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ABSTRACT We report here new characteristics of cell surface tubulin from a human leukemia 
cell line. These cells (CEM cells) possess tubulin that is readily iodinated on the surface of 
living cells, turns over at a rate identical to that of other surface proteins, and is present 
throughout the cell cycle. When removed with trypsin, it rapidly returns to the surface. Peptide 
mapping of iodinated surface tubulin indicates that it possesses a similar, but not identical, 
primary structure to total CEM and rat brain tubulin. Living CEM cells are able to bind 
specifically a subfraction of CEM tubulin from metabolically labeled high speed supernatants 
of lysed CEM cells. Surface tubulin is more basic than the total tubulin pool. The binding, 
which is saturable, is inhibited by unlabeled CEM high speed supernatants but not by excess 
thrice-cycled rat or bovine brain tubulin. Surface tubulin is also shown to bind to living 
nontransformed normal rat kidney cells but not to normal, circulating, mononuclear white 
cells. Activated lymphocytes produce a tubulin that binds to CEM cells. Since CEM tubulin 
was detected in the media of 6-h cultures of CEM cells, we must conclude that at least some 
of the surface tubulin comes from the media. We further conclude that these leukemic cells 
produce an unusual tubulin that may bind specifically to any membrane. The presence of 
iodinatable surface tubulin, however, appears to require both the production of a unique 
tubulin and the presence of a "receptor-like" surface binding component. 

Over the past ten years, numerous authors have suggested 
that tubulin can exist as a membrane protein. Tubulin has 
been reported to be associated with surface membranes of 
nerves (5, 13-15, 39), flagellar surface membranes (1), mam- 
malian thyroid tissue total membrane (4), transformed human 
lymphoid cells (2), platelet plasma membrane (32), intracel- 
lular membranes (l 7, 31, 35), and even artificial liposomes 
(7). Several of these studies are based on the co-purification 
of tubulin with a given membrane preparation and thus 
contamination from intracellular tubulin pools has been dif- 
ficult to eliminate. To avoid this potential artifact, surface 
labeling of living cells has been used as a method for identi- 
fying tubulin on the plasma membrane (2, 28). The possibility 
of artifactual labeling of cytoplasmic tubulin has been shown 
to be remote (28). 

Unresolved aspects of membrane tubulin research concern 
the chemical nature and function of membrane tubulin. It 
has been reported to be either insoluble in some nonionic 
detergents such as Triton X-100 (2, 39) or differentially 
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soluble in agents such as Nonidet P-40 (13). Other reports 
demonstrate the presence of enzymatically added tyrosine on 
tubulin believed to be associated with membrane systems 
(23). In studies by Stephens (33, 34), a systematic protein 
analysis of membrane versus nonmembrane tubulin shows 
that ciliary membrane tubulin is different from axonemal 
tubulin and that the association of ciliary tubulin to the 
membrane is highly specific. 

We have previously reported that cells from a human 
lymphoblast cell line established from the peripheral blood of 
a leukemic patient (CCRF-CEM, henceforth referred to as 
CEM) can be externally labeled with ~25I using three different 
iodination methods. In these cells, tubulin is one of the most 
heavily labeled components; whereas normal, intact, mono- 
nuclear white cells from human peripheral blood and bone 
marrow do not possess iodinatable tubulin (24, 28, 29). These 
labeling procedures do not label soluble, intracellular proteins. 
The labeled tubulin on the living cell surface can be easily 
removed by mild proteolytic treatment. In addition, we have 
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shown by the same methods that some circulating leukemia 
cell types in patients also possess surface tubulin. These cells, 
along with our CEM line, undergo cytolysis after exposure to 
very low concentrations of anti-tubulin drugs (18). In the 
present study, we present new evidence on the origin, struc- 
ture, turnover, and surface binding properties of surface tub- 
ulin in CEM cells. 

MATERIALS AND METHODS 

Cell Culture: Log phase cultures of lymphoblasts of the CEM cell line 
(T-cell origin) were propagated in Eagle's minimal essential medium supple- 
mented with 10% fetal calf serum and the antibiotics penicillin and strepto- 
mycin (11, 12). The total mononuclear white cell population from normal 
volunteers was obtained by ficol centrifugation and was activated with phyto- 
hemaglutinin and 10% T-cell growth factor for 4 d before labeling with [asS]- 
methionine. 

Iodination: Cells were washed in Hanks' balanced salt solution (HBSS) j 
and recovered by centrifugation at 100 g for 10 min. Cell pellets were resus- 
pended in 1 ml HBSS and iodinated with 200 uCi ~2~I catalyzed by lactoper- 
oxidase (LPO) in the presence of glucose and glucose oxidase for 15 rain at 
room temperature (16). The reaction was stopped by washing the cells three 
times in large volumes of HBSS containing phenylmethylsulfonyl fluoride. 
Membrane permeability of the cells was monitored before and after any 
iodination procedure by Trypan blue dye exclusion. 

