 ∑
i

(
τ̂Zi ,hn

−τ̂Z ,hn

)2
statistic proposed

in Gijbels et al. (2017) is considered, where τ̂Z ,hn
= n−1 ∑

i τ̂Zi ,hn
. Note that their

statistic requires estimating Kendall’s tau at each observation of Z. Beyond bivariate
models, we also study the behavior of the two test statistics when data are generated
from multivariate dependence structures.

We consider the independence case and two different settings: Models based on
single copulas and models based on mixture copulas. For all models, S = 1000
samples are generated with sample sizes n = 250, 500, and 1000. The conditioning
variable Z is generated as an i.i.d random variable.

Independence setting

Model 1: Data are generated assuming a nonlinear specification for the marginals:
Y1i = 4eZi + ε1i , Y2i = 5eZi + ε2i , where ε1i , ε2i are two independent
i.i.d variables normally distributed with zero mean and unit variance. The
conditioning variable is uniform between 0 and 1, and it is independent of
ε1i , ε2i . (This is the particular case of ‘Model NL’ defined in Sect. 3.1 for
ρ = 0.)

Single copula setting
Five cases are generated from single copula models C(F1(Y1i ),. . ., Fp(Ypi );θ)

where θ is the dependence parameter of the copula in each model.

Model 2: The data-generating process comes from a bivariate Clayton copula where
the marginals {Y1i } and {Y2i } are normally distributed i.i.d variables with
zero mean and unit variance, and the dependence parameter is θ2(Zi ) =
Z2

i /(Z2
i + 1) with Z uniform between 0 and 6.

Model 3: Data are generated from a bivariate Gumbel copula with marginals Y1i =
2 sin(2π/3(Zi − 2) − 1) + ε1i and Y2i = ε2i , where {ε1i } and {ε2i } are
two i.i.d sequences that have density 1 − |x | on the support [−1, 1], the
dependence parameter is given by θ3(Zi ) = e0.5 + 1, and Z is uniform
between 2 and 5. (This model is defined as ‘Model 1’ in Gijbels et al.
(2017), Sect. 5.)

Model 4: Data are generated as in Model 3, but for the dependence parameter of the
Gumbel copula, the function θ4(Zi ) = e1.5−0.4Zi + 1 is taken. (This model
is defined as ‘Model 2’ in Gijbels et al. (2017), Sect. 5.)
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Model 5: Data come from a multivariate Clayton copula with p = 3. The sequences
{Y1i } and {Y2i } are generated as inModel 3 andY3i = 5+3 cos(14π/3 (Zi −
2)−7)+ε3i , where {ε3i } ∼ N (0, 1) is an i.i.d random variable. The copula
dependence parameter is θ5(Zi ) = θ3(Zi ), where Z is uniform between 2
and 5.

Model 6: The data-generating process is similar to that in Model 5. In this model, the
marginal {Y3i } ∼ N (0, 1) is an i.i.d randomvariable, and theClayton copula
dependence parameter functional has changed to θ6(Zi ) = e1.5+0.4Zi + 1.

Mixture copula setting
The second set, Models 7 to 10, considers data generated from mixture copulas

C M I X(u1, . . . , u p)=wCa(u1, . . . , u p; θa)+(1−w)Cb(u1, . . . , u p; θb),

where θr is the dependence parameter for r = a, b and w is the weight function.

Model7 : In this case, bivariate Clayton and Gumbel copulas are considered for Ca

andCb withw = 0.3,wheremarginals {Y1i } and {Y2i } are two i.i.d variables
with standard normal distribution, the dependence parameters are θa(Zi ) =
e0.5 and θb(Zi ) = 1.2, and Z is uniform between 0 and 6.

Model 8: Data come from a mixture between two bivariate Frank copulas with
w = 0.3. The marginals Y1 and Y2 are generated as in Model 3, θa(Zi ) =
Z3

i /(Z3
i + 1), θb(Zi ) = θ6(Zi ), and Z is uniform between 2 and 5.

