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ABSTRACT In recent years, our appreciation of the extent of habitable environments
in Earth’s subsurface has greatly expanded, as has our understanding of the biodiver-
sity contained within. Most studies have relied on single sampling points, rather than
considering the long-term dynamics of subsurface environments and their microbial
populations. One such habitat are aquifers associated with the aqueous alteration of
ultramafic rocks through a process known as serpentinization. Ecological modeling
performed on a multiyear time series of microbiology, hydrology, and geochemistry in
an ultrabasic aquifer within the Coast Range Ophiolite reveals that community assem-
bly is governed by undominated assembly (i.e., neither stochastic [random] nor deter-
ministic [selective] processes alone govern assembly). Controls on community assem-
bly were further assessed by characterizing aquifer hydrogeology and microbial
community adaptations to the environment. These analyses show that low permeabil-
ity rocks in the aquifer restrict the transmission of microbial populations between
closely situated wells. Alpha and beta diversity measures and metagenomic and meta-
transcriptomic data from microbial communities indicate that high pH and low dis-
solved inorganic carbon levels impose strong environmental selection on microbial
communities within individual wells. Here, we find that the interaction between strong
selection imposed by extreme pH and enhanced ecological drift due to dispersal limi-
tation imposed by slow fluid flow results in the undominated assembly signal
observed throughout the site. Strong environmental selection paired with extremely
low dispersal in the subsurface results in low diversity microbial communities that are
well adapted to extreme pH conditions and subject to enhanced stochasticity intro-
duced by ecological drift over time.

IMPORTANCE Microbial communities existing under extreme or stressful conditions
have long been thought to be structured primarily by deterministic processes. The
application of macroecology theory and modeling to microbial communities in recent
years has spurred assessment of assembly processes in microbial communities, reveal-
ing that both stochastic and deterministic processes are at play to different extents
within natural environments. We show that low diversity microbial communities in a
hard-rock serpentinizing aquifer are assembled under the influence of strong selective
processes imposed by high pH and enhanced ecological drift that occurs as the result
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of dispersal limitation due to the slow movement of water in the low permeability aq-
uifer. This study demonstrates the important roles that both selection and dispersal li-
mitation play in terrestrial serpentinites, where extreme pH assembles a microbial
metacommunity well adapted to alkaline conditions and dispersal limitation drives
compositional differences in microbial community composition between local com-
munities in the subsurface.

KEYWORDS serpentinization, groundwater, community assembly, extreme pH,
microbial ecology, deep subsurface, hard-rock aquifer

Recent estimates of the distribution of biomass on Earth indicate that bacteria are
the second largest reservoir of biomass (;70 gigatons of carbon) and that the ma-

jority of bacterial and archaeal biomass is hosted within subsurface environments
(;64 gigatons of carbon) (1). In the last decade, several deep subsurface environments
have been studied and characterized in detail, allowing us to improve our understand-
ing of the composition and function of microbial communities in this biome and the
important roles they play in global biogeochemical cycling (2–4). One type of deep sub-
surface habitat that has become the subject of intensive study over the last decade is ser-
pentinized peridotite. Serpentinization is a geochemical reaction that hydrates ultramafic
rock (peridotite) (5) and generates high pH, reducing fluids with abundant hydrogen (6).
In recent years, the microbiology of serpentinizing systems has been studied in a variety
of marine (7–9) and terrestrial (6, 10–16) environments. This work has confirmed the pres-
ence of endemic, low diversity, microbial communities capable of tolerating the extreme
pH (15, 16) and utilizing available hydrogen (17, 18), carbon monoxide (17, 19), methane
(14, 20), acetate (6, 14, 21), formate (18–21), and sulfur compounds (22) for both dissimila-
tory and assimilatory metabolic processes. Combined, this work has provided ample evi-
dence that distinct communities of microorganisms inhabit serpentinizing environments
and that they play active roles in these ecosystems.

To date, the ecological forces that structure microbial communities and drive turnover
within and between microbial communities in serpentinizing systems have yet to be
investigated. Community assembly describes the stochastic (dispersal and ecological drift)
and deterministic (environmental and/or biological selection) ecological processes that
structure observed microbial communities (23, 24). Advances in DNA sequencing technol-
ogy in the last 2 decades (25), paired with the more recent implementation of community
assembly theory and modeling of sequencing data from microbial ecosystems, have pro-
vided new insights into the mechanisms that structure microbial communities in a variety
of conditions (24, 26–36). Assessments of community assembly in groundwater sys-
tems have shown that selection and dispersal processes play an extremely important
role in structuring both the environmental resource landscape as well as microbial
communities (29, 31, 32, 34, 37). Due to accessibility, much of this work has been per-
formed in neutral pH, near surface, groundwaters with connectivity to the surface
(31, 32, 37). Relatively little work has been done in isolated hard-rock aquifers within
the deep subsurface (29, 34). Old groundwaters (.100 years), which are often hosted
within hard-rock aquifers in the deep subsurface, are a substantial reservoir of glob-
ally available freshwater (38). As these systems are likely dispersal limited, it is impor-
tant that we understand the ecological forces that structure microbial communities
in hard-rock aquifers (29, 34) to better account for the controls on microbial commu-
nity composition and function within these large reservoirs of valuable water resour-
ces (39).

In this study, we apply a null modeling ecological framework (28) that uses the
b-nearest taxon index (bNTI) and the abundance-weighted Raup-Crick (RCbray) metric
to quantify microbial community assembly processes in an isolated serpentinizing aq-
uifer. We apply the modeling framework to the longest running and highest resolution
time series data set collected from a serpentinizing system thus far, to better under-
stand the forces that drive assembly and microbial community turnover within these
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unique systems. Additionally, we integrate an aqueous geochemistry data set collected
alongside microbial samples to better understand environmental drivers of microbial
community composition. We perform basic hydrologic modeling to estimate aquifer
hydraulic properties to better understand movement of water and the physical envi-
ronment that microbial communities experience in the subsurface. Our data show that
pH imposes a strong selective force on microbial community composition but that,
overall, slow fluid flow and poor connectivity in the subsurface isolates microbial
communities from one another. This isolation introduces a significant amount of sto-
chasticity by enhancing ecological drift within and between these alkaliphilic micro-
bial communities.