Electrophoresis: One-dimensional polyacrylamide gel electrophoresis 
(I-D PAGE) was performed according to the method of Laemmli (21). CEM 
cells were solubilized and proteins separated by two-dimensional (2-D) PAGE 
as described elsewhere (27, 28). The gels were stained with 0.1% Coomassie 
Blue-R250 in 25 % isopropanol and 10% acetic acid and destained in a solution 
of 25% methanol and 10% acetic acid. 2-D gels from iodinated cell samples 
were dried on filter paper and autoradiographed using Kodak X-Omat XAR 
film. 

Immunoblot and Immunolocalization: Protein electroblotting 
and immunoloealization were performed according to the Bio-Rad Immunblot 
Assay Kit (Bio-Rad Laboratories, Richmond, CA). Briefly, after completion of 
2-D PAGE, duplicate slab gels of CEM whole cell homogenate were eleetro- 
phoretically transferred overnight at 4"C to nitrocellulose paper. One of the 
nitrocellulose sheets was stained with 0.1% Amido black in 45% methanol, 
10% acetic acid to visualize the whole cell staining pattern. The other sheet was 
washed in a 0.05% Tween-20 solution and then put in a blocking solution of 
3% gelatin in Tris-buffered saline. The primary antibody used was rat anti- 
alpha tubulin (Clone Y1 1/2, Sera Lab) at 15 #g/ml. This antibody is specific 
to lyrosinated tubulin only. The secondary antibody was rabbit anti-rat IgG 
horseradish peroxidase conjugate (Accurate Antibodies, Westbury, NY) in a 
1 : 100 dilution. The antibodies were localized by the addition of 60 mg horse- 
radish peroxidase color development reagent in 100 ml Tris-buffered saline 
with 60 #1 of ice cold 30% hydrogen peroxide. 

Peptide Mapping: Presumptive CEM cell tubulin was compared to 
twice-cycled bovine brain tubulin prepared by the method of Shelanski et al. 
(30). CEM whole cell homogenate and the purified brain tubulin were each run 
independently by 2-D PAGE. The alpha and beta subunits of tubulin were cut 
out of the stained gels and run on a second 15% I-D slab gel. Peptide fragments 
were produced by proteolytic digestion with Staphylococcus aureus V8 protease 
by the procedure of Cleveland et al. (9). Peptide maps were also used to 
compare CEM cytoplasmic tubulin with cell surface tubulin. Intact, viable cells 
were surface labeled by a routine iodination method. A high speed supernatant 
was prepared from a second group of cells by sonication on ice for 15 s followed 
by centrifugation at 100,000 g for 1 h. Soluble proteins were iodinated, dialyzed 
overnight against 0.01 M ammonium acetate, pH 7.2, and lyophilized. Solu- 
bilized samples from the two preparations were run on 2-D PAGE and the 
tubulin subunits were cut out and proteolytically digested as described above. 
The resulting peptide map was fluorographed using PPO (6) and exposed on 
Kodak XAR film to detect weak, secondary beta-like emissions from ~251 which 
represent 93% of the total emissions of this isotope. Further enhancement was 
obtained by using rare earth screens (36). 

Trypsinization: Twice-washed (HBSS CEM cells were iodinated by the 
routine LPO catalyzed method and divided into equal aliquots, to which 
increasing concentrations of trypsin were added. After a 5-min incubation at 
37"C, the cells were cooled to 0*C, and soybean trypsin inhibitor was added at 
twice the trypsin concentration. The cells were washed twice in large volumes 

~Abbreviations used in this paper: HBSS, Hanks'  balanced salt 
solution; LPO, lactoperoxidase; NRK, normal rat kidney. 
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of HBSS and solubilized for 2-D PAGE. The stained ge/s were autoradiographed 
using Kodak XAR film and rare earth screens. 

Tubulin Turnover Experiments: CEM cells were washed twice in 
HBSS and trypsinized (7.5 #g/ml) for l0 min at 37"C. The reaction was stopped 
with soybean trypsin inhibitor and the washed cells were reincubated in roller 
bottles with fresh complete media. Aliquots of the culture were withdrawn at 
6-h intervals over a 24-h period. The aliquots were iodinated, run on 2-D gels, 
and autoradiographed. The reverse experiment was performed by iodinating a 
large number of cells and returning them to culture for 24 h. Aliquots were 
withdrawn at 6-h intervals, washed free of media and unbound radioactivity, 
run on 2-D gels, and autoradiographed. 