Model 9: Multivariate Clayton and Gumbel copulas (with p = 3) are taken as Ca

and Cb with w = 0.7, respectively. Y1i = 2 sin(π (Zi/3 − 1)) + ε1i ,
Y2i = ε2i , and Y3i = ε3i , where {ε1i }, {ε2i }, and {ε3i } are three independent
i.i.d sequences of normally distributed random variables with zero mean
and unit variance. The dependence parameters are defined as θa(Zi ) =
sin(4π/7) + 1 and θb(Zi ) = e2.5 + 1, where Z is uniform between 0 and
6.

Model 10: Data are generated as inModel 8, consideringmultivariate (p = 3) versions
for the Frank copulas. The third marginal {Y3i } is an i.i.d random variable
with density 1 − |x | on the support [−1, 1].

The rejection frequencies for each model are presented in Table 1 for levels
α = 1%, 5%, and 10% and for the different sample sizes. Models 1, 3, 5, 7, and
9 consider a constant conditional dependence, so the null hypothesis holds. Thus,
these results report the size. By contrast, for Models 2, 4, 6, 8, and 10, the condi-
tional dependence is Z -dependent, so the results report the power of the test. The
three-column first block contains the rejection frequencies for the proposed Jn test
statistic when the conditioning points are about the 5% of the sample size, J 5%

n . This
percentage of points is used because the simulation study provides optimal results in
terms of size and power for that proportion at a low computational cost. Note that
the conditioning points have to be sufficiently spaced so that the subsamples used in
the estimation for each conditioning value are disjoint. The three-column last block
shows the results for the Vn1 statistic proposed by Gijbels et al. (2017). Additional
rejection frequency results for Jn when the set of conditional points are selected as
2.5% and 10%, sufficiently spaced points of the sample (J 2.5%

n and J 10%
n ) are given
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Table 1 Rejection frequencies
for simulated models (sample
sizes n = 250, 500, 1000 and
S = 1000 replications)

J 5%
n Vn1

n n
α 250 500 1000 250 500 1000

Model 1 1% 1.8 0.7 0.8 1.4 0.2 1.1

5% 5.8 4.5 4.9 6.9 4.8 3.9

10% 10.6 8.9 10.2 13.1 8.5 8.9

Model 2 1% 97.2 98.7 99.6 3.7 19.1 57.0

5% 98.3 99.8 100.0 12.4 39.1 80.5

10% 99 99.8 100.0 20.1 51.3 87.5

Model 3 1% 1.0 2.2 1.0 0.5 1.5 2.6

5% 4.1 6.3 4.8 4.3 6.7 10.9

10% 8.8 11.1 10.3 10.1 11.5 17.6

Model 4 1% 83.7 96.4 99.4 7.3 10.6 25.5

5% 91.6 99.1 99.8 21 28.4 47.2

10% 94.5 99.5 99.9 33.3 37.7 57.7

Model 5 1% 3.0 1.7 1.9 1.0 1.2 1.0

5% 6.6 4.8 5.2 7.1 5.7 5.1

10% 10.0 7.2 9.5 13.6 12.9 14.4

Model 6 1% 17.6 69.3 99.3 2.9 9.2 60.9

5% 31.2 84.2 99.7 8.1 25.9 80.4

10% 40.6 89.9 99.8 14.0 36.9 86.5

Model 7 1% 0.9 1.7 1.7 2.3 0.6 0.8

5% 4.4 6.9 8.1 8.1 3.9 5.6

10% 8.7 12.3 14.2 12.5 6.2 11.5

Model 8 1% 6.2 22.9 56.5 11.3 16.7 34.4

5% 19.3 43.0 71.8 24.6 30.4 54.3

10% 30.1 55.7 78.6 32.7 40.8 62.5

Model 9 1% 2.4 1.5 2.4 0.2 1.8 2.8

5% 7.4 6.5 5.6 1.4 10.0 8.1

10% 12.5 11.2 9.0 2.8 15.3 14.8

Model 10 1% 22.1 75.5 93.5 12.7 30.4 53.7

5% 43.9 87.2 97.0 31.2 50.7 76.6

10% 56.1 91.6 97.8 44.4 62.6 84.0

in the supplementary materials, Appendix B.2. The performance of the two tests is
studied in the case of unknown marginals.