RESULTS
Geochemistry. Fluids were sampled from 12 wells of various depths (7 to 76 m) that

access a high pH aquifer in the serpentinizing ophiolite at the Coast Range Ophiolite
Microbial Observatory (CROMO) in Northern California (40). Fluids were sampled two or
three times per year over the course of 6 years. Sampled fluids, which are pumped under
positive pressure via permanently installed submersible pumps, traveled directly through
a chamber with a multiprobe meter to measure temperature, pH, dissolved oxygen (DO),
oxidation-reduction potential (ORP), and specific conductance (11, 15). Luer-lock syringes
were attached directly to the pump outflow tubing for anoxic sampling of fluids to sup-
port subsequent chemical analyses as described in Text S1 in the supplemental material.
Analysis of the fluid chemistry (see Table S1 at https://doi.org/10.6084/m9.figshare
.14983851) over the duration of the study shows that CROMO fluids generally become
more reducing, increase in temperature, salinity, and pH, and decrease in DO and dis-
solved inorganic carbon (DIC) concentrations with depth (Fig. 1A to F).

Ecological modeling. DNA and RNA were extracted from microbial communities
that were captured on 0.22-mm Sterivex filter cartridges (Millipore, Billerica, MA, USA)
during sampling trips from 2011 to 2017 as described below and in Text S1. The fol-
lowing diversity and ecological modeling results are based on a data set generated from
gene amplicon sequencing of the V4 region of the 16S rRNA gene. The data set utilized
for these analyses consists of 104 samples, 5,974,056 sequence reads, and 13,444 opera-
tional taxonomic units (OTUs) clustered at a 3% distance threshold as described below.
The 16S rRNA gene amplicon data set represents 51 different phyla, and community com-
position is largely dominated by members of the Betaproteobacteriales and Clostridiales
orders (see Fig. S1 in the supplemental material). The OTU count table (CROMO_Filtered_
FINAL_counts.xlsx) utilized for the following analyses and ecological modeling are published
on Figshare (https://figshare.com/projects/Community_Assembly_in_Serpentinizing_Ophiolites/
101648).

Ecological modeling of the microbial communities was carried out to characterize the
relative contributions of different community assembly processes, using the framework
developed by Stegen and colleagues (28). This framework employs null modeling techni-
ques to generate randomized communities that can be compared with observed micro-
bial community composition to determine whether microbial communities are more or
less similar to each other than would be expected if communities assembled by random
chance. First, bNTI values are calculated to differentiate between deterministic (selective)
and stochastic (random) processes. Significant bNTI values indicate that deterministic
processes are responsible for observed differences between microbial communities in a
given pairwise comparison (37). Nonsignificant bNTI values indicate that stochastic
processes are responsible for observed differences between microbial communities
(28). Stochastic assembly processes are further investigated using the RCbray metric
to characterize the roles of dispersal and ecological drift (28). A detailed description
of each community assembly process associated with ecological modeling results
(28) can be found in Table 1. bNTI (CROMO_weighted_bNTI_matrix.csv) and RCbray
(CROMO_RCbray_matrix.xlsx) matrices used for the following analyses are available on
Figshare (https://figshare.com/projects/Community_Assembly_in_Serpentinizing_Ophiolites/
101648).
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Community assembly processes were assessed within individual wells over time (Fig. 2A
and B) and between wells over time (Fig. 2C and D). Within individual wells, selection proc-
esses do play an important role and can account for 9 to 66% of microbial community turn-
over observed between samples as a function of time (see Table S2 at https://doi.org/10.6084/
m9.figshare.14983857). However, individual wells with more neutral pH conditions (7.5 to 9)
display stochastic assembly signatures (jbNTIj , 2), with some influence of variable selection
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FIG 1 Average measurements for temperature (A), pH (B), specific conductance (C), dissolved oxygen (DO) (D), oxidation
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Wells are organized from lowest to highest average pH in the legend.

TABLE 1 Description of community assembly processes associated with ecological modeling results

Process Description
Deterministic
or stochastic Model result

Variable selection Communities are more different from each other than can be
expected by random chance (i.e., different physical/chemical
conditions in samples drive differing community composition).

Deterministic bNTI. 2

Homogeneous selection Communities are more similar to each other than can be expected
by random chance (i.e., similar physical/chemical conditions in
samples drive community composition to be similar).

Deterministic bNTI,22

Dispersal limitation Microbial communities between samples are unable to interact due
to separation by space or time. When communities cannot
interact, variation in composition caused by ecological drift over
time results in communities that are less similar to each other
than expected by chance.

Stochastic jbNTIj, 2 and RCbray. 0.95

Homogenizing dispersal Microbial communities between samples can freely interact. Free
and easy mixing between communities results in communities
that are more similar to each other than expected by chance.

Stochastic jbNTIj, 2 and RCbray,20.95

Undominated While both deterministic and stochastic processes are at play,
differences in observed community composition between
samples cannot be explained by either selection or random
processes (i.e., nonsignificant bNTI and RCbray result).

Both jbNTIj, 2 and jRCbrayj, 0.95
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(bNTI. 2) between certain time points (Fig. 2A). The neutral pH well N08-C shows a particu-
larly strong influence of variable selection (25%) over time, indicating that local geochemical
conditions may fluctuate enough within the well to drive greater than expected microbial
community turnover (see Table S2 at https://doi.org/10.6084/m9.figshare.14983857).
Moderate pH (9 to 10.5) wells are primarily influenced by stochastic processes over
time with some influence of both variable and homogeneous selection processes between
certain time points (Fig. 2A). Extreme pH (10.5 to 12) wells become more strongly influenced
by homogeneous selection (bNTI , 22) (Fig. 2A), although stochastic processes still play a
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significant role within these wells, accounting for 34 to 91% of assembly within an individual
well (see Table S2 at https://doi.org/10.6084/m9.figshare.14983857). In general, no single as-
sembly process was able to explain variation in microbial community composition between
time points (14 to 84% undominated processes) (Fig. 2B; see Table S2 at https://doi.org/10
.6084/m9.figshare.14983857), indicating that no single assembly process can explain varia-
tion in microbial community composition between time points (undominated assembly).