Cell Synchronization by Elutriation: Log phase L-1210 mouse 

leukemic cells were separated into synchronized subpopulations by centrifugal 
elutriation by methods which have been recently reported in detail (20). 
Aliquots of the different cycle phases were stained with propidium iodide and 
analyzed with flow cytometry for homogeneity of each fraction (19). Each 
fraction was radioiodinated, as described above, and radioautographed. 

Specific Binding of Tubulin: CEM cells were metabolically labeled 
by incubating 10 ml (0.7 x 106 cells/ml) in low methionine medium with 10% 
dialyzed fetal calf serum using 200 uCi [3~S]methionine for 20 h. Cells were 
washed twice in HBSS, resuspended in 0.8 ml HBSS containing 1 mM phen- 
ylmethylsulfonyl fluoride and 0.1 mM methionine, sonicated, and centrifuged 
at 100,000 g for 1 h at 4"C. An unlabled batch of CEM cells was then exposed 
to the labeled high speed supernatant for 15 min at room temperature. The 
cells were washed exhaustively (eight times) until counts in the washes were 
equivalent to the background. Samples of the solubilized cells, as well as of the 
[35S]methionine-labeled proteins of the soluble supernatant, were run on 2-D 
gels. The stained gels were fluorographed, dried on filter paper, and exposed on 
Kodak XAR film at -80"C. 

The procedure just described for metabolic labeling and preparation of a 
labeled high speed supernatant was used in a series of competitive binding 
studies. CEM ceils were preincubated with saturating concentrations of twice- 
cycled brain tubulin or unlabeled high speed supernatant from CEM whole cell 
homogenates before the addition of asS-labeled high speed supernatant. After 
five washes in HBSS, a sample of the cell pellet was counted using Aquasol 
(New England Nuclear, Boston, MA) and a Beckman LS 2800 scintillation 
counter. A more rapid method was also used. This involved spinning the cells 
once through 500 ~1 of dibutyl phthalate in a 0.8-ml microfuge tube on a 
Beckman microfuge (Beckman Instruments, Inc., Palo Alto, CA). Saturation 
curves for CEM tubulin binding were determined both at room temperature 
and at 4*(?. A mixing experiment was done using CEM cells and normal rat 
kidney (NRK) cells in which metabolically labeled high speed supernatants 
from these two cell lines was incubated with viable cells from each of the cell 
types. Tubulin binding was compared by 2-D PAGE analysis and direct 
scintillation counts. 

2-D PAGE Quantitation: 2-D gel radiofluorographs were quanti- 
rated by the method of Mariash et al. (22). The program was essentially the 
same as described and kindly provided by Dr. Mariash. No effort was made to 
obtain absolute DPM values and thus the data is expressed as a percentage of 
the total radioactivity in arbitrary units. 

RESULTS 

Protein Identification 

We found that spots which co-migrate with purified brain 
tubulin contain label when living cells are radioiodinated by 
one of several surface iodination methods. As previously 
shown (28), tubulin is the most prominently labeled surface 
component (Fig. I A). This remains the case even when the 
labeling is done in the cold (Fig. 1 A, lower panel). The small 
amount of apparent actin labeling is lost when the iodination 
is done in the cold. The two major iodinated polypeptides 
observed after surface labeling of intact CEM cells were ini- 
tially identified as tubulin by co-migration with twice-cycled 
brain tubulin in 2-D PAGE. The presumptive CEM tubulin 
was further verified as being composed of alpha- and beta- 
tubulin subunits by immunoblotting (Fig. 1B) and by the 
similarity in peptide maps from twice-cycled brain tubulin 
subunits cut from stained 2-D gels (Fig. 2). However, there 
are some differences in the peptide fragments seen in the 
higher molecular weight region of the alpha subunit map. 



FIGURE 1 (a) Surface radioiodination of CEM cells. Living CEM ceils were washed in HBSS and radioiodinated by the LPO 
method. The cells were then solubilized and run on 2-D gels. The upper panel shows the staining pattern from such a gel. The 
resulting gel was then dried for autoradiography (middle panel). Note thal tubulin (arrows) is the most prominently labeled 
component.  The lower panel is an autoradiograph of a replicate experiment in which the iodination was carried out at 4"C to 
eliminate endocytosis. Note that tubulin is even more prominent relative to the other spots, a, actin. (b) AIpha-tubulin immunoblot. 
Alpha-tubulin from 2-D gels of CEM cells was further identified by immunoblot. 2-D gels of CEM cells were transferred to 
nitrocellulose papers. One was stained with Amido black (top panel) and the other was incubated with anti-alpha-tubulin 
(Accurate Antibodies Co.). This was visualized using horseradish peroxidase staining (lower panel). The protein labeled by the 
anti-alpha tubulin antibody in the lower panel corresponded to the spot indicated by the left arrow in the upper panel. 