The results support the idea that the proposed test statistic is appropriate for testing
constant conditional dependence in bivariate and multivariate contexts. Models 3 and
4 are also analyzed by Gijbels et al. (2017) for n = 100 and α = 0.05. The results
obtained for those models seem to be in line with the ones obtained in Gijbels et al.
(2017), at least for the small sample size. Indeed, J 5%

n appears to be more powerful
than the Vn1 statistic in most cases, with a clear improvement in the case of mixture
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Table 2 Rejection frequencies
of J 5%

n statistic for simulated
scenarios (sample size n = 250
and S = 4000 replications)

α = 1% α = 5% α = 10%

Scenario 1 1.35 4.97 9.87

Scenario 2 43.32 61.32 70.92

Scenario 3 0.62 3.97 7.72

Scenario 4 73.87 87.07 91.92

copulas. Note that in this case, compared to the structures studied in Gijbels et al.
(2017), the competing models are mixtures between two Archimedean copulas where
the dependence parameters are Z -dependent and the marginals are assumed to be
unknown. Moreover, the performance of the test statistics is studied in larger sample
sizes than in the analysis inGijbels et al. (2017). Note also that whileJ 5%

n statistic uses
only some sufficiently spaced points of the covariable, Vn1 statistic requires estimating
the conditional Kendall’s tau at every sample value of Z . This is not a big drawback
in small sample sizes, but it entails high computational costs for large samples. In
practice, this is a key issue. Moreover, J 5%

n is computationally less expensive to
compute than Vn1. Therefore, the results support the conclusion that the J 5%

n statistic
is a good alternative for testing for constant conditional dependence.

3.3 Testing for equal conditional Kendall’s tau across samples

This section uses the Jn statistic to test for equality of the conditional Kendall’s tau
across two samples s1 and s2 in a bivariate case. In this case, the null is H0 : τz

s1 = τz
s2 ,

where τz
s = (τ s

z1 , . . . , τ
s
zm

) for m sufficiently spaced conditioning values in the range
of the covariable Z in the sample s that meet the requirements established in Sect. 3.2.
Note that the conditional Kendall’s tau may change with Z .

In order to analyze the performance of the statistic in line with the sample size in
the empirical part, we simulate two samples with n = 250 observations under four
scenarios:

Scenario 1: The two samples are generated as in Model 2.
Scenario 2: First and second samples are generated as inModels 2 and 4, respectively.
Scenario 3: The samples are generated as in Model 8.
Scenario 4: First and second samples are generated as inModels 8 and 4, respectively.

The results from Scenarios 1 and 3 report the size of the test and those from
Scenarios 2 and 4 report its power. In all cases, 4000 replications are taken. Table
2 presents the rejection frequencies for Scenarios 1 to 4 for different significance
levels. The statistic provides adequate results in this aplication even for complicated
structures such as mixtures of copulas.
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4 Empirical application

The European Regional Competitiveness Index (RCI) has been drawn up by the Euro-
pean Commission every three years since 20101. It comprises more than 70 indicators
for measuring the ability of regions to offer an attractive, sustainable environment for
firms and residents to live and work in (Annoni and Dijkstra 2019). The final index is
formed by eleven pillars grouped into three general categories: Basic, Efficiency, and
Innovation. Basic comprises five pillars: Institutions (INST ), Macroeconomic Stabil-
ity, Infrastructure, Health, and Basic Education. Efficiency comprises three pillars:
Higher Education (HE), Labor market efficiency (L), andMarket size (M). Innovation
also comprises three: Technological readiness (TR), Business Sophistication (BS), and
Innovation (I). The measures of the pillars are provided as z-scores, and the values are
such that higher means better. The data set contains the z-scores for the eleven pillars,
the three categories, and the RCI index at regional level with 268 European regions
for 2019.

It is well-known that there are links between some individual pillars and themacroe-
conomy. For instance, the role of higher education in economic growth has beenwidely
analyzed in economic models (Lucas 1988). There is also a large body of literature
that links innovation to economic growth (see, e.g. Furman et al. 2002, Hasan and
Tucci 2010, Pradhan et al. 2016, Maradana et al. 2017). On that basis, it is helpful for
political regulation and economic purposes to detect how higher education levels can
affect a firm’s innovation. Haiyan et al. (2020) find evidence for China that a highly
educated stock of human capital plays an important role in both the probability and
the quantity of innovation at firms.