In pairwise comparisons between individual wells, bNTI mean and median values
lie close to zero, indicating that stochastic processes dominate (Fig. 2C). Nevertheless,
selection processes still have some influence on between-well comparisons. Variable
selection strongly influences pairwise comparisons between the neutral pH (7.5 to 9)
wells CSW1.4 and N08-C with other higher pH (9 to 12) wells at the site, while homoge-
neous selection plays a stronger role in pairwise comparisons between the deepest
wells at the site N08-A (39.6 m) and CSWold (76.2 m) and other medium to deep wells
(20 to 35 m) with moderate to extreme pH (9 to 12) (Fig. 2C). Further characterization of
stochastic processes at play in comparisons between wells reveals that dispersal limitation
plays a larger role compared to within-well comparisons, but that overall, no single assembly
process dominates between-well comparisons (undominated assembly) (Fig. 2B and D).
Mean and median RCbray values trend more toward dispersal limitation, with numer-
ous samples within the distribution of pairwise comparisons crossing the significance
threshold (RCbray . 0.95) (Fig. 2D). A small proportion of between-well pairwise compari-
sons cross the significance threshold for being under the influence of homogenizing disper-
sal (RCbray , 20.95), suggesting that microbial communities associated with those specific
wells are mixing and interacting with each other (Fig. 2D). These comparisons are primarily
associated with the two partially cased wells at the site, CSW1.1 and QV1.1, and nearby wells
at similar depths. Discussion of the increased influence of homogenizing dispersal in wells
CSW1.1 and QV1.1 (87) can be found in Text S1.

Mantel tests were used to assess correlations between ecological modeling metrics
and measured environmental parameters (see Table S3 at https://doi.org/10.6084/m9
.figshare.14983860). Environmental variables were transformed into Euclidean distance
matrices so they could be correlated with ecological modeling matrices. bNTI values
were significantly correlated with pH (R = 0.29), ORP (R = 0.23), and DIC (R = 0.14)
(Fig. S2). This correlation indicates that greater differences in environmental measure-
ments of pH, ORP, and DIC are associated with variable selection (i.e., more positive
values of bNTI). Samples that are more different from each other with respect to pH,
ORP, and DIC conditions are likely to be influenced by variable selection, whereas sam-
ples with similar pH, ORP, and DIC conditions are likely to be influenced by homogene-
ous selection. RCbray values were significantly correlated with well depth (R = 0.32),
temperature (R = 0.15), pH (R = 0.27), specific conductance (R = 0.34), ORP (R = 0.30),
and DIC (R = 0.33) (Fig. S3). That is, samples with greater differences in environmental
conditions are more likely to be influenced by dispersal limitation (high RCbray), while
samples with more similar environmental conditions are more likely to show influences of
homogenizing dispersal. The relative strength of selection processes on microbial commun-
ities seems to be tightly linked to pH, ORP, and DIC conditions, while the influence of sto-
chastic processes is correlated with a wider range of environmental conditions.

Finally, the contribution of each community assembly process was quantified by
compiling the number of significant pairwise comparisons for each process and divid-
ing these numbers by the total number of pairwise comparisons. Overall, half of the
comparisons could not be attributed to a single assembly process (50% undominated
processes), with the other half distributed among dispersal limitation (20%), homoge-
neous selection (16%), variable selection (12%), and homogenizing dispersal (2%)
(Fig. 3; see Table S2 at https://doi.org/10.6084/m9.figshare.14983857). Due to the im-
portance of pH in structuring ecological niches in the system (Fig. S4), community as-
sembly processes were also quantified for all pairwise comparisons between neutral
pH (7.5 to 9) wells (CSW1.4, N08-C, CSW1.2, and QV1.2), moderate pH (9 to 10.5) wells
(QV1.3, CSW1.5, CSWold, and CSW1.3) and extreme pH (10.5 to 12) wells (N08-A, N08-B,
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QV1.1, and CSW1.1). When separated into discrete pH ranges, trends in the influence of com-
munity assembly processes with pH are evident. As pH increases, the role of variable selec-
tion decreases (from 17% to 2%), the role of homogeneous selection increases (from 4% to
25%), the role of dispersal limitation decreases (from 48% to 0%), the role of homogenizing
dispersal increases (from 0% to 8%), and the role of undominated processes increase (from
31% to 63%) (Fig. 3A to E; see Table S2 at https://doi.org/10.6084/m9.figshare.14983857).
The increasing role of homogeneous selection indicates that microbial communities
are more like each other than expected by chance as pH conditions become more
extreme (Fig. 3B). The shift from dispersal limitation (Fig. 3C) to homogenizing disper-
sal (Fig. 3D) with increasing pH indicates that microbial communities are less isolated
from one another, and interact more, at high pH.

0

5

10

15

All Neutral Moderate Extreme

Contribution of Variable Selection

0

5

10

15

20

25

All Neutral Moderate Extreme

Contribution of Homogeneous Selection

0

10

20

30

40

All Neutral Moderate Extreme

Contribution of Dispersal Limitation

0

2

4

6

8

All Neutral Moderate Extreme

Contribution of Homogenizing Dispersal

0

20

40

60

All Neutral Moderate Extreme

Contribution of Undominated Processes

Pe
rc

en
t A

ss
em

bl
y 

Pr
oc

es
s 

(%
)

Pe
rc

en
t A

ss
em

bl
y 

Pr
oc

es
s 

(%
)

A B

C D E

Well Cluster All Neutral pH (7.5 to 9) Moderate pH (9 to 10.5) Extreme pH (10.5 to 12)

FIG 3 Bar plots showing the overall contribution of variable selection (A), homogeneous selection (B), dispersal limitation (C), homogenizing
dispersal (D), and undominated processes (E) for all wells, neutral pH wells (pH 7.5 to 9), moderate pH wells (pH 9 to 10.5), and extreme pH
wells (pH 10.5 to 12). The contribution (percentage) of each assembly process was calculated within each grouping of samples by dividing
the number of significant pairwise comparisons for each assembly process by the total number of pairwise comparisons within the sample
grouping. Pairwise comparisons include within-well comparisons and between-well comparisons for all wells and wells within each pH category.