This is probably not surface tubulin but does demonstrate 
that the spot we find co-migrating with alpha-tubulin does 
contain tubulin which is not highly contaminated by nontu- 
bulin proteins. Interestingly, the Western blot indicates that 
the antigen represents only part of the alpha spot pointing to 
the possibility that other isomers of alpha-tubulin may be 
present in this region. 

To further establish the identity of the presumed surface 
tubulin and to learn something about its structure, peptide 
maps of the surface tubulin (defined by iodination in living 
cells) were also made and compared with those from intracel- 

lular, soluble CEM tubulin taken from 2-D gels. It would 
appear, based on the similarity of peptide fragments observed 
(see Fig. 3), that surface tubulin and intracellular, soluble 
tubulin are very similar in primary structure and that spot 
contamination by nontubulin proteins on our 2-D gels is 
minimal. 

Surface Tubulin Turnover Studies 

Having demonstrated the apparent presence of a specific 
tubulin on the surface of these cells, studies were done on the 
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FIGURE 2 Total tubulin peptide maps: Coomassie Blue staining of 
S. aureus protease peptide maps compares alpha and beta subunits 
of tubulin from twice-cycled bovine brain and from CEM whole 
cell homogenate. (a) Bovine brain alpha; (b) CEM alpha; (c) bovine 
brain beta; (d) CEM beta. Note homology of the peptide fragments 
produced in the alpha subunits (a and b) and in the beta subunits 
(c and d) from the two sources. Arrows denote clear differences in 
alpha subunits. 

FIGURE 3 Surface tubulin peptide maps: autoradiograph of pep- 
tide map from soluble intracellular tubulin versus surface membrane 
tubulin. The protocol is given in the Materials and Methods section. 
Labeled peptide fragments produced are from (a) intracellular sol- 
uble alpha-tubulin, (b) surface-labeLed alpha-tubulin, (c) intracellu- 
lar soluble beta-tubulin, and (d) surface-labeLed beta-tubulin. No 
prominent differences can be detected in the labeling of the intra- 
cellular versus surface tubulin (compare a with b and c with d). 
Dashes in the margin indicate areas of homology seen clearly in 
the original autoradiographs. 

properties of this membrane tubulin and its possible binding 
site. To do so, it was necessary to find a way to perturb this 
site specifically or at least remove the surface tubulin with as 
little cellular damage as possible. Previous experiments have 
shown that trypsin could be used to remove surface tubulin 
from living cells (28). By decreasing the trypsin concentration 
and the time of trypsinization, we found that the surface 
tubulin could be removed without appreciably affecting the 
viability or growth rate of the cells. 

In our previous studies using 2-D gels to analyze surface 
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iodination of live cells, we noted the predominance of mod- 
erate and high molecular weight, multicharged species which 
show a characteristic even spacing of spots which gradually 
increase in molecular weight toward the acid end of the gels. 
Whenever such cells are treated with neuraminidase, these 
multicharged families move toward the basic end of the gel 
or become one spot at the position of the most basic compo- 
nent (8, 10). This is interpreted to mean that these multi- 
charged families of surface proteins are sialoglycoproteins. 
Along with tubulin, these glycoproteins are a prominent fea- 
ture on the surface of CEM cells and are readily removed 
along with tubulin by our gentle trypsinization procedure (see 
Fig. 4). 

To study surface tubulin turnover, CEM cells were trypsin- 
ized under conditions that remove all detectable label from 
the tubulin spots on 2-D gel radiofluorograms and then 
reincubated in normal media. Aliquots were removed for 
iodination every few hours. The data suggest that when surface 
tubulin is experimentally removed, it reappears to near-nor- 
mal levels within 12 h (Fig. 4; Table I). Membrane tubulin 
turnover was also studied with cultures that were not trypsin- 
ized. Cells were radioiodinated, washed, re-incubated, and 
sampled periodically over 24 h for 2-D PAGE. The results 
(Fig. 5) are more ambiguous in that the iodination process 
inhibits growth although no reduction in Trypan blue exclud- 
ing cells was observed. Even in the absence of any detectable 
cell doubling, there is considerable reduction of labeled tub- 
ulin when expressed as cpm/cell. This must be due to degra- 
dation or loss to the media. However, when pre-iodinated, it 
is clear that the cells do not replace the surface tubulin at the 
same rate as when trypsinized. 