As mentioned in the Introduction, the quality of institutions is a key determinant
in the prosperity of regions, and the RCI index also takes this into account. The
Institutions (INST ) pillar in the Basic category covers regional and national indicators
for corruption, quality, and impartiality among others. It is based on the European
Quality of Government Index (EQI), a survey on corruption and governance at a
regional level within the EU conducted by the Quality Government Institute at the
University of Gothenburg.2 As suggested in the studies collected in Dimant and Tosato
(2018), there is a link between institutional quality and growth.

Based on the above ideas, we seek to detectwhether low institutional quality hinders
transfers between higher education and innovation results. Thus, the objective of this
section is to study the link between higher education and innovation, conditional
on institutional quality. Specifically, we study whether institutional quality helps to
increase the bivariate and multivariate relationships between other pillars. To that end,
we select some values of the INST variable so that they represent different institutional
quality levels and we compute the conditional dependence coefficients using estimator
(3). The selected values are z1 = −1.519, z2 = −1.218, z3 = 0.160, z4 = 0.905,
and z5 = 1.156 and correspond to the quantiles 0.05, 0.15, 0.5, 0.85, and 0.95 of the

1 Data set and more details available on the European Commission website: https://ec.europa.eu/regional_
policy/en/information/maps/regional_competitiveness/.
2 See https://qog.pol.gu.se/data/datadownloads/qog-eqi-data for details.
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INST variable. In particular, we are interested in four different hypotheses formulated
as follows:

1 There is no concordance between higher education and innovation, measured by
Kendall’s tau: H (1)

0 : τ = 0. A positive tau is expected, supporting the idea that
more competitive regions are linked to higher indicator scores. This hypothesis
is tested using the normal asymptotic distribution of the empirical Kendall’s tau
(Prokhorov 1994).

2 The concordance between higher education and innovation is fully explained
by institutional quality: H (2)

0 : τz = 0, where z is the measure for institutional
quality, the INST pillar. This is true if the pillars are z-conditional independent,
which is a sufficient but not necessary condition for τz = 0.

3 Institutional quality does not explain any of the concordance between higher
education and innovation: H (3)

0 : τz = τ . This means that the unconditional and
conditional degrees of concordance between pillars are equal, whatever the level
z of institutional quality.

4 The concordance between higher education and innovation might not depend on
the level of quality of institutions: H (4)

0 : τzk = τzl is tested to check whether
the degree of concordance between pillars depends or not on the standard of
the quality of governance, where zk �= zl denote two different levels of institu-
tional quality. Rejection would be evidence of a link between pillars that varies
according to institutional quality.

The fourth hypothesis is especially interesting, since its rejection provides a starting
point for studying how quality of institutions makes the links between pillars stronger
or weaker. Analyzing such conditional comovements is very useful for policy makers
with a view to controlling the impact of their interventions.

For the sake of illustration and to provide further empirical results, we also consider
the dependence between the Efficiency and Innovation groups and between higher
education and the other pillars in these two groups (Labor Market Efficiency, Market
Size, Business Sophistication, and Technological Readiness). First, we test for H (1)

0
and, as expected, find that all the unconditional Kendall’s taus become significant. For
the other three hypotheses, we adapt the test statistic Jn described in Sect. 2.2 to each
hypothesis. To analyze H (2)

0 , set R as the identity matrix Im and r = 0m×1. To test

for H (3)
0 , R = Im and r = τ · 1m×1. Finally, for H (4)

0 , (4) as detailed in Sect. 2.2 is
considered. Note that the pillars’ z-scores are not independent observations, but the
adequacy of the test statistic is guaranteed by Slutsky’s and central limit theorems.

Table 3 contains the estimated unconditional Kendall’s tau in the second column
and the estimated conditional coefficients in columns 3 to 7. The three-column last
block summarizes the tests results.