Community Assembly in Serpentinizing Ophiolites

September/October 2021 Volume 6 Issue 5 e00300-21 msystems.asm.org 7

https://doi.org/10.6084/m9.figshare.14983857
https://msystems.asm.org


Physical controls on microbial dispersal. Ecological modeling results revealed
that CROMO microbial communities are overwhelmingly assembled through undomi-
nated processes (50% undominated processes; see Table S2 at https://doi.org/10.6084/
m9.figshare.14983857), where neither stochastic nor deterministic processes entirely
govern assembly (Table 1). Since the modeling results indicate that half the data ana-
lyzed in the model are governed by a mixture of stochastic and deterministic processes
that cannot be well defined by the model (Table 1), alternative assessments of disper-
sal and environmental selection (following section) were performed to better under-
stand physicochemical drivers of assembly at CROMO. Connectivity of the aquifer to
the surface and estimation of aquifer hydraulic properties were assessed to better
understand dispersal within the subsurface.

Characterization of the CROMO aquifer’s connectivity to the surface and aquifer hy-
draulic properties was carried out for this study using tritium analyses and pumping
tests as described below. Previous work by Ortiz and colleagues (41) indicated that the
main aquifer at CROMO is confined. Tritium analyses (see Table S4 at https://doi.org/10
.6084/m9.figshare.14983863) performed on samples collected in May of 2017 were
below detection (0.8 tritium unit [TU]) in all wells except for a shallow well, N08-C,
where tritium was detected at 0.9 TU.

Pumping tests used to estimate aquifer hydraulic conductivity (K) indicate that water
flows through the subsurface at a low rate (K = 1027 m/s) (Fig. 4; see Table S5 at https://
doi.org/10.6084/m9.figshare.14983866). Estimates of K and other hydraulic properties (see
Table S5 at https://doi.org/10.6084/m9.figshare.14983866) are in line with estimates
obtained at the Samail ophiolite, Sultanate of Oman (42), and Koniambo massif in New
Caledonia (43).

Adaptations to environmental conditions. Given the distinct geochemical trends
observed at CROMO (Fig. 1), a permutational multivariate analysis of variance
(PERMANOVA) analysis was performed on Bray-Curtis dissimilarities and measured
environmental data to determine how much variance in the community dissimilarity
data can be explained by measured environmental data (Table 2). Results from this
analysis show that well location (i.e., corresponding subsurface location) (R2 = 0.468)
is the primary driver of differences in microbial community composition. Significant
differences in microbial community composition are also seen over time (R2 = 0.029)
and are driven by differences in DIC (R2 = 0.012), DO (R2 = 0.011), and pH (R2 = 0.010)
to a lesser extent (Table 2). PERMANOVA results also indicate that a significant
amount of variation in microbial community composition is unexplained (residuals
R2 = 0.44) (Table 2). It is important to note that community composition changes
related to changes in time, DIC, DO, and pH may already be accounted for as a por-
tion of the large amount of variance explained by individual well location. This ob-
servation could explain why the amount of variation described by each individual
variable is quite low (R2 of 0.01 to 0.029). We performed an additional PERMANOVA
analysis without the well location variable to further explore this result. While less of the overall
variance in community composition is explained (residuals R2 = 0.69), more variance in com-
munity composition is associated with geochemical metadata, especially pH (R2=0.13) (see
Table S6 at https://doi.org/10.6084/m9.figshare.14983869). The increased variance accounted
for in the data when considering the well location variable likely includes both measured and
unmeasured physicochemical data specific to each well location (Table 2).

Since pH appears to play an important role in structuring ecological niches at
CROMO (Fig. S4; Table 2; see Table S6 at https://doi.org/10.6084/m9.figshare.14983869),
as well as microbial communities in a variety of environments (24, 33), the influence of
pH in structuring CROMO microbial communities was further assessed. While DO and
DIC concentrations were also found to drive changes in community composition
(Table 2), DO was not found to be significantly correlated with ecological model
bNTI values, which assess the role of environmental selection (Fig. S2; see Table S3
at https://doi.org/10.6084/m9.figshare.14983860). DIC was significantly correlated
with bNTI values but is not assessed here, since pH has been shown to govern the
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amount of available DIC in serpentinizing systems (44). Due to this, environmental
selection due to changes in DIC availability should ultimately be controlled by pH
conditions.

Community richness (number of unique taxa in a community) and evenness (how
close in numerical abundance taxa in a community are; measured by Pielou’s evenness
index) decrease as pH increases (Fig. 5A and B). This result supports previous reports
that pH is a major driver of microbial community diversity at the site (15), as has been
seen in numerous other environments (24, 33). To further assess this point, metage-
nomic and metatranscriptomic data collected during the 2011 to 2013 field campaigns
and again in 2016 were screened for genes associated with adaptations to high pH
(see Table S7 at https://doi.org/10.6084/m9.figshare.14372030). It is known through
physiological studies of alkaliphilic cultures at high pH that a proton (H1) gradient
exists from cell cytoplasm to cell exterior that can drive loss of protons from the cell
(45). To combat this issue, microorganisms must actively transport protons back into
the cell (45). The use of cation/proton antiporters, which can transport sodium (Na1) or
potassium (K1) ions out of the cell while transporting protons into the cell, as well as
Na1-pumping V-type ATPases, which pump Na1 ions across the cell membrane to gen-
erate ATP, are common mechanisms used by microorganisms growing in alkaline pH
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conditions (45, 46). We find that CROMO metagenomes have abundant Na1/H1 and
K1/H1 antiporters, and Na1-pumping V-type ATPases (see Table S7 at https://doi.org/
10.6084/m9.figshare.14372030). The abundance and transcription of genes encoding
carbonic anhydrases cynT/can and cah and sporulation genes spoVAA and spoVAB
decrease with increasing pH (Fig. 6A, F, M, and N), while the abundance and transcrip-
tion of genes associated with motility, pili for motility and adhesion, Na1/H1 antiport-
ers, Na1-dependent V-type ATPases, Na1-dependent bicarbonate transporters, and the
sporulation gene spoVR increase with increasing pH (Fig. 6B to E, G to L, and O and P).
The abundance and transcription of genes associated with motility and adhesion, Na1/
H1 antiporters, Na1-dependent bicarbonate transporters, Na1-pumping V-type ATPases,
sporulation, and survival-related transcription factors increase with increasing salinity
and depth (Fig. S5A to R). Despite a great abundance of sporulation genes observed
in wells deep (.27 m) within the aquifer, poor transcription of these genes paired
with evidence for the transcription of other maintenance and metabolic genes (20, 22)
indicate that microbial community members were not actively employing this strategy