Expression during the Cell Cycle 
Since drug cytotoxicity has frequently been shown to be 

cell cycle and proliferation dependent (37), it was of interest 
to examine the expression of surface tubulin during the cell 
cycle. Murine leukemic L-1210 cells which possess surface 
tubulin can be synchronized readily by elutriation. L-1210 
cells were separated by centrifugal elutriation and subpopu- 
lations containing predominantly G,, S, and G2--M cells 
iodinated with LPO. The results (not shown) demonstrate the 
presence of label over the tubulin spots throughout the cell 
cycle in apparently equal amounts. 

Origin of CEM Surface Tubulin 
Experiments were designed to investigate the origin of 

surface tubulin in CEM cells. There are only two logical 
sources for this tubulin. It could originate from within the cell 
and be actively inserted through (or into) the plasma mem- 
brane by some normal biosynthetic process. Alternatively, it 
could come from the media and be adsorbed to, or specifically 
bound onto, the surface membrane. A combination of both 
alternatives is also possible. To distinguish between these two 
hypotheses, unlabeled CEM cells were added to a solution of 
metabolically labeled CEM proteins (Fig. 6). Analysis of the 
high speed supernatant (top panel) shows that this fraction is 
highly heterogeneous containing, as expected, many hundreds 
of proteins with many constituents exhibiting the same or 
similar isoelectric point as tubulin (Fig. 6). The results also 
clearly show that cold CEM cells act as a live tubulin affinity 
matrix (Fig. 6). The cells selectively remove only labeled 
tubulin from the high speed supernatant, which contains the 



FIGURE 4 Replacement of surface tubulin after trypsin treatment. 
CEM cells were trypsinized (7.5 ~g/ml, 37"C, 5 rain) and put back 
into roller bottle culture. Equivalent aliquots were withdrawn at 

TABLE I. Tubulin Turnover Rate in Trypsinized CEM Cells 

Experiment 1 Experiment 2 

Alpha Beta Alpha Beta 
% % % % 

Control 100 100 100 100 
Time 9 0.77 1.6 0.41 0.49 

1 h 15.2 15.3 
2 h 28.3 46.1 
3 h 20.5 26.5 
6 h 34.8 68.1 24.1 33.2 

12 h 83.2 26.5 
24 h 211 150 

CEM cells were trypsinized (7.5 #g/ml, 5 rain), washed in HBSS, and put back 
into culture with fresh media. Equivalent aliquots were withdrawn at various 
time intervals and iodinated. Labeled alpha and beta spots were cut from the 
gels and counted directly in a gamma counter. After subtraction of the gel 
background counts, the cpm have been expressed as a percentage of the 
control sample which was not trypsinized. Time 0 represents an aliquot of 
cells that were trypsinized immediately after iodination, indicating the effec- 
tiveness of the trypsin in removing labeled tubulin from the cell surface. 

total soluble protein fraction of these cells. This bound, la- 
beled tubulin contains fewer nontubulin spots than any thrice- 
cycled brain tubulin preparation we have ever analyzed. Beta- 
tubulin, which has 19 methionine residues, is always more 
heavily labeled than alpha-tubulin, which has only 11. 

Approaches to Finding the Origin of 
Surface Tubulin 

We then looked for the presence of tubulin in CEM culture 
media using metabolically labeled CEM cells incubated in 
serum-free media. The results indicate that many proteins, 
including tubulin, are present in the medium within a few 
hours after the inoculation of a fresh culture. Whether the 
tubulin is actively secreted by the cells or is released by damage 
to the cells in culture has not been determined. An attempt 
was also made to sequester any tubulin which might be 
released into the media of a growing cell culture. Excess 
monoclonal antibody to tubulin (shown to bind to CEM 
tubulin, Fig. 1B) or lactoperoxidase covalently bound to 
sepharose beads, which selectively binds soluble tubulin (25, 
26), was added to the growing culture. These treatments did 
not prevent the re-expression of surface tubulin 6 h after the 
removal by trypsinization. Since the efficiency of sequestra- 
tion of tubulin in the media was not determined, these nega- 
tive results were not conclusive. Attempts were also made to 
inhibit the re-expression of surface tubulin by inhibiting pro- 
tein synthesis. Cyclohexamide at levels that inhibited >97% 
of the incorporation of methionine into the total trichloroa- 
cetic acid-pelletable fraction was used. The use of cyclohex- 
amide did not affect the percentage of non-dye-excluding cells 
in these experiments (<3%). Cells were pre-treated in the drug 
for 30 rain, then trypsinized to remove surface tubulin, and 
placed back into culture in the presence of the drug. At 
periodic intervals, a portion of the culture was sampled and 
iodinated for 2-D PAGE and radiofluorography. No inhibi- 
tion of the re-expression of surface tubulin could be obtained 
(not shown). 

various times over 24 h and iodinated. (A) Control - -not  trypsinized; 
(B) at time 0; (C) at 2 h; (D) at 6 h; and (E) at 24 h posttrypsinization 
treatment. Table I summarizes data from two such experiments. 

