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A B S T R A C T   

Background: Traditional Common Spatial Pattern (CSP) algorithms for Electroencephalogram 
(EEG) signal classification are sensitive to noise and can produce low accuracy in small sample 
datasets. 
New method: To solve the problem, an improved Empirical Mode Decomposition (EMD) Bagging 
Regularized CSP (RCSP) algorithm is proposed. It filters EEG signals through improved EMD, 
inhibits high-frequency noise, retains effective information in the characteristic frequency band, 
and uses Bagging algorithm for data reconstruction. Feature extraction is performed with regu
larization of spatial patterns and Fisher linear discriminant analysis for feature classification. T- 
test is used for classification. 
Results: The improved EMD Bagging RCSP algorithm has improved accuracy and robustness 
compared to CSP and its derivatives. The average classification rate is increased by about 6%, 
demonstrating the effectiveness and correctness of the proposed algorithm. 
Comparison with existing methods: The proposed algorithm outperforms CSP and its derivatives 
by retaining effective information and inhibiting high-frequency noise in small sample EEG 
datasets. 
Conclusions: The proposed EMD Bagging RCSP algorithm provides a reliable and effective method 
for EEG signal classification and can be used in various applications, including brain-computer 
interfaces and clinical EEG diagnosis.   

1. Introduction 

Brain-Computer Interface (BCI) is a method that records brain activity through electroencephalogram (EEG) signals and decodes 
and analyzes them to generate commands for controlling external devices [1]. Research on motor imagery EEG signals is a major focus 
of BCI [2]. Motor imagery signals are EEG signals associated with specific brain activities related to a particular event, typically 
generated through mental imagery [3]. Studies on motor imagery have shown that during unilateral physical movement or mental 
imagery processes, there is a phenomenon of power spectral density attenuation or enhancement in specific frequency bands, such as α 
waves (8–13 Hz) and β waves (14–30 Hz), known as event-related desynchronization (ERD) and event-related synchronization (ERS) 
[4,5]. Based on this phenomenon, various algorithms have been designed to extract feature information from different types of motor 
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imagery signals [6]. Among them, Common Spatial Pattern (CSP) is a spatial filter suitable for binary classification, which constructs 
optimal spatial filters to maximize the variance differences of multichannel gait signal matrices and obtain distinct feature vectors 
[7–9]. 

The shortcomings of the CSP method lie in its weak resistance to noise interference [10]. Suppressing noise is an important 
approach to improving the accuracy of CSP [11]. There are various methods available for noise suppression, such as Spatially Sparse 
CSP, Regularized CSP, Filter Bank CSP and so on [12]. Among them, the optimal method is Regularized CSP [12]. The main idea of this 
method is to leverage the theory of transfer learning to organically integrate the electroencephalogram (EEG) signals of the subject 
with those of other subjects [13]. By incorporating the EEG signals of other subjects into the CSP learning process of the subject, the 
estimation bias of the subject’s EEG signal covariance is guaranteed, particularly in EEG data collection experiments with small sample 
sizes [14]. Compared to traditional CSP, this algorithm performs better. However, the stability of this algorithm is not high, as the 
classification accuracy of Regularized CSP decreases and the time consumption increases when the training samples increase [15]. 

Fisher linear discriminant analysis is a projection method that projects points from a high-dimensional space to a low-dimensional 
space, which is easy to distinguish between different types of phenomena [16]. Fisher linear discriminant analysis can be used to 
remove the redundant features of the action to be discriminated, and it is an effective method to highlight the distinction between 
actions [17]. 