TABLE 2 Results from PERMANOVA analysis on Bray-Curtis dissimilarities and associated
sample metadata

Variable

PERMANOVA results

Degrees of
freedom

Sum of
squares

Mean
squares F score R2a P valueb

Well 11 16.239 1.47626 8.0442 0.46783 0.001
Day 1 1.018 1.01783 5.5461 0.02932 0.001
Temp (°C) 1 0.145 0.14524 0.7914 0.00418 0.702
pH 1 0.355 0.35524 1.9357 0.01023 0.028
Conductance (mS) 1 0.274 0.27357 1.4907 0.00788 0.113
DO (mg/liter) 1 0.376 0.37644 2.0512 0.01084 0.014
ORP (mV) 1 0.274 0.27357 1.4907 0.00788 0.09
DIC (mM) 1 0.431 0.43122 2.3497 0.01242 0.006
Residuals 85 15.599 0.18352 0.4494
Total 103 34.711 1
aR2 values indicate the percent variation in community dissimilarity that can be described by an individual
variable.

bSignificant P values are bolded.
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to cope with extreme environmental conditions at the time of sampling. The abundance
and transcription of genes associated with sporulation, Na1/H1 antiporters, and Na1-
pumping V-type ATPases decrease with increasing ORP (Fig. S6A to F). The abundance
and transcription of genes associated with carbonic anhydrases increase with increasing
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concentrations of DIC (Fig. S6G and L), while the abundance of genes associated with
Na1/H1 antiporters and with motility and adhesion decrease with increasing concentra-
tions of DIC (Fig. S6H to K). The abundance and transcription of genes associated with
motility and adhesion, sporulation, Na1-pumping V-type ATPases, Na1-dependent bicarbon-
ate transporters, and K1/H1 symporters increase with increasing temperature (Fig. S6M to
V). Linear regression model results for significant and insignificant regressions can be found
in Table S8 (https://doi.org/10.6084/m9.figshare.14983872) and Table S9 (https://doi.org/10
.6084/m9.figshare.14939202), respectively.

In addition to the community diversity, metagenomic, and metatranscriptomic evi-
dence provided, phylogenetic analysis of these communities using the nearest taxon
index (a within sample, or alpha diversity, variation of the bNTI metric used for ecologi-
cal modeling) indicate that CROMO microbial communities are composed of closely
related organisms and demonstrate significant phylogenetic clustering (Fig. S7).
Phylogenetic clustering indicates that environmental filtering and the conservation of
adaptive traits have likely occurred as the result of habitat specialization (47).

DISCUSSION

Given the extreme pH conditions at CROMO, we anticipated that deterministic proc-
esses would be dominant, as has been observed in other systems under extreme or
stressful environmental conditions (33, 48–52). Ecological modeling results revealed
that community assembly at CROMO instead occurs through a combination of deter-
ministic and stochastic processes that cannot be well defined (undominated assembly;
see Table S2 at https://doi.org/10.6084/m9.figshare.14983857). Because the model can-
not define the stochastic and deterministic processes at work when undominated as-
sembly governs pairwise comparisons, we employed alternative methods to assess the
roles of dispersal (Fig. 4; see Table S4 at https://doi.org/10.6084/m9.figshare.14983863)
and selection (Fig. 5 and 6 and Fig. S5, S6, and S7; Table 2) within the CROMO aquifer.
Here, we explore the combined results and aim to describe the stochastic and deter-
ministic processes at work within the undominated fraction of data identified by the
ecological model. We discuss the roles of dispersal and selection in the CROMO aquifer,
incorporating results and interpretations from the multiple data streams reported here,
as well as previous reports and interpretations of community assembly relevant to
observations in this study.

While most assembly processes at CROMO cannot be well defined (undominated as-
sembly), dispersal limitation (20%) and homogeneous selection (16%) are the two primary
quantifiable processes at work within the aquifer (Fig. 3; see Table S2 at https://doi.org/10
.6084/m9.figshare.14983857). Evidence of dispersal limitation is clear when looking at the
hydrogeology of the system (Fig. 4). Tritium levels below detection in well fluids (see
Table S4 at https://doi.org/10.6084/m9.figshare.14983863) indicate that the main aquifer
is not well connected to the surface and that modern recharge (fluid ,50 years in age)
does not contribute appreciably to the subsurface reservoir (38, 53, 86). When considered
alongside hydraulic conductivity estimates (see Table S5 at https://doi.org/10.6084/m9
.figshare.14983866), these results indicate that the CROMO aquifer is a confined system
receiving no detectable modern recharge and is characterized by poor connectivity
between wells and low rates of fluid flow (Fig. 4). Differences in compositional beta diver-
sity (Bray-Curtis dissimilarity; Table 2) provide additional evidence of dispersal limitation.
The mean Bray-Curtis dissimilarity at the site when considering all pairwise comparisons
is extremely high (0.8), indicating that compositional diversity of microbial communities
have little overlap (54, 55). Differences in well location (and conditions—see results rele-
vant to Table 2 and Table S6 at https://doi.org/10.6084/m9.figshare.14983869) alone
account for nearly 50% of observed variation in community dissimilarity, while changes in
community composition over time follow at a much lower level of explained variance
(;3%) (Table 2). Additionally, 44% of the variation in microbial community composition
could not be explained by environmental variables during PERMANOVA analysis. The
unexplained variation in community composition could be the result of stochastic
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changes in community composition due to ecological drift. Isolation of microbial com-
munities due to dispersal limitation could certainly introduce enough ecological drift
within each well location to generate such high levels of microbial community composi-
tional dissimilarity (56–59). Environmental heterogeneity and differences in community
size could be another potential explanation for the observed high beta diversity (58).
However, hydrologic data paired with the fact that the null ecological modeling method
accounts for differences in alpha diversity (60) indicate that model results are accurate
and that the high observed beta diversity is the result of ecological drift.