QUILLEN ET AL. CelI Surface Tubulin in Leukemic Cel ls 2349 



::k- 
8 0 f ~  ~ L~ 

2 0  & 
zx 

1 0  

I I I I 0 6 12 18 24 
HOURS 

FIGURE 5 LOSS of surface tubulin in culture: CEM cells were labeled 
with 1251 and then placed back in roller bottle culture for 24 h. 
Equivalent aliquots were withdrawn at 6-h intervals, washed free of 
media and unbound counts, and run on 2-D gels. The labeled alpha 
and beta subunits, along with two glycoproteins, were cut out of 
the gels and counted directly in a gamma counter. The CPM from 
each of the proteins is expressed as a percentage of the initial 
counts in the control sample measured at time 0. The apparent loss 
of membrane-labeled tubulin over 24 h seems to parallel the 
turnover of two other randomly selected membrane glycoproteins. 
e, alpha-tubulin; in, beta-tubulin; A and &, two glycoproteins. 

Membrane-Tubulin Interaction 

Since CEM tubulin in high speed supernatants bound so 
specifically to live CEM cells (>95% of the total radioactivity 
on 2-D gels of CEM cells exposed to these supernatants is 
tubulin), it was possible to study the binding of CEM tubulin 
to live cells by simply counting the total radioactivity in a 
washed cell pellet exposed to a labeled high speed supernatant 
(Fig. 7). It is apparent that tubulin binds with a low affinity 
that is not inhibited by preincubation with a great excess of 
unlabeled thrice-cycled bovine tubulin. Scatchard analysis of 
this data does not produce a linear plot, suggesting the binding 
phenomenon is complicated and may represent more than 
one interaction. Repeating these experiments in the cold 
produced identical results except that saturation was achieved 
at 200 ~g/ml total protein rather than 800. Unlabeled high 
speed supernatants, however, did compete for labeled CEM 
tubulin binding (Fig. 8). This competition was not complete, 
with some tubulin apparently binding even in the presence of 
10-fold excess of cold CEM tubulin. 

The failure to inhibit this binding with unlabeled brain 
tubulin was surprising and led us to suspect that there might 
be something unique about CEM surface tubulin. Therefore, 
samples from these binding expermients were run on 2-D gels 
at high protein loading levels to try to observe any heteroge- 
neity in the isoelectric focusing or molecular weight charac- 
teristics of the bound tubulin. The results of this analysis 
suggested that the alpha subunit of CEM membrane-binding 
tubulin is indeed different from the total CEM alpha-tubulin 
(Fig. 9). It is apparent that the staining and fluorographic 
patterns of the alpha spot are different, with the bound tubulin 
occupying the basic side of the total alpha tubulin spot. 

We have further characterized the specificity of the CEM 
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FIGURE 6 Affinity of CEM plasma membrane for CEM tubulin: CEM 
cells were incubated with [3SS]methionine for one generation be- 
fore homogenization. A high speed supematant of the metabolically 
labeled proteins was prepared and the upper panel shows the 
fluorograph of the 2-D gel from the labeled soluble intracellular 
proteins. Unlabeled living CEM cells were placed in this labeled 
supernatant for 10 min at room temperature and then washed 
exhaustively and solubilized for 2-D gel analysis. Tubulin is essen- 
tially the only labeled component adherent to the CEM cells, as 
seen in the fluorograph (middle panel). The staining pattern of the 
fluorograph is shown in the lower panel, a, actin. Arrows indicate 
alpha- and beta-tubulin. 

tubulin-membrane interaction by incubating CEM cells in 
metabolically labeled high speed supernatants from NRK cells 
and doing the reciprocal experiment with labeled CEM high 
speed supernatants. The results show that the isoelectric var- 
iant ofCEM tubulin does bind (as do some other proteins) to 
live NRK cells, but NRK tubulin does not appear to bind to 
CEM cells with any specificity (Fig. 10). These experiments 
have been repeated using isolated circulating mononuclear 
white ceils from normal individuals and the results were the 
same (no CEM tubulin binds to the white cells). The reverse 
experiment to determine whether circulating white cells pos- 
sess tubulin that will specifically bind to CEM cell surfaces 
was not possible as we could not obtain sufficient methionine 
incorporation into the quiescent white cells. However, we 
were able to label these cells after mitogenic activation. These 
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FIGURE 7 Tubulin binding curve. Increasing concentrations of 35S- 
labeled high speed supernatant were incubated with CEM ceils. 
CFM tubulin denoted only by diamond and square. In lines labeled 
with a triangle and circle, purified brain tubulin (at I mg/ml) was 
incubated with the cells 5 min before and during the addition of 
the labeled high speed whole cell supernatant. Each experiment is 
shown in duplicate. The volumes and the concentrations of the 
high speed supernatant total protein were kept equal for both 
treatment groups. Washing was done using the dibutyl phthalate 
method. Similar results were obtained using HBSS washing. Exog- 
enous bovine brain tubulin therefore is not a competitive inhibitor 
of CEM tubulin binding. 
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FIGURE 8 CEM tubulin competition. CEM cells were incubated 
with increasing amounts of whole cell, high speed supernatant 5 
rain before and during the addition of 3SS-labeled whole cell, high 
speed supernatant at saturation concentration. Points on the graph 
are the average of two experiments showing the competitive inhi- 
bition of binding of labeled CFM tubulin by unlabeled CEM tubulin. 
Washing was done using the dibutyl phthalate method. 