To compensate for the shortcomings of Regularized CSP, this study proposes a Bagging Regularized CSP algorithm that combines 
improved Empirical Mode Decomposition (EMD). This algorithm filters the multi-channel EEG signals using improved EMD signal 
filtering to effectively suppress high-frequency noise and ensure the preservation of relevant information within the EEG signals in the 
target frequency band (low-frequency band). Additionally, this algorithm constructs EEG data packets by repeatedly selecting samples 
and extracts RCSP features from each new data packet separately. To validate the effectiveness of this algorithm, it is compared and 
analyzed against RCSP and its derivative algorithms. The experimental results demonstrate that the Bagging Regularized CSP algo
rithm, combined with improved EMD, consistently achieves higher recognition rates and stability under low time consumption 
experimental conditions, outperforming RCSP and its derivative algorithms. Finally, the classified EEG signals after feature extraction 
are subjected to Fisher Linear Discriminant Analysis (FLDA), and the results show that this algorithm can accurately classify two types 
of motor imagery EEG signals. 

2. Methods 

2.1. Improved EMD of EEG signals 

The EEG signal is a nonlinear and non-stationary signal, and the frequency of the EEG signal is mainly concentrated in the low 
frequency part. The application of EMD method can effectively decompose and reduce the noise of the signal, so as to obtain accurate 
EEG signal. 

EMD is a new method proposed by Huang et al., which is suitable for processing nonlinear and non-stationary signals [18]. In 
essence, the signal is stabilized. The complex signal is decomposed into a finite number of Intrinsic Mode functions (IMF). The EMD 
method has adaptive signal decomposition and noise reduction capabilities without any prior knowledge. 

When nonlinear and nonstationary EEG signals are subjected to traditional EMD, the resulting Intrinsic Mode Functions (IMFs) 
contain spurious low-frequency components and limited-order IMFs. To obtain EEG signals that retain the characteristic information 
while being free from high-frequency interference noise, an improved EMD algorithm is proposed in this article. This algorithm 
overcomes the limitations of traditional EMD decomposition in analyzing low-frequency EEG signals and thus achieves accurate EEG 
signal extraction. 

2.1.1. Energy moment ratio 
The energy ratio of each IMF component at different levels to the total energy of the EEG signal is calculated. By comparing the 

ratios, IMF components with higher ratios are selected, while spurious components are filtered out. 
In Equation (1), Ei represents the energy of each IMF component, and in Equation (2), T represents the ratio of the energy Ei of each 

IMF component to the total energy of the EEG signal: 

Ei =
∑n

k=1
c2

i (k) i = 1, 2,⋯,m (1)  

T = [E1 E2 E3...Em]

/
∑

i
Ei ∗ 100% (2) 

In the equation: k represents the total number of sampling points; m represents the number of IMF component; the energy moment 
of each order IMF component is represented as Ei; n represents the length of the time series; and the IMF component is expressed as 
ci(k). 

2.1.2. Variance contribution rate 
The variance contribution rate is introduced to highlight the relative importance of each order of Intrinsic Mode Function (IMF) 

component. Equation (3) reveals that the larger the value of Mi, the more significant the corresponding order of IMF component is in 
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the original signal. 

Mi =Di

/
∑m

i=1
Di (3)  

and Di =
1
n
∑n

k=1c2
i (k) −

[
1
n
∑n

k=1ci(k)
]2 

i = 1,2,⋯,m. 

In the equation: Mi represents the variance contribution rate of each order of IMF; Ci(k) denotes the i-th IMF component; Di 
represents the variance of the i-th IMF component; n represents the length of the time series; m represents the number of IMF 
component. 

2.1.3. Decomposition and reconstruction of brain electric signals 
The nonlinear and non-stationary brain electric signal x(k) is decomposed into a series of Intrinsic Mode Functions (IMFs) ci(k) and 

a residual component rn(k), which have finite orders and contain temporal scale information. This decomposition is represented by 
Equation (4). 

x(k) =
∑n

k=1
ci(k)+ rn(k) i = 1, 2,⋯,m (4) 

The selected useful IMF components are then reconstructed into the reconstructed signal of the brain electric signal using Newton 
interpolation method. 