The influence of selection is also clear throughout the site. The metacommunity (av-
erage sitewide NTI = 1.73), as well as local communities sampled through time, show
significant phylogenetic clustering, indicating that microorganisms within the aquifer
are highly adapted to environmental conditions (see Fig. S7 in the supplemental mate-
rial). While it is unlikely that this observation is solely due to high pH adaptations, pH is
known to be a significant driver of microbial community composition (33, 61), and
high pH conditions and the physiological adaptations required to survive under these
conditions likely played a significant role in structuring the observed microbial com-
munities at CROMO. Microbial community diversity measures are also significantly
affected by pH conditions (Fig. 5), and metagenomic and metatranscriptomic data indi-
cate that pH homeostasis mechanisms used in alkaline conditions are prevalent and
actively transcribed within the wells (Fig. 6; see Table S7 at https://doi.org/10.6084/m9
.figshare.14372030). The increased abundance and transcription of genes associated
with motility at high pH, including flagellar synthesis genes, and type IV pili (Fig. 6B, D
and E, G and H, and L) potentially represent a means to improve access to both limited
available DIC and oxidants in the deep subsurface or to enable the attachment of
organisms to minerals to form biofilms and/or aid in electron transport to mineral
surfaces. Improved access to substrates via motility or adhesion and the capability to
form biofilms that can lower pH within the microenvironment (62) may be key survival
strategies that allow microbial populations to persist under hyperalkaline conditions in
the deep subsurface. Additionally, factors such as DO concentrations (Table 2), redox
conditions (Fig. S6A to F), salinity (Fig. S5A to I), temperature (Fig. S6M to V), and DIC
concentrations (Table 2; Fig. S6G to L), which are likely controlled by pH, and other
unmeasured variables likely play a smaller role in driving community composition dif-
ferences across the wells (Table 2; see Table S6 at https://doi.org/10.6084/m9.figshare
.14983869). While ecological modeling results did not identify homogeneous selection
as the dominant assembly process across the site (see Table S2 at https://doi.org/10
.6084/m9.figshare.14983857), other measures of microbial community diversity (Fig. 5;
see Table S2 at https://doi.org/10.6084/m9.figshare.14983857; see Table S6 at https://
doi.org/10.6084/m9.figshare.14983869), phylogeny (Fig. S4 and S7), and physiology
(Fig. 6; see Table S7 at https://doi.org/10.6084/m9.figshare.14372030) indicate that pH plays
a major role in structuring microbial community composition in the CROMO aquifer.

Given the strong evidence for selection and dispersal limitation within the physico-
chemical and microbial community data, the preponderance of undominated processes
at the site was initially surprising. However, recent studies of soil (33) and a fractured shale
aquifer (34) using the Stegen et al. (28) ecological modeling framework provide some
insight. Tripathi and colleagues (33) showed that while pH plays a significant role in struc-
turing soil microbial communities, selection imposed by pH accounted for only ;17% of
observed assembly. As in our study, this low value indicates that other assembly proc-
esses still play a substantial role in structuring microbial communities under extreme pH
conditions. Recent work by Danczak and colleagues (34) in a fractured shale aquifer high-
lighted how strong concurrent homogeneous selection and variable selection counteract
to result in an undominated community assembly signal. While this same mechanism is
not observed at CROMO, results from Danczak and colleagues (34) demonstrate that an
undominated assembly signal can be the result of strong counteracting processes. Extreme
pH and slow fluid flow at CROMO consistently impose strong counteracting deterministic and
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stochastic processes, resulting in an undominated assembly signal observed across
the site (Fig. 3E).

Our observations at CROMO are also supported by recent computational and experi-
mental work that has shown that dispersal conditions and microbial community size affect
the importance of selection in structuring microbial communities (30, 59). Strong environ-
mental selection can result in low diversity and low biomass communities that are inher-
ently prone to enhanced drift as theorized by Vellend (23) and observed in computational
modeling experiments by Evans and colleagues (30). Ecological drift in communities
assembled under strong selection can be further enhanced under low dispersal conditions
(30, 59), resulting in microbial communities composed of a small number of highly abun-
dant species, with large variation in the birth and death rates of rare taxa within the com-
munities (59). Microbial communities characterized in serpentinizing systems thus far have
notoriously low diversity and are primarily composed of a few dominant taxa and many
highly variable low abundance species (6, 15, 16, 22, 44), which likely makes serpentinite
microbial communities inherently prone to enhanced ecological drift.

Finally, we propose a more nuanced mechanism of assembly within the serpentiniz-
ing subsurface, relevant to the geological history (63) and long groundwater residence
times in the region (64). Poor connectivity to the surface (see Table S4 at https://doi
.org/10.6084/m9.figshare.14983863) and slow fluid flow in the subsurface (Fig. 4; see
Table S5 at https://doi.org/10.6084/m9.figshare.14983866) indicate that dispersal of
microorganisms into and out of the region is extremely slow. Microorganisms present
within the serpentinizing subsurface were therefore potentially transported to the ter-
restrial surface when the ophiolite was obducted and continued to grow and persist
(22, 65) or were introduced to the system by persisting hundreds or thousands of years
along slow regional groundwater flow pathways, similar to observations of community
assembly patterns in deep seafloor sediments (52). In either case, extreme pH condi-
tions buffered by the presence of serpentine minerals present throughout much of the
ophiolite (66) impose strong environmental filtering and likely select for well-adapted
alkaliphilic microorganisms long before they reach the subsurface localities observed
in this study (52). Within this geologic context, we suggest that homogeneous selec-
tion imposed by extreme pH structures a low diversity alkaliphilic metacommunity
within the larger region of the CROMO aquifer from which the observed local com-
munities in this study are assembled. Within observed local communities, homogene-
ous selection maintains the persistence of dominant alkaliphilic microbial community
members. At the same time, poor dispersal between local communities and variability
in the birth and death rates of the large pool of rare community members results in
enhanced ecological drift over space and time (23, 30, 59). Overall, these results high-
light the important roles and complex interplay that occurs between selection, disper-
sal, and ecological drift in structuring subsurface microbial communities. Given the
great heterogeneity observed in subterranean environments, it is critical to continue
to assess community assembly processes in these systems to better constrain how dif-
ferent physical and environmental conditions structure microbial communities within
the expansive subsurface biosphere.