cells did bind some CEM tubulin and CEM cells did bind 
some tubulin from high speed metabolically labeled super- 
natants made from the activated white cells. The binding in 
both cases was much less specific than the binding of CEM 
tubulin to CEM cells but there was clearly a great enhance- 
ment of the tubulin spots over that seen in the high speed 
supernatant of the white cells (Fig. 11). 

DISCUSSION 

Evidence is accumulating to support the view that subclasses 
of many cytoskeletal proteins associated specifically with var- 
ious membrane systems (1-5, 7, 13-15, 17, 28-35, 38, 39). 
These may represent isoproteins coded by different genes or, 

F~GURE 9 Surface tubulin is a more basic isomer of the total tubulin 
pool. Upper panels show Coomassie Blue staining of tubulin region 
of two replicate 2-D gels of CEM cells. Autoradiographs (lower 
panels) show the selective adsorption of alpha- and beta-tubulin 
from a radiolabeled CEM whole cell high speed supernatant. Arrows 
indicate alpha-tubulin spot. Note only the basic half of alpha spot 
covered by radioactivity. 

alternatively, by posttranslational modification of normal pro- 
teins. In the present report, evidence is provided that in at 
least one cell type tubulin can exist in or on the outer surface 
of living cells in culture. We conclude that this tubulin is 
structurally similar (although clearly an isoelectric variant) to 
soluble intraceUular tubulin and is fully exposed on the outer 
surface. This is based on the peptide mapping data (Figs. 2 
and 3). At the very least, surface tubulin has the same number 
of exposed tyrosines as the soluble dimer and is released more 
readily by proteases than other membrane proteins. 

In addition, the turnover data support the view that surface 
tubulin is rapidly replaced by new tubulin every 6 to 12 h (see 
Figs. 4 and 5 and Table I). This result may not represent 
classical turnover, since the ultimate fate of the surface tubulin 
is unknown. At least some of this tubulin originates in the 
media, probably from lysed cells since CEM tubulin binds so 
specifically to living cells and CEM tubulin is found in the 
media. We are unable to determine if any surface tubulin 
originated from a normal synthetic pathway via insertion of 
stores of tubulin into the membrane. The experiments in 
which the cells were iodinated and then returned to culture 
show that the surface tubulin is not simply internalized and 
put back into the intracellular tubulin pool. Fluorographs of 
these whole cell homogenates would detect the internalized 
tubulin, although these results do not preclude the possibility 
of internalization followed by immediate degradation. 

Lastly, the results of this study also support contention that 
CEM cells possess a specific CEM tubulin "receptor" on the 
cell surface. It is important to distinguish this from classical 
designations of receptors in the pharmacological sense. By 
"receptor" we mean only a component(s) on the surface that 
selectively binds or adsorbs soluble CEM tubulin. Competitive 
inhibition of binding by CEM high speed supernatants, but 
not brain tubulin, suggests that what causes these leukemia 
cells to possess surface tubulin is that they produce an unusual 
tubulin isomer that has a specific membrane receptor. We 
cannot be sure that this competitive inhibition was caused 
exclusively, or even partially, by CEM tubulin. The fact that 
membrane tubulin is the only protein from high speed super- 
natants that binds to the live cells does not preclude other 
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FIGURE 10 CEM and NRK tubulin binding to living CEM and NRK cells. (a) Fluorograph of a [35S]methionine-labeled CEM lysate 
high speed supernatant. CEM (b) and NRK (c) cells were incubated in this labeled supernatant for 5 min, washed extensively, and 
solubilized for 2-D PAGE fluorography. Note that CEM tubulin (arrows) binds specifically only to CEM cells but does bind 
nonspecifically to NRK cells as does actin. (d) Fluorograph of a [3SS]methionine-labeled NRK cell lysate high speed supernatant. 
CEM (e) and NRK (f) cells were incubated in the labeled NRK high speed supernatant as described above. Note the absence of 
NRK tubulin binding to CEM cells. Some binding of both NRK tubulin and actin to NRK cells is apparent after long exposure. 