2.2. Bagging RCSP algorithm 

The Bagging RCSP algorithm inherits the algorithmic concept of transfer learning from RCSP-A, which involves incorporating 
electroencephalographic (EEG) data from other subjects into the covariance matrix of a specific subject’s EEG signal. The algorithm 
excels in effectively preserving individual differences and capturing common features in EEG signals. Traditional RCSP lacks stability 
under small sample experimental conditions, as the increase in the number of training samples leads to a decrease in classification 
accuracy and an increase in computational time complexity. This paper proposes the use of the Bagging approach, which involves 
repeatedly selecting training data samples to form data bags. By incorporating partial EEG data from other subjects into the RCSP 
algorithm to calculate the covariance matrix of the subject’s signal, new feature components are derived using RCSP based on this 
covariance matrix [18]. 

2.2.1. The covariance matrix of the participants’ electroencephalogram (EEG) signals 
The covariance matrix of the participants’ electroencephalogram (EEG) signals is established based on the EEG signals of the 

participants. Assuming matrix DN×T represents the EEG signals, with N channels and T samples per channel. The normalized 
covariance matrix and the average of the covariance matrix are represented by Equations (5) and (6) respectively: 

C=
DDT

tr
(
DDT

) (5)  

Ci =
1
M

∑M

m=1
C{i,m} (6) 

Here, i represents the classification of motor imagery, which includes left-hand and right-hand motor imagery. M represents the 
number of training samples. 

2.2.2. Covariance matrix estimation based on Bagging-RCSP 
Dleft and Dright represent the N× T-dimensional EEG signal matrices (with subscripts left and right representing left-hand and right- 

hand motor imagery respectively) after improved Empirical Mode Decomposition (EMD). N represents the number of channels, and T 
represents the number of samples per channel. According to Equation (5), the spatial covariance after standardization of Dleft and Dright 

is Cleft and Cright respectively. 

Cleft =
DleftrDT

left

tr
(

DleftDT
left

) (7)  

Cright =
DrightDT

right

tr
(

DrightDT
right

) (8) 

The various types of regularized average spatial covariance matrices are calculated using RCSP as follows: 
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Si(β, γ)= (1 − γ)Xi(β)+
γ
β

tr(Xi(β)) × I (9)  

where β and γ are two regularization parameters (0≤ β, γ ≤ 1) and β, representing the weight values of the training sample covariance 
matrix to reduce the estimation bias of the covariance matrix. γ represents the weight for multiple identity matrices, and I represents 
the N × N identity matrix. The subscript i takes the values 1 and 2, representing the two classes of matrices corresponding to left and 
right-hand motor imagery, respectively. Xi(β) represents the covariance matrix of specific subjects and the covariance matrix of the 
EEG data of other subjects, as expressed by the following equation: 

Xi(β)=
(1 − β) × Ci + β × C′

i

(1 − β) × M + β × M′ (10)  

where Ci represents the covariance matrix composed of M training data of class for a subject, and Ci
′ represents the covariance matrix 

composed of M′ training data of class for other subjects. The introduction of this term aims to obtain more reliable classification results 
by reducing the variance of the covariance matrix estimation. 

The diagonalization decomposition of the covariance matrix in Equations (7)–(10) yields Equation (11) as below: 

S= Sleft + Sright = U0

∑
UT

0 (11) 

Sleft and Sright represent the composite average of the covariance matrix, 
∑

represents the eigenvalue matrix, and U0 represents the 
eigenvector matrix related to 

∑
. 

Since the composite covariance matrix S is a positive definite matrix, it can be decomposed using the singular value decomposition 
theorem. After arranging the eigenvalues in descending order, the whitening matrix can be obtained: P =

∑− 1/2UT
0 . 