MATERIALS ANDMETHODS
Site description and sample collection. CROMO is located within the McLaughlin Natural Reserve

near Lower Lake, CA. This site lies within the Coast Range Ophiolite and consists of four wells drilled
.30 years ago and eight wells drilled in August of 2011. The latter set of wells was drilled using techni-
ques designed to minimize and quantify subsurface contamination (40). Initial characterization of
CROMO fluids indicated a strong influence of serpentinization (low Eh, pH. 11) and microbial commun-
ities that share similarity to other characterized serpentinite springs (11, 15, 40). The main aquifer is con-
fined by a well-cemented aquitard (41), and tritium analyses, described below, indicate no mixing of
modern surface water within the aquifer (53, 67, 86). CROMO has been sampled two or three times per
year since the site was established in 2011, resulting in a high-resolution time series data set of geo-
chemistry and microbial biodiversity. The sampling procedure utilized to collect fluids from CROMO
wells has been previously described (11, 15). Geochemical and microbial sample collection methods are
described in detail in Text S1 in the supplemental material.
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Topographic profile and cross section construction. A topographic profile and cross section of the
study area (Fig. 4) were created using ArcMap (Esri, Redlands, CA, USA), and Adobe Illustrator (Adobe, San
Jose, CA, USA). Well head locations and elevations were obtained as described in Text S1 and drawn into
the cross section at their proper location and depth. Well head coordinate and elevation data are listed in
Table S10 (https://doi.org/10.6084/m9.figshare.14983893). A detailed description of topographic profile
methods and assumptions made in the construction of the cross section can be found in Text S1. Detailed
maps displaying the location of McLaughlin Reserve in California, a geologic map of the CROMO site, and
the location of each well cluster at the site can be found in the article by Ortiz et al. (41).

Estimation of aquifer properties. Aquifer properties were estimated using the program AQTESOLV
(68). Drawdown/Recovery analysis was performed within AQTESOLV to obtain estimates of transmissivity
(T), and storativity (S) to calculate hydraulic conductivity (K) using T and aquifer thickness (b) according to
the following equation: T = K � b (see Table S5 at https://doi.org/10.6084/m9.figshare.14983866). Detailed
description of data collection, model parameters (83), and fitting model solutions (84, 85) can be found in
Text S1.

Tritium sample collection. Water samples for tritium analyses were collected in June 2017. Water
was collected into 0.5-liter narrow-mouth high-density polyethylene bottles. Samples were air-tight, and
bottle mouths were wrapped with parafilm to prevent evaporation or leakage from the bottles. Samples
were stored at room temperature and shipped to University of Waterloo Environmental Isotope
Laboratory (UW-EIL, Waterloo, ON, Canada). Detailed methods of tritium analyses performed by UW-EIL
are described in Text S1. Measured tritium values for each well are included in Table S4 (https://doi.org/
10.6084/m9.figshare.14983863).

Geochemical analyses. Analytical methods used to measure DIC have been previously described (11,
15). Briefly, fluid samples were acidified to convert all forms of DIC to carbon dioxide (CO2), which could par-
tition into the headspace of the sealed sample vial. Subsequently, the concentration of CO2 in the head-
space gas was quantified by gas chromatography with flame ionization detection (FID) (SRI 8610C; SRI
Instruments, Torrance, CA, USA), using an inline methanizer to convert liberated CO2 to methane prior to
passage through the FID. All analyses were performed in duplicate. Geochemical data used for analyses can
be found in Table S1 (https://doi.org/10.6084/m9.figshare.14983851).

Extraction of DNA and RNA. Extractions of DNA and RNA from 0.22-mm Sterivex filter cartridges
were performed as previously described by Twing and colleagues (15) and Sabuda and colleagues (22),
respectively. A brief description can be found in Text S1.

Sample preparation, sequencing, and data analysis of metagenomes and metatranscriptomes.
Metagenomic and metatranscriptomic sequences were previously reported (15, 20, 22, 88). Sample prep-
aration and sequencing of metagenomes and metatranscriptomes were carried out as previously
described (22). The assemblies and predicted protein annotations reported here were performed as pre-
viously described by Sabuda and colleagues (22).

16S rRNA gene amplicon sequencing. Throughout the course of the project, samples were submit-
ted for amplicon sequencing of the V4 region of the 16S rRNA gene at three different sequencing cen-
ters: Department of Energy Joint Genome Institute (JGI), Marine Biological Laboratory’s (MBL) Josephine
Bay Paul Center, and the Michigan State University (MSU) Genomics Core Facility (see Table S11 at
https://doi.org/10.6084/m9.figshare.14983896). Sequences generated by the JGI were reported by Twing
and colleagues (15). Sequences generated by the MBL were reported by Crespo-Medina and colleagues
(11). Samples sequenced at the MSU Genomics Core were submitted for sequencing of the V4 region of
the 16S rRNA gene. Amplification, quantification, and sequencing procedures performed by the MSU
Genomics Core have been previously described (22). Blanks and extraction blanks collected alongside
samples in this data set could not be quantified or amplified and were not submitted for sequencing.

16S rRNA sequence processing. Sequences generated by JGI, MBL, and the MSU Genomics Core
were processed using mothur v1.39.5 (69) as previously described (11, 15, 22). Quality-trimmed fasta files
and count tables for sequences from each sequencing center were concatenated together and clustered
into OTUs at a 3% distance threshold using the de novo distance-based greedy clustering (DGC) method
as implemented in mothur v1.39.5 (70). De novo clustering has successfully been used to compile and
reanalyze 16S rRNA data from multiple sources for large meta-analysis studies of the human microbiome
(71, 72). Continued discussion on the successful use of DGC to cluster sequences from different sequenc-
ing centers and analyses of sequences clustered using this method are included in Text S1. Clustered
OTUs were aligned to the SILVA SSURef alignment (v132), and taxonomic classifications were assigned
using mothur.