components from inhibiting the binding. Since the CEM 
tubulin competition was not 100%, it may be that there is 
also some adsorption of CEM tubulin to the outer surface 
that does not require a specific CEM tubulin "receptor." Some 
of this residual, noncompetitively bound material may simply 
be methionine within the cellular pool. That liposomes alone 
can specifically bind soluble tubulin in vitro (7) emphasizes 
the vague nature of this definition. It is also of interest that 
one fraction of CEM tubulin can also bind to the unrelated 
"normal" NRK cells. Another possiblity is that [35S]methio- 
nine in the metabolically labeled high speed supernatant 
becomes incorporated into the intracellular amino acid pool 
and is not removed by brief exposure to the unlabeled high 
speed supernatant. Preliminary experiments indicate that, 
depending on the care taken in removing cell pellets from the 
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quick wash tube, 5 to 15% of the counts remaining with the 
cell pellet are tdchloroacetic acid soluble. The adsorption of 
some tubulin from mitogen-activated white cells to CEM cells 
and the binding of some CEM tubulin to these white cells 
(but not unactivated primary lymphocytes) suggests that mi- 
togen activation of the cell cycle induces the appearance of 
some tubulin receptors on the surface and perhaps the syn- 
thesis of some membrane tubulin. This is not surprising in 
light of the report that lymphocyte activation induces the new 
appearance of iodinatable surface tubulin (2). CEM cells may 
then represent an extreme example of this expression. 

The nature of the surface tubulin-binding component and 
the reason for its presence remains unknown. Methods to 
quantitate the amount of surface tubulin and the number of 
available tubulin binding sites using tubulin antibodies, and 



FIGURE 1 1 Mononuclear white cell tubulJn binding to CEM cells. A similar experiment to that shown in Fig. 10 was undertaken 
with circulating mononuclear white cells. No CEM tubulin or any other protein was bound to these cells (not shown). These cells 
do not take up methionine. Therefore they were activated with phytohemaglutinin and T-cell growth factor before labeling. (Left) 
Autoradiograph of the high speed supernatant from the labeled, activated lymphocytes. Note the almost complete absence of 
tubulin. (Right) Autoradiograph of the lymphocyte proteins bound to living CEM cells. Note that tubulin, among other proteins, 
is present. Arrows denote alpha- and beta-tubulin (right) and its absence (left). 

iodinated tubulin, need to be established. This will be difficult 
considering that the tubulin that binds to CEM surfaces 
appears to be a different protein (more basic) than the bulk 
of CEM intracellular tubulin or purified brain tubulin. In 
another report (2), immunolocalization of surface tubulin on 
cultured human leukemic cells was observed, although only 
qualitatively. We have also attempted to demonstrate CEM 
affinity binding to colchicine beads as has been reported for 
avian erythrocytes (38) without success. We could not dem- 
onstrate competitive inhibition of cellular binding on addition 
of exogenous colchicine for either avian erythrocytes or CEM 
cells. Some of these negative results may be the result of an 
altered secondary and tertiary structure of membrane tubulin. 

The apparent presence of surface and membrane tubulin 
in primary human leukemia cells in vivo, in the membranes 
of cilia and flagella of invertebrates, and in platelets (1, 32, 
33) as well as the membrane systems of nervous tissue (13- 
15, 31) further suggests the importance and wide-spread na- 
ture of the phenomenon. Taken together, the work reported 
here and that of others cited strongly suggests that membrane 
tubulin is real and plays some cellular function. The apparent 
similarity of its primary structure to soluble and invertebrate 
axonemal tubulin (though some chemical differences have 
been reported by Stephens [33]) argues that over evolutionary 
time, membrane tubulin has retained some microtubule-like 
function. One intriguing possibility is that membrane tubulin 
represents a normal tubulin gene product which has been 
secondarily modified to increase its lipid solubility. The selec- 
tive adsorption or binding to CEM surfaces and liposomes 
(7), and its co-purification into isolated reconstituted ciliary 
membranes (34) supports such a hypothesis. However, mem- 
brane tubulin is also frequently reported to be insoluble in 
nonionic detergents (we have confirmed this for CEM surface 
tubulin). Once in or on the membrane, there may be an ionic 
interaction of tubulin with other as yet undetermined mem- 
brane-associated components. 

It is not yet possible to propose a function for surface or 
membrane tubulin with confidence. The demonstration that 
surface tubulin can be removed while the cells remain viable 
and completely re-express the surface tubulin may allow us 
to study the functions of this unique membrane protein 
directly. 
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