There is a noteworthy dependence between higher education and innovation, which
grows stronger as institutional quality becomes higher. For the other pillars, the results
are different. An analysis of the link between HE and BS reveals that the idea that
they are conditionally independent cannot be rejected. That is, for a given level of
institutional quality, no dependence is found between HE and BS through the condi-
tional Kendall’s tau. For the relationship between HE and TR, INST provides a further
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Table 3 Kendall’s tau coefficients based on 2019 RCI data. The values in column 2 are the unconditional
coefficients, while columns 3 to 7 show the conditional ones

Relations τ̂ τ̂q0.05 τ̂q0.15 τ̂q0.5 τ̂q0.85 τ̂q0.95 H (2)
0 H (3)

0 H (4)
0

Eff.-Inn. 0.678 0.097 0.623 0.484 0.204 0.733 *** *** ***

HE-L 0.447 0.036 0.248 0.448 0.054 0.357 *** *** *

HE-M 0.197 − 0.039 − 0.053 − 0.294 − 0.009 − 0.108 ***

HE-TR 0.405 0.077 0.215 0.382 0.052 − 0.093 ** *** *

HE-BS 0.308 0.253 0.073 − 0.056 0.154 − 0.154 ***

HE-I 0.528 0.091 0.307 0.406 0.456 0.530 *** *** **

HE-L-M 0.363 0.025 0.155 0.020 0.151 0.029 ***

TR-BS-I 0.518 0.366 0.517 0.245 0.255 0.069 *** *** **

HE-L-M-TR-BS-I 0.387 0.112 0.225 0.171 0.025 0.118 *** ***

NOTE:Asterisks indicate level of significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05 and ∗ p < 0.1

contribution for regions with medium institutional quality, which might be linked to
specific regions.

For multivariate relationships, the dependence is always positive. There is a low
dependence between the pillars in the Efficiency group, and the results reveal a con-
stant effect of institutional quality among them. Pillars in the Innovation group are
unconditionally more closely linked than those in the Efficiency group. Moreover,
the Innovation group pillars are significantly affected by the quality of institutions
and show a higher dependence for lower quality levels. The results show in fact that
governance quality has a clear impact on the comovements of variables related to
innovation. Nevertheless, the last row of Table 3 shows that although the quality of
governance has a significant impact on the multivariate relationship between these six
pillars, the effect is the same for all quality levels.

Regardless ofwhether or not conditional dependence is constant, the quality percep-
tion effect can vary fromone period to another. To testwhether the effect of institutional
quality on the link between indicators is constant over a three-year period, we consider
RCI index data for 2016 and compare similarities in the behavior patterns between
the two stress periods. We find that in general, there are no significant changes in the
dependency between pillars from 2016 to 2019, conditional on the quality of institu-
tions. The test reveals that at the 5% level, the institutional quality effect only changes
significantly for the link HE-M over a three-year period.

5 Conclusions

In this paper, we consider a nonparametric conditional copula to estimate conditional
joint dependence in a multivariate context. As an overall measure of dependence,
we compute a multivariate version of the rank correlation through a nonparametric
conditional Kendall’s tau estimator.
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Selecting the bandwidth for nonparametric estimators is an important task for
densities, distributions, and regression. We derive a smoothing parameter selection
procedure for the conditional Kendall’s tau and provide a simulation study to show
its performance. The proposed procedure is based on the minimization of the global
mean squared error, where the bias and variance terms are obtained using a jackknife
approach.

A Wald-type statistic is used to test whether there is any significant linear restric-
tion in Kendall’s tau conditional to some values of the covariate Z . As in Gijbels
et al. (2017), the procedure enables conditional independence and constant condi-
tional dependence to be tested for. The asymptotic distributions and the procedure for
practical implementation are provided. We conduct a simulation study to analyze the
size and power of the proposed test with bivariate and multivariate competing models
for different sample sizes. The results show that the statistic performs well for differ-
ent types of restriction, even when quite complex joint distributions are considered.
Its ease of implementation, low computational cost, and wide range of applications
make it a useful procedure for testing many different specifications of conditional rank
correlations.

The methodology is applied to analyze the multivariate dependence between pillars
in the 2019 RCI index. Specifically, we focus on the effect of the quality of institutions
on the relationship between the Efficiency and Innovation pillars. The results are quite
interesting and encourage further study.

First, there is a clear positive joint relationship between pillars, as expected. Second,
the joint relationship between pairs such as innovation and higher education is only
partially explained by the quality of institutions. Moreover, there is evidence in favor
of a joint dependence that increases with the quality of institutions. In other words, the
lower the quality of institutions, the weaker the link between innovation and higher
education. This may be an interesting starting point for studying whether there is a
causal link between the quality of institutions and the ability of regions to transfer
human capital to innovation results. This goes beyond the scope of this work, but we
believe that it opens up a promising research area.
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