The average of the covariance matrix can be transformed as follows: 

Qleft =PSleftPT (12)  

Qright =PSrightPT (13) 

Qleft and Qright have common eigenvectors. There exist two diagonal matrices 
∑

left and 
∑

right , as well as the same eigenvector matrix 
B. After performing principal component decomposition on Equations (12) and (13), we obtain Equations (14)–(16): 

Qleft =B
∑

left
BT (14)  

Qright =B
∑

right
BT (15)  

∑

left
+
∑

right
= I (16) 

Analysis reveals that when Qleft has the maximum eigenvalue, Qright corresponds to the minimum eigenvalue. Hence, matrix B can be 
used for classifying binary problems. The projection matrix W is represented as W = U0

TP. W serves as a spatial filter, where the 
original electroencephalogram (EEG) signal D(t) is projected onto a new dataset Z0 after applying the spatial filter W, as shown in 
Equation (17): 

Z0 =D(t) ·W (17) 

Matrix Z = [z1, z2,⋯, z2m] ∈ RN×2m is constructed by combining the first m (m < T
2) rows and the last m rows of Z0. Therefore, the 

eigenvector f = [f1, f2,⋯, f2m]
T
∈ R2m×1 is defined, where fi is specified as follows: 

fi = log

⎛

⎜
⎜
⎜
⎝

var(zi)

∑2m

j=1
var
(
zj
)

⎞

⎟
⎟
⎟
⎠
, i= 1, 2,⋯, 2m 

Finally, FLDA is utilized to map the eigenvectors to a lower-dimensional space for the classification of left and right-hand motor 
imagery. 

2.3. Fisher discriminant analysis (FLDA) for EEG signal classification 

The main idea of FLDA is to obtain the optimal projection axis using dimensionality reduction techniques, maximizing the between- 
class distance and minimizing the within-class distance. This allows for significant differentiation between two classes of signals. In this 
paper, it is proposed to apply FLDA for linear discriminant classification of feature vectors after obtaining the optimal spatial filter W 
through Common Spatial Patterns (CSP). The reconstructed EEG signals are then filtered using the spatial filter. The filtered matrix is 
denoted as Z, as shown in Equation (18): 
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ZN×T =wN×N ·EN×T (18) 

In the equation, E represents the reconstructed EEG signal data, where N is the number of channels and T is the number of sampling 
points for each channel. w denotes the optimal feature spatial filter. 

From the filtered matrix ZN×T , feature space matrix fp is extracted and defined as: 

fp = log

(

var
(
Zp
)
/

∑2m

i=1
var(Zi)

)

where Zp is composed of k rows selected from the matrix Z before and after filtering. The aforementioned feature space matrix is then 
used in the Fisher algorithm. 

First, the mean vector mj(j= 1, 2) representing the feature vectors of the two classes of data is calculated using Equation (19), where 
subscript 1 represents left-hand motor imagery and subscript 2 represents right-hand motor imagery. The within-class distance Sw is 
the sum of variances of the two datasets and is represented by Equation (20). 

Fig. 1. The process of classifying brain electrical signals.  
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mj =
1
Nj

∑

X∈fpj

X (19)  

Sw =
∑2

j=1

∑

X∈fpj
(X − mi)(X − mi)

T (20) 

In the equation, Nj represents the number of data points of different class feature vectors, and fpj, and X ∈ fpj. 
Additionally, the inter-class distance Sb is calculated using Equation (21): 

Sb =(m1 − m2)(m1 − m2)
T (21) 

Furthermore, the projection matrix A∗ is obtained using Equation (22): 

A∗ = S− 1
w (m1 − m2) (22) 

Finally, the EEG data is projected onto the normal vector A∗ to obtain y = (A∗)
TX. 

In order to further verify the effectiveness of FLDA dimensionality reduction method and reflect its significant dimensionality 
reduction effect, this method was compared with the Principal Component Analysis (PCA) dimensionality reduction method. 

PCA reduces the dimensionality of feature space through linear combination of features, and the dimensionality is linearly inde
pendent. PCA first removes dimensional features with small variance by calculating variance, because the size of variance between 
feature dimensions is positively proportional to the amount of information it represents. The greater the variance, the greater the 
importance rate of the information represented. In order to reduce dimension, the feature dimension with small variance should be 
removed from high dimension to low dimension. 

2.4. The process of classifying brain electrical signals 

The process of classifying brain electrical signals is illustrated in Fig. 1. Firstly, the brain electrical data is subjected to improved 
Empirical Mode Decomposition (EMD) filtering. The resulting meaningful Intrinsic Mode Function (IMF) components are recon
structed to obtain the denoised brain electrical signals. Feature extraction is performed on the denoised signals using Bagging-RCSP. 
Finally, the brain electrical data is classified based on the extracted features using Fisher Linear Discriminant Analysis (FLDA). The 
specific classification process is depicted in Fig. 1. 

2.5. Introduction to EEG data sets 

2.5.1. Dataset1 
Dataset1 originates from the BCI Competition IV dataset IIa. This dataset primarily comprises EEG signals recorded from nine 

subjects (A01, A02, …, A09) participating in four different motor imagery tasks: left hand, right hand, feet, and tongue, prompted by 
cues on a computer screen. Each subject underwent recording over two days, with each day consisting of two sessions and each session 
composed of six runs. The dataset1 is bifurcated into two principal components: training and testing, each encompassing 288 trials. 
Every category of motor imagery data incorporates 72 trials, with 22 EEG signal sampling channels and a device sampling rate set at 
250 Hz. This research focused on the EEG data for two distinct motor imagery tasks, the left and right hand, downsampled to 100 Hz for 
algorithm verification. A total of 144 trials of left- and right-hand motor imagery data were extracted from the dataset1, with 42 trials 
from each category designated for training data and the remainder utilized for testing. 

2.5.2. Dataset2 
Dataset2 is derived from the BCI Competition III (2005) dataset IVa, which primarily includes the motor imagery EEG data of five 

healthy subjects (aa, al, av, aw, ay). These EEG data comprise channel data from 118 leads, with a signal acquisition frequency of 100 
Hz and a total of 280 samples per subject. Each subject executed three types of motor imagery tasks (left hand, right hand, and right 
foot) based on visual cues. However, the competition only provided an equal quantity of right hand and right foot motor imagery data 
for each subject. The dataset is partitioned into training and testing categories, with five subsets of sample data (comprising 168, 224, 
84, 56, and 28 samples, respectively) from the five subjects chosen for training and the remaining sample data designated for testing. 

2.5.3. Dataset3 
Dataset3 was obtained from the EEG data acquisition device (NeuroScan SynAmp2 8050) in the laboratory through the experiment 

of designing motor imagination action classification task. The dataset3 recorded 5 subjects (NORMAL06, NORMAL07, NORMAL08, 
NORMAL09, NORMAL10) performing left - and right-handed motor imagination tasks when prompted by left - and right-handed 
arrows. The task period of each experiment was 26 s, which was divided into three stages: the first stage was to rest for 1s, the sec
ond stage was to perform movement imagination for 10s, and the third stage was to rest for 15s. In each round of the experiment, the 
subjects were required to perform 10 consecutive experimental tasks. The paper select randomly 5 times of experimental data as 
training data, and the remaining 5 times of data as test data. 

The three data sets are divided into training set and test set. The data in the training set is applied 10-fold cross validation, that is, 
the training data set is divided into ten parts, and 9 of them are trained and 1 of them is verified in turn. The average of the results of the 
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10 times is used as the estimation of the algorithm accuracy. After 10 times of 10-fold cross-validation, the recognition accuracy rate 
obtained from the test set data is expressed as the final accuracy rate. 

The hardware configurations for the three data sets are shown in Table 1. 

2.6. Statistical method 

The T-test algorithm proposed in this paper is analyzed by using the T-test method (which is paired with double-tail detection) to 
compare the effective differences in the average recognition rate with the CSP, RCSP, SSCSP, FBCSP and other algorithms. If P < 0.001 
is found, it indicates that there is a significant difference, which shows that the algorithm proposed in this paper has a strong distinction 
in recognition rate. 

3. Results and discussion 

3.1. Results and discussion of the dataset1 

The main objective of this study is to select left-hand and right-hand motor imagery datasets from a larger dataset1, consisting of a 
total of 144 experiments. Out of these, 42 experiments from each category are randomly chosen as training data, while the remaining 
samples are used as testing data. In order to improve classification accuracy and reduce classification time, the proposed algorithm in 
this paper divides the training dataset1 of 9 participants into smaller data packets. The algorithm then selects data packets based on 
their correlation with classification accuracy and applies Feature Extraction using Regularized Common Spatial Patterns (RCSP) to 
perform data classification using Fisher’s Linear Discriminant Analysis (FLDA). Comparative experiments are conducted between CSP, 
RCSP, SSCSP, FBCSP, and the proposed algorithm in this paper. The results of the comparison show effective differences in recognition 
rate and time consumption between CSP and its derivative algorithms, and the improved EMD Bagging-RCSP proposed in this paper, as 
shown in Table 2. The time consumption represents the total time taken for feature extraction and classification of the testing data of 
the 9 participants. 

Compared with the data in Table 2, which is also the FLDA dimensionality reduction method, different CSP and its derivative 
algorithms are compared, and it can be found that the average recognition accuracy rate of the proposed algorithm is increased by 
more than 5%, and the sample standard deviation of the proposed algorithm is smaller than that of other algorithms, indicating that the 
algorithm has better algorithm robustness than other algorithms. The T-test algorithm (which is paired with double-tail detection) 
proposed in this paper is analyzed and compared with other algorithms. The significant differences are found at P < 0.001, which 
indicates that the algorithm proposed in this paper has strong differentiation in recognition rate. In terms of computational time, the 
traditional CSP algorithm has a relatively small computational load, suggesting that algorithm complexity affects the time required. 
However, the algorithm proposed in this study has made certain improvements in terms of computational time compared to other CSP 
derivative algorithms. 

Considering the average recognition rate and computational time of the algorithms, it can be concluded that the algorithm pro
posed in this study is superior to the traditional CSP algorithm and its derivatives. The new algorithm proposed in this paper out
performs all other methods in the recognition rate of all samples. 

3.2. Results and discussion of the dataset2 

The main work of this study involved training on five sets of samples from the five subjects (with 168, 224, 84, 56, and 28 samples, 
respectively), while the remaining 840 samples were used as testing data. To improve classification accuracy and reduce classification 
time, the proposed algorithm in this study took advantage of the positive correlation between classification accuracy and training 
samples. Specifically, the large training samples were divided into smaller data packets, and then RCSP features were extracted to 
select data and apply FLDA for data classification. Comparative experiments revealed effective differences in recognition rates and 
computational time between algorithms such as CSP, RCSP, SSCSP, FBCSP and the proposed improved EMD Bagging-RCSP on this 
dataset, as shown in Table 3. The computational time represents the total time taken for feature extraction and classification on the 
remaining 840 test data from the five subjects. 

Compared with the data in Table 3, which is also the FLDA dimensionality reduction method, different CSP and its derivative 
algorithms are compared, and it can be found that the average recognition accuracy rate of the proposed algorithm is increased by 
more than 5%, and the sample standard deviation of the proposed algorithm is smaller than that of other algorithms, indicating that the 
algorithm has better algorithm robustness than other algorithms. It is obtained by T-test algorithm that the significant differences are 
found at P < 0.001. The algorithm proposed in this paper has strong differentiation in recognition rate. It can be concluded that, based 

Table 1 
Hardware configurations of three data sets.  

Datasets Number of subjects Number of channels Sampling rate Motor ImageryTask 

Dataset1 9 22 250 Hz Left hand、right hand 
Dataset2 5 118 100 Hz Left hand、right hand 
Dataset3 5 68 1000 Hz Left hand、right hand  
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on the average recognition rate and time consumption, the algorithm proposed in this paper outperforms traditional CSP and its 
derivative algorithms. The new algorithm proposed in this paper outperforms all other methods in the recognition rate of all samples. 

3.3. Results and discussion of the dataset3 

To further validate the feasibility and advantages of the proposed algorithm in this paper, a comparative experiment was conducted 
between the algorithm proposed in this paper and CSP, RCSP, SSCSP, FBCSP which using the left-right-hand motor imagery dataset3 
collected from five participants, based on the reference data such as average recognition rate and processing time shown in Table 4. 

The two types of signals corresponding to left and right-hand motor imagery are combined into one sample set. In this study, Data 
from 10 experiments per object were selected for feature extraction experiments. The unfiltered CSP, RCSP, SSCSP, FBCSP and 
improved EMD Bagging-RCSP algorithms were used for feature extraction and classification of the left and right-hand motor imagery 
signals, respectively. FLDA algorithm was applied to project the high-dimensional feature vector into the linear space, and then feature 
classification was carried out. The scatter diagram of the feature distribution of left and right hand motion imaginary EEG signals of 
one subject was shown in Fig. 2. There was a clear distinction between the two actions, and the same action points tended to be 
concentrated while the regions of different action points were scattered. The classification and recognition rates of EEG signals of 5 
subjects under the last two different algorithms are shown in Table 4. 

In Fig. 2, the dashed black line represents the optimal projection axis, and the solid black line represents the direction of the normal 
vector of the projection. From the figure, it can be observed that the EEG signals after improved EMD Bagging CSP filtering exhibit 
optimal projection axis on Fisher’s Linear Discriminant Analysis (FLDA), enabling classification of left and right-hand motor imagery 
features. Further improvement in classification accuracy of different types of motor imagery can be achieved by training a large data 
sets of EEG signals to strengthen the feature values. 

Fig. 2 represents the distribution of two classes of features after feature extraction. There is a clear discrimination between the 
brainwave signals associated with left and right-hand motor imagery. The improved EMD Bagging-RCSP algorithm incorporates the 
preprocessed brainwave signals using improved EMD filtering into the RCSP algorithm along with the brainwave data from other 
subjects. This reduces the bias in the estimation of the signal’s covariance matrix. In the calculation process, the samples of the subjects 
were repeatedly selected 10 times for cross-verification, so as to extract the characteristic EEG signals of the left and right hand motor 
imagination with obvious differentiation and strong robustness. These features are then accurately classified using FLDA. 

The average classification recognition rate for the improved EMD Bagging CSP was 86.6%. The average recognition accuracy is 
higher than other algorithms. By comparing the data in Table 4, which is also the FLDA dimensionality reduction method, different CSP 
and its derivative algorithms are compared, it can be found that the average recognition accuracy of the proposed algorithm is 
increased by more than 5%. The significant differences are found at P < 0.001 by the T-test algorithm, which indicates that the 

Table 2 
Comparison of recognition rates (%) for CSP, RCSP, SSCSP, FBCSP and the algorithm of this study on BCI Competition IV Dataset 2a.  

Algorithm 1 2 3 4 5 6 7 8 9 Average ± Standard deviation Time consumed (s) 

CSP 77.6 47.9 77.4 54.7 54.6 39.4 83.3 80.8 58.0 63.7 ± 16.2 9.5 
RCSP 78.8 49.3 79.7 60.1 55.1 41.2 85.7 83.1 60.8 66.0 ± 16.2 70.2 
SSCSP 78.5 50.2 79.1 58.6 54.5 40.3 85.5 82.2 60.2 65.5 ± 16.2 75.8 
FBCSP 76.8 45.5 76.5 61.3 56.8 42.3 83.9 81.6 60.5 65.0 ± 15.4 77.2 
Algorithm of this study 80.5 57.2 82.8 71.1 60.4 50.1 87.8 85.0 65.1 71.1 ± 13.6 69.1  

Table 3 
Comparison of recognition rates (%) for CSP, RCSP, SSCSP, FBCSP and the algorithm of this study on BCI Competition III Dataset IVa.  

Algorithm aa al av aw ay Average ± Standard deviation Time consumed (s) 

CSP 65.3 97.1 57.1 85.6 60.1 73.0 ± 15.6 6.5 
RCSP 73.8 95.3 71.7 90.1 75.1 81.2 ± 9.6 65.3 
SSCSP 72.5 96.0 68.5 88.6 74.5 80.0 ± 10.5 73.2 
FBCSP 69.7 94.2 70.1 83.4 71.5 77.8 ± 9.6 80.5 
Algorithm of this study 75.5 97.2 72.8 91.1 80.4 85.4 ± 9.3 61.1  

Table 4 
Classification recognition rates (%) for CSP, RCSP, SSCSP, FBCSP and the algorithm of this study.  

Subjects CSP RCSP SSCSP FBCSP Algorithm of this study 

NORMAL06 77.52 80.43 79.54 80.11 87.11 
NORMAL07 89.10 92.11 91.07 90.54 92.35 
NORMAL08 72.48 73.14 75.05 74.25 82.51 
NORMAL09 79.85 80.31 81.44 82.67 86.91 
NORMAL10 77.44 78.45 79.86 79.13 84.19 
Average ± Standard deviation 79.3 ± 6.1 80.9 ± 6.9 81.4 ± 5.9 81.3 ± 6.0 86.6 ± 3.7  
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algorithm proposed in this paper has strong differentiation in recognition rate which compared with other algorithms. 
In order to further verify the effectiveness of FLDA dimensionality reduction method and reflect its significant dimensionality 

reduction effect, this method was compared with the PCA dimensionality reduction method. 
According to the data analysis in Table 5: The same bagging RCSP algorithm is applied for feature extraction, and the FLDA 

dimensionality reduction method is compared with PCA dimensionality reduction method. It is found that the recognition effect after 
FLDA dimensionality reduction is better than that after PCA dimensionality reduction, and the average recognition rate is increased by 
more than 6%. The T-test analysis shows that there are significant differences between the two dimensionality reduction methods. The 
P value was less than 0.01. The main reason is that PCA method is looking for the main axis direction that is used to effectively 
represent the common characteristics of the same class of samples, which has obvious advantages in representing the common 
characteristics of the same class of data samples. However, PCA is not suitable for distinguishing different classes of samples, and FLDA 
method is looking for the most effective direction for distinguishing different classes of samples. Satisfy the recognition accuracy 
requirement of binary classification task. 

4. Conclusions 

In the context of brain signal feature extraction and classification, this paper proposes a new algorithm and validates it on the BCI 
Competition IV dataset 2a, the BCI Competition III dataset IVa and the self-collected data set respectively. The analysis of the results 
shows that compared with CSP and its derivative algorithms, the algorithm proposed in this paper has a higher average recognition 
rate and a lower time consuming algorithm. The algorithm proposed in this paper improves the average action recognition rate by 
nearly 10% and saves time significantly, which proves the effectiveness and accuracy of the proposed algorithm in EEG feature 
extraction and classification. 

The limitations of this study are as follows: 1. Compared with the existing artificial intelligence algorithms such as convolutional 
neural networks, the average recognition rate of EEG signals needs to be further improved, and the feature extraction and accurate 
classification of EEG signals under multiple classification tasks need to be further optimized. 2. The lead number of EEG acquisition 
channels is different. The signal coupling relationship between different channels and the method of channel dimensionality reduction 
are studied in this paper. It is ideal to use the fewest channels to obtain the best classification accuracy, because while ensuring the 
classification accuracy, the reduction of the number of channels is conducive to reducing the loss of resources, and the data processing 
time will also be reduced, which can speed up the actual running speed of the BCI. 3. Lack of in-depth research on the robustness of 
action classification accuracy on different classifiers. 

Data openly available in a public repository 

The dataset1 and dataset2 that support the findings of this study are openly available in http://www.bbci.de/competition. 
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