Following the successful merger of the 16S rRNA data sets (23,994 OTUs and 6,210,850 reads), count
data from sample replicates were averaged and rounded to the nearest whole count number to avoid
statistical issues that can arise from pseudoreplication (73, 74). Singletons, which rounded to zero when
present within a set of replicates, were removed (8,526 OTUs), and sequences identified as eukaryotes
(58 OTUs and 1,475 reads), archaea (138 OTUs and 7,271 reads), mitochondria (46 OTUs and 1,295 reads),
chloroplasts (94 OTUs and 7,881 reads), and unknown (842 OTUs and 9,127 reads) by SILVA were
removed. Following this process, the 16S rRNA sequences were screened for potential contaminants
associated with DNA extraction reagents and for human skin and feces-derived organisms previously
identified in deep subsurface samples by Sheik and colleagues (75). Following analysis of the taxonomy
and distribution of each potential contaminant within the data set, sequences that were likely contami-
nants were removed from the data set (792 OTUs and 111,576 reads). In addition to this cleanup, two
human contaminant microorganisms, Simkania negevensis (76) and Akkermansia muciniphila (77), were
removed that were identified at high abundance in a handful of samples. These organisms from families
cvE6 and Akkermansiaceae accounted for a maximum of 39% and 48% of the reads in the affected
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samples, respectively, and 1.6% of total reads from the data set. There were no patterns in sample con-
tamination by these two organisms when looking at sample collection or sample extraction logs. A simi-
lar approach to removing contaminant sequences from a deep subsurface data set was successfully
used by Fullerton and colleagues (78) and Sabuda and colleauges (88). The final 16S rRNA data set used
for analysis consisted of 13,444 OTUs and retained 96% of the original reads (5,974,056 reads). Following
data set filtering, a phylogenetic tree was generated using FastTree v2.1.3 (79).

Excel files containing raw count table data, averaged and contaminant filtered data, and count and tax-
onomy information for removed OTUs (https://doi.org/10.6084/m9.figshare.14879535 and https://doi.org/10
.6084/m9.figshare.14371964) are available on Figshare along with R code used to identify and screen poten-
tial contaminant OTUs (https://figshare.com/projects/Community_Assembly_in_Serpentinizing_Ophiolites/
101648).

Statistical analyses. Basic statistical analyses and data exploration of the community data and associ-
ated metadata were performed using the R packages phyloseq and vegan (80, 81). These packages were
used to combine and organize 16S rRNA tag sequencing data with corresponding sample metadata and to
perform basic data visualization and data analysis. Correlations between the ecological modeling matrices
and environmental variables were performed using Mantel tests, using the command mantel.rtest() from
the R package ade4 (82). PERMANOVA analyses were performed in vegan using the adonis() function (28).
PERMANOVA results were used to define significant relationships between community data and environ-
mental variables. Sample richness was calculated using the function specnumber() from the R package
vegan (81). Pielou’s evenness was calculated by dividing the Shannon diversity index, calculated using the
function diversity() in vegan (81), by sample richness, which was previously calculated. Geochemical data,
richness and Pielou’s evenness data, and metagenomic and metatranscriptomic data were plotted in
ggplot(), and linear regression models were calculated using the lm() function.

Ecological modeling. Ecological modeling of community and phylogenetic turnover within the system
was performed according to the framework developed by Stegen and colleagues (28). A basic assumption
of the framework is that there is significant phylogenetic signal (i.e., closely related organisms have similar
habitat preferences) at short phylogenetic distances, making the use of the bNTI metric, which assesses
phylogenetic turnover between close relatives, an ideal measure for the framework (60). Mantel correlo-
grams were used to test for phylogenetic signal at different phylogenetic distance classes. Positive, signifi-
cant correlations at short phylogenetic distances were observed when pH environmental niches were
assessed (see Fig. S4 in the supplemental material), indicating that the community assembly framework
developed by Stegen and colleagues (28) was an appropriate choice for the data set analyzed here.

The framework developed by Stegen and colleagues uses two different metrics to quantify the con-
tributions of selection, dispersal, and ecological drift that contribute toward an observed assembled
community (28). This model can quantify all processes except for speciation/diversification as has been
outlined in Vellend’s seminal paper that conceptualizes the processes of community assembly (23). The
Stegen et al. framework (28) first assesses the role of selection by assessing changes in phylogenetic dis-
tance using beta-mean nearest taxon distance and bNTI for all pairwise comparisons within the data
set. Once the roles of selective processes have been assessed, pairwise comparisons that were not signif-
icant with the bNTI metric are assessed with the RCbray metric to look at the role of the stochastic proc-
esses of dispersal and drift (28). Detailed description of the model and how each metric is calculated are
included within Text S1.

All R scripts, excel, and csv files used in analyses are available on Figshare at https://figshare.com/
projects/Community_Assembly_in_Serpentinizing_Ophiolites/101648.

Data availability. The 16S rRNA gene sequence data used in this work are publicly available in the
NCBI Sequence Read Archive (SRA) under the BioProject accession number PRJNA690585. CROMO metage-
nome sequences previously published by Twing and colleagues (15) are publicly available in the JGI IMG/M
database under the project identifiers (IDs) 1021918, 1021921, 1021924, and 1021927 and in the MG-RAST
database under the following sample IDs: 4569549.3, 4569550.3, 4569551.3, and 4569552.3. Metagenome
sequences previously published by Seyler and colleagues (20) are publicly available under the BioProject IDs:
PRJNA410019, PRJNA410020, PRJNA410022, PRJNA410035, PRJNA410037, PRJNA410553, PRJNA410555,
PRJNA410036,PRJNA410024, PRJNA410028, PRJNA410025, PRJNA410023, PRJNA410027, and PRJNA410026.
Metagenomic sequences previously published by Sabuda and colleauges (88) are publicly available in the
NCBI SRA database under the following accession IDs: SRX9385611, SRX9385612, and SRX9385613. CROMO
metatranscriptome sequences previously published by Sabuda and colleagues (22) are publicly available in
the SRA under the following accession IDs: SRX3339504, SRX3339503, SRX3339089, SRX3331179, SRX3331177,
SRX3330963, SRX3330943, and SRX3330753.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, DOCX file, 0.1 MB.
FIG S1, EPS file, 0.9 MB.
FIG S2, TIF file, 0.3 MB.
FIG S3, TIF file, 0.4 MB.
FIG S4, EPS file, 0.6 MB.
FIG S5, EPS file, 1.5 MB.
FIG S6, EPS file, 1.7 MB.
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FIG S7, EPS file, 1.2 MB.
FIG S8, EPS file, 1.5 MB.
FIG S9, EPS file, 1.5 MB